SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	e disc	eipline	Ev	olutionary Algori	thms	}	
2.2 Course coordinator Prof.PhD. Dumitru Dumitrescu							
2.3 Seminar coordinator Prof.PhD. Dumitru Dumitrescu							
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3	1 sem
		course		seminar/laborator	
				y	
3.4 Total hours in the curriculum	42	Of which: 3.5	28	3.6	14
		course		seminar/laborator	
				y	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					7
Evaluations					20
Other activities:					-

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	② Average programming skills

5. Conditions (if necessary)

5.1. for the course	

6. Specific competencies acquired

Professional competencies	② Knowledge, understanding and use of basic concepts of EMCO
Transversal	 Ability to apply multicriteria optimization problems to different real life problems Ability to model phenomena using multicriteria optimization problem
competencies	Ability to model phenomena using multicriteria optimization problem

7. Objectives of the discipline (outcome of the acquired competencies)

" objectives of the discipline	(outcome of the acquired competences)
7.1 General objective of the	an introduction to the field studied.
discipline	the basic notion, techniques and algorithms.
	the background for advanced courses.
7.2 Specific objective of the	application of EA optimization models/techniques.
discipline	

8. Content

8.1 Course	Teaching methods	Remarks
Principles of evolutionary computation. Basic and	Exposure: description,	
related models. Structure of an evolutionary	explanation, examples,	
algorithm	discussion of case studies	
Constitute allowithms Ducklam assurantation and fitness	Even a grande de a cuinti a n	
Genetic algorithms. Problem representation and fitness	Exposure: description,	
function. Canonical genetic algorithm.	explanation, examples, discussion of case studies	
Selection – selection pressure; takeover time; standard	Exposure: description,	
• • • • • • • • • • • • • • • • • • • •	explanation, examples,	
schemes.	debate, dialogue	
Selection – proportional selection; premature	Exposure: description,	
convergence; scaling mechanisms; rank-based	explanation, examples,	
selection	discussion of case studies	
Sciection		
Selection – binary tournament; q-tournament; elitism;	Exposure: description,	
steady state EAs; Michalewicz selection; Boltzmann	explanation, examples,	
selection	proofs	
X7 : .:	D 1	
Variation operators for binary encoding;	Exposure: description,	
Variation operators for real-valued encoding	explanation, examples,	
variation operators for rear-variated encouning	proofs, debate, dialogue	
Hybridisation – specific representation; hybridisation	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
Parameter setting and adaptive Gas; adaptive fitness of	Exposure: description,	
a search operator	explanation, examples	

Adaptive representation –messy genetic algorithms, delta coding; diploidic representation Population models and parallel implementations - niching methods; fitness sharing; island and stepping stone models;	Exposure: description, explanation, examples, discussion of case studies Exposure: description, explanation, examples, debate
Population models and parallel implementations - multiple solutions: crowding; fine-grained diffusion models; coevolution; multiple population models	Exposure: description, explanation, examples, discussion of case studies
Evolution strategies – introduction. (1+1) strategy; standard mutation; Cauchy perturbations;	Exposure: description, explanation, examples, discussion of case studies
Evolutionary programming – sequential machine model; function optimization; Cauchy perturbation.	Exposure: description, explanation, examples, discussion of case studies
Search and optimization using evolutionary algorithms.	Exposure: description, examples, discussion of case studies, live demo

Bibliography

DUMITRESCU, D., B Lazzerini, Evolutionary Computation, CRC Press, New York, Boca Raton, 2000

DUMITRESCU, D., Principiile Inteligentei artificiale, Editura Albastra, Cluj, 2000.

DUMITRESCU, D., Algoritmi genetici si strategii evolutive. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj, 2000.

DEB, K., Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

GOLDBERG, D. E., Genetic Algorithm. Addison-Wesley, Reading, 1989.

MICHALEWICZ, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, 1992.

8.2 Seminar	Teaching methods	Remarks
1. Genetic algorithms. Problem representation and	Explation, dialogue, case	The seminar is
fitness function. Canonical genetic algorithm.	studies	structured as 2 hours
-problems		classes every second
r		week
2. Selection – proportional selection; premature	Dialogue, debate, case	
convergence; scaling mechanisms; rank-based	studies, examples, proofs	
selection		
3. Selection – binary tournament; q-tournament;	Dialogue, debate, case	
elitism; steady state EAs; Michalewicz	studies, examples, proofs	
selection; Boltzmann selection -problems		
	5:1	
4. Variation operators for binary encoding	Dialogue, debate, case	
Variation operators for real-valued encoding	studies, examples	
-problems		
5. Parameter setting and adaptive Gas; adaptive	Dialogue, debate, case	
fitness of a search operator -problems	studies, examples	
6. Population models and parallel implementations	Dialogue, debate, case	
- niching methods; fitness sharing; island and	studies, examples	

stepping stone models;		
7. Evolutionary programming – sequential machine model; function optimization; Cauchy perturbation.	Dialogue, debate, case studies, examples	

Bibliography

DUMITRESCU, D., B Lazzerini, Evolutionary Computation, CRC Press, New York, Boca Raton, 2000

DUMITRESCU, D., Principiile Inteligentei artificiale, Editura Albastra, Cluj, 2000.

DUMITRESCU, D., Algoritmi genetici si strategii evolutive. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj, 2000.

DEB, K., Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

GOLDBERG, D. E., Genetic Algorithm. Addison-Wesley, Reading, 1989.

MICHALEWICZ, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, 1992.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- ① The content of the course is considered important in the introduction to Evolutionary Algorithms

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	know the basic principle of the domain;apply the course conceptsproblem solving	Written exam	50%
10.5 Seminar/lab activities	 be able to implement course concepts and algorithms be able to make a practical project during the semester 	-Practical project -documentation -portofolio -continous observations	50%
10.6 Minimum perforn	nance standards		
➤ At least grade 5	(from a scale of 1 to 10) at both writte	en exam and laboratory work.	

Date Signature of course coordinator

Signature of seminar coordinator

D. Janutusan

Prof.PhD. Dumitru Dumitrescu

Date of approval	Signature of the head of department