## "Babes-Bolyai" University of Cluj-Napoca Faculty of Mathematics and Computer Science

 Geometry 1
 Code Semes-ter Hours: C+S+L Type Section MMG0001 1 2+2+0 compulsory Matematica MMG0001 1 2+2+0 compulsory Matematică informatică MMG0001 1 2+2+0 compulsory Matematici aplicate
 Teaching Staff in Charge
 Lect. VACARETU Daniel,  vacaretumath.ubbcluj.roProf. VARGA Csaba Gyorgy, Ph.D.,  csvargacs.ubbcluj.roAsist. ANDRAS Szilard Karoly,  andraszmath.ubbcluj.ro
 Aims In the first part the course makes a gradual passage from the geometry studied in high-scholl to the principal notions of the three dimensional geometry and after that the objects of the three dimensional geometry are considered.
 Content I. Geometric transformations. 1. Izometries of euclidean plane: simetries, translations, rotations. 2. Homotety. 3. Inversion. II. Analytical geometry of plane. 1. Vectorial space of free vectors. 2. Vectorial equations of straight lines. 3. Cartesian equations of straight lines in plane. 4. Circle. 5. Conics. III. Analytical geometry in three-dimensional euclidean space. 1. Vectorial equations of straight lines and planes in space. 2. Cartesian equations of straight lines. 3. Cartesian equations of planes. 4. Sphere. 5. Cuadrics. 6. Generated surfaces.
 References 1. ANDRICA, D., VARGA, CS., VACARETU, D., Teme de geometrie, Ed. Promedia-Plus, Cluj-Napoca, 1997 2. ANDRICA, D., VARGA, CS., VACARETU, D., Teme si probleme alese de geometrie, Ed.Plus, Bucuresti,2002 3. GALBURA, GH., RADO, F., Geometrie, Ed. Did. si Ped. Bucuresti, 1979. 4. MIRON,R., Geometrie Analitica,Ed.Did. si Ped., Bucuresti, 1976. 5. MURGULESCU,E., si col.,Geometrie analitica si diferentiala,Ed.Did.si Ped.,Bucuresti,1971. 6. PINTEA, C., Geometrie, Presa Universitara Clujeana,2001. 7. UDRISTE, C., TOMULEANU, V., Geometrie analitica, Manual pentru clasa a-XI-a, Ed. Did si Ped. Bucuresti
 Assessment Exam.
 Links: Syllabus for all subjects Romanian version for this subject Rtf format for this subject