Special Topics in Graph Theory |
ter |
||||
Teaching Staff in Charge |
Assoc.Prof. TOADERE Teodor, Ph.D., toaderecs.ubbcluj.ro |
Aims |
Forming the modelling skills of future computers scientists. Forming an abstract thinking that offers the possibility to realize complex connections between the environment and abstract objects from the graph theory. |
References |
1. BANNAI E., BANNAI E., How many P-polinomial structures can an association scheme have?, Europ. J. Comb. 1(1980)pp.289-298.
2. BIGGS N.L., The symmetry of line graphs, Util. Math. 5(1974)pp.113-121. 3. BROUWER A.E., COHEN A.M., NEUMAIER A., Distance Regular Graphs, Springer Verlag, Berlin, 1989. 4. CROITORU C., Optimizare combinatorie, Ed.Univ."Al.I.Cuza", Iasi 1992. 5. GONDRAN M., MINOUX, M.: Graphes et algorithmes, Paris 1979. 6. IVANOV A.A., IVANOV A.V., London Math. Soc. Lect. Notes Ser. vol.131(1988). 7. FARADEV I.A., IVANOV A.A., KLIN M.H., Woldar, Investigation in Combinatorial Objects, Kluwer Academic Publisher, 1994. 8. Lecture Notes Math. 558(1976). 9. WEISS R., s-transitive graph, In Algebraic Methods in Graph Theoty vol.2(1981), pp.827-847. 10. WEISS R., The non-existence of 8-transitive graph, Combinatorica 1(1981), pp.309-563. 11. TOADERE T.,STOICA F.:Some Aspects of Graphs Planarity, Studia Mathematica, vol.XL(no.2,1995), pp.123-146. 12. WEISS R, Distance-transitive graphs and generalized polygons, Acth. Math. 45(1985), pp.555-563. |
Assessment |
The final mark is composed from two parts having equal weights: one based on the activity during the semester (reports presentations), and the other based on the final examination. |
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |