ADMISSION 2025 Written exam in MATHEMATICS

IMPORTANT NOTE: Questions may have one or more correct answers, which must be indicated by the candidate on the special form provided on the examination sheet. Grading of multiple-choice questions will be performed according to the partial scoring system detailed in the competition regulations.

1. Let
$$A(x) = \begin{pmatrix} x & x & 3 \\ 0 & 1 & 2 \\ x & 0 & 2 \end{pmatrix}$$
, where $x \in \mathbb{R}$. If $\det(A(x)) = 6$, then the value of x can be
 $\boxed{A - 2};$ $\boxed{B} 2;$ $\boxed{C} -\frac{3}{2};$ $\boxed{D} 1.$

2. The center of symmetry of the square ABCD is the point M(1,1). The vertex B has coordinates (3,2). The equation of the diagonal AC is

A
$$2x - y - 1 = 0;$$
 B $2x + y - 3 = 0;$ C $x + 2y - 1 = 0;$ D $x - 2y + 1 = 0.$

3. Consider the polynomial $P(X) = X^3 + aX^2 - 5X + a^2 - 3$, where *a* is a real parameter. The sum of all possible values of *a* for which P(2) = 0 is

A-6;D6.

4. For the real numbers $x, y \neq 0$ we define the expression

$$x \star y = \frac{x+1}{y} + \frac{y+1}{x}$$

Which of the following statements are true?

A $x \star y \in \mathbb{R}^*$, for all $x, y \in \mathbb{R}^*$;B $x \star y = y \star x$, for all $x, y \in \mathbb{R}^*$;C $1 \star (2 \star 3) = \frac{14}{3}$;DThere exists $e \in \mathbb{R}^*$ such that $x \star e = x$, for all $x \in \mathbb{R}^*$.

5. If for the real numbers $a, b \in (0, 1)$ we have $a^b > b^a$, then

$$\underline{A} \ln a < \ln b; \qquad \qquad \underline{B} \frac{\ln a}{a} > \frac{\ln b}{b}; \qquad \qquad \underline{C} a > b; \qquad \qquad \underline{D} b > a.$$

6. Suppose that $x \in \left(\frac{\pi}{2}, \pi\right)$ and $y \in \left(0, \frac{\pi}{2}\right)$, and moreover $\sin x = \frac{5}{13}$ and $\sin y = \frac{3}{5}$. Then the value of the expression $\cos(x+y)$ is

$$\boxed{A} - \frac{33}{65}; \qquad \qquad \boxed{B} - \frac{16}{65}; \qquad \qquad \boxed{C} - \frac{63}{65}; \qquad \qquad \boxed{D} \frac{56}{65}$$

7. Consider the triangle ABC in which AB = 4, AC = 6 and BC = 8. Which of the following statements are true?

$$\boxed{\mathbf{A}} \cos A = -\frac{1}{4}; \qquad \qquad \boxed{\mathbf{B}} \cos A = \frac{1}{2}; \qquad \qquad \boxed{\mathbf{C}} \overrightarrow{AB} \cdot \overrightarrow{AC} = -12; \qquad \qquad \boxed{\mathbf{D}} \overrightarrow{AB} \cdot \overrightarrow{AC} = -6.$$

8. If for the natural number n we have $5C_{n+3}^n = A_{n+2}^3$, then n is

9. For every $a \in [-2, 2]$ we consider the sequence defined by

$$S_n(a) = \frac{a}{2} + \frac{a^2}{2^2} + \dots + \frac{a^n}{2^n}, \qquad n \in \mathbb{N}^*.$$

Which of the following statements are true?

 $\begin{array}{|c|c|} \hline \mathbf{A} & \lim_{n \to \infty} S_n(a) = \frac{a}{2-a}, \text{ for all } a \in (-2,2); \\ \hline \mathbf{B} & \left(S_n(a)\right)_{n \ge 1} \text{ is a bounded sequence for every } a \in [-2,2]; \\ \hline \mathbf{C} & \left(S_n(a)\right)_{n \ge 1} \text{ is a strictly increasing sequence for every } a \in [0,2]; \\ \hline \mathbf{D} & \lim_{n \to \infty} \frac{1}{S_n(2) + S_n(-2)} = 0. \end{array}$

10. Consider the function $f: (0, \infty) \to \mathbb{R}$, defined by $f(x) = ax \ln x - 3x$. If $x = \sqrt{e}$ is a point of global minimum for f, then the value of a is

A 1;B 2;C 3;D
$$\frac{3}{2}$$

11. The value of the limit $\lim_{x \to 1} \frac{\sqrt{x^2 + x + 2} - 2}{x^2 - 1}$ is

$$\boxed{A} \frac{3}{4}; \qquad \qquad \boxed{B} \frac{1}{4}; \qquad \qquad \boxed{C} \frac{1}{8}; \qquad \qquad \boxed{D} \frac{3}{8}.$$

12. Consider the set $A = \{p \in \mathbb{R} \mid \lim_{x \to \infty} x^p \operatorname{arctg} x \in (0, \infty)\}$. Which of the following statements are true?

AThe set A is infinite;BThe set A is finite;C $A = \emptyset$;D $A \subseteq \mathbb{Q}$.

13. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$. If $X \in \mathcal{M}_2(\mathbb{R})$ is a matrix such that $AX + XB = 3I_2$, then the sum of all elements of the matrix X is

14. If for the complex number z we have $(3+i)z + (1-2i)\overline{z} = 11 - 4i$, then |z| is equal to

A 5;B 3;
$$\mathbb{C}\sqrt{5};$$
 $\mathbb{D}\sqrt{3}.$

15. Let $(a_n)_{n\geq 1}$ be an arithmetic progression such that $a_5 + a_{10} = 70$ and $a_1 + a_2 + \cdots + a_{15} = 600$. The value of the term a_3 is

$$A$$
 -10; B 0; C 10; D -20.

16. The side AB of rectangle ABCD lies on the line with equation 5x + 12y - 2 = 0, and the length of side BC is 2. Which of the following lines could contain the side CD of the rectangle?

A $d_1: 5x + 12y + 10 = 0;$ B $d_2: 5x + 12y - 36 = 0;$ C $d_3: 5x + 12y + 24 = 0;$ D $d_4: 5x + 12y - 28 = 0.$

17. The area of a rhombus is 18, and the length of each of its sides is 6. The measure of the acute angle of the rhombus is

A
$$30^{\circ}$$
;
 B 45° ;
 C 60° ;
 D 75° .

18. Consider the parallelogram ABCD and the points M, N, P such that $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB}$, $\overrightarrow{BN} = \frac{3}{4}\overrightarrow{BC}$ and $\overrightarrow{DP} = x \cdot \overrightarrow{DC}$, where $x \in \mathbb{R}$. The value of x for which the points M, N, P are collinear is

A
$$\frac{9}{10}$$
;B $\frac{4}{5}$;C $\frac{5}{4}$;D $\frac{10}{9}$

19. How many numbers in the interval $[0, 2\pi]$ satisfy the equation $\operatorname{ctg} x + 2\sin 2x = 4\cos x$?

20. The endpoints of the hypotenuse of a right triangle are A(-3,4) and B(8,2). The leg AC is parallel to the line with equation 3x + 4y = 0. The area of triangle ABC is

21. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be the functions defined by

 $f(x) = \begin{cases} 1, & \text{if } x > 0\\ 0, & \text{if } x = 0\\ -1, & \text{if } x < 0 \end{cases} \text{ and respectively } g(x) = x^2 - 4x + 4, \ \forall x \in \mathbb{R}.$

Consider then $h: [0,3] \to \mathbb{R}$ the function defined by $h = f \circ g$. Which of the following statements are true?

Ah is continuous on [0,3];Bh has finite one-sided (lateral) limits at every point of [0,3];Ch is integrable on [0,3];Dh admits a primitive on [0,3].

22. Let $f : [0, \pi] \to \mathbb{R}$ be the function defined by $f(x) = \ln(1 + x) - \cos x$, $\forall x \in [0, \pi]$. Which of the following statements are true?

- A f is strictly monotone on the interval $[0, \pi]$;
- C f is concave on the interval $[0, \pi]$;

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} B f''\left(\frac{\pi}{3}\right) > 0; \\ \hline \end{array} \\ \begin{array}{c} \\ \end{array} D f \text{ is convex on the interval } [0, \pi]. \end{array}$

23. The value of the integral
$$\int_{1}^{5} \frac{x}{\sqrt{3x+1}} dx$$
 is
A 7; B 8; C 6; D 4.
24. The value of the integral $\int_{0}^{\pi/4} \frac{dx}{1+2\cos^{2}x}$ is
A $\frac{\pi}{6\sqrt{3}}$; B $\frac{\pi}{6}$; C $\frac{\pi}{3\sqrt{3}}$; D $\frac{\pi}{12\sqrt{3}}$.

BABEŞ-BOLYAI UNIVERSITY CLUJ-NAPOCA FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Correct Answers

ADMISSIONS EXAM, July 2025

Written test in MATHEMATICS

1. **B**, **C** 2. B 3. B 4. **B**, **C** 5. **B**, **C** 6. C 7. A, D 8. A 9. A, D 10. B 11. D 12. **B**, **D** 13. B 14. C 15. A 16. C, D 17. A 18. D 19. C 20. D 21. **B**, **C** 22. A, B 23. B 24. A