BABEŞ-BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Admission Exam – July 17th, 2025

Written exam for Computer Science

IMPORTANT NOTE:

Unless otherwise specified:

- All arithmetic operations are performed on unlimited data types (there is no overflow / underflow).
- Arrays, matrices and strings are indexed starting from 1.
- All restrictions apply to the values of the actual parameters at the time of the initial call.
- A subarray of an array or a string consists of elements that occupy consecutive positions in the array or in the string.
- If on the same row there are several consecutive assignment statements, they are separated by "; ".

1. Consider the algorithm ceFace(n, x), where *n* is a natural number $(1 \le n \le 10^4)$, and *x* is an array with *n* integer elements $(x[1], x[2], ..., x[n], -100 \le x[i] \le 100$, for i = 1, 2, ..., n).

Which of the following implementations of the algorithm ceFace(n, x) return the greatest value from array x?

```
A.
                                                         Β.
                                                         Algorithm ceFace(n, x):
Algorithm aux(n, x, i, b):
    If i > n then
                                                             i ← 1
        Return b
                                                             While i < n execute
    EndIf
                                                                  If x[i] \ge x[i + 1] then
    If b < x[i] then</pre>
                                                                      Return False
        b ← x[i]
                                                                  EndIf
    EndIf
                                                                  i ← i + 1
    Return aux(n, x, i + 1, b)
                                                             EndWhile
EndAlgorithm
                                                             Return True
                                                         EndAlgorithm
Algorithm ceFace(n, x):
    Return aux(n, x, 1, x[1])
EndAlgorithm
C.
                                                         D.
Algorithm ceFace(n, x):
                                                         Algorithm ceFace(n, x):
    i ← 1
                                                             i ← 1
    b ← x[i]
                                                             b ← x[i]
    While i < n execute
                                                             While i < n execute
        If b < x[i + 1] then
                                                                 If b > x[i + 1] then
            b ← x[i + 1]
                                                                      b ← x[i + 1]
        EndIf
                                                                  EndIf
        i ← i + 1
                                                                  i ← i + 1
    EndWhile
                                                             EndWhile
    Return b
                                                             Return b
                                                         EndAlgorithm
EndAlgorithm
```

2. Consider the algorithms f1(a, b) and f2(a, b), where a and b are natural numbers $(1 \le a, b \le 10^4)$. **Algorithm** f1(a, b): In what cases does the algorithm f2(a, b) return *True*?

```
While b ≠ 0 execute
    temp ← b
    b ← a MOD b
    a ← temp
EndWhile
Return a
EndAlgorithm
Algorithm f2(a, b):
Return f1(a, b) = 1
EndAlgorithm
```

- A. If and only if the numbers *a* and *b* are numbers from the *Fibonacci* sequence.
- B. If and only if the sum of the digits of the number a + b is equal to the sum of the digits of the number a b.
- C. If and only if the number of even digits of the number a b is equal to the number of odd digits of the number a + b.
- D. If and only if the numbers *a* and *b* are relatively primes.

3. Consider the algorithm f(n), where n is a natural number $(3 \le n \le 10^3)$.Algorithm f(n):
If n = 1 then
Return 0Which of the following sums are computed by the
algorithm f(n)?Return 0
Else
Return (2 * n - 3) * (2 * n - 1) + f(n - 1)
EndIf
EndAlgorithmNote that $\sum_{k=1}^{n} (2k - 3) (2k - 1)$
B. $\sum_{k=1}^{n-1} (2k - 1) (2k + 1)$
C. $\sum_{k=2}^{n-1} (2k - 1) (2k + 1)$

D. $\sum_{k=2}^{n} (2k-3) (2k-1)$

4. Consider the algorithm f(x, y), where x and y are natural numbers $(3 \le x, y \le 10^3)$:

```
Algorithm f(x, y):
    If x = 1 then
        Return y
    EndIf
    If x \mod 2 = 0 then
        If x > 0 then
            Return f(x DIV 2, y * 2)
        Else
            Return 0
        EndIf
    EndIf
    Return y + f(x DIV 2, y * 2)
EndAlgorithm
A.
Algorithm a(x, y):
    If x = 0 then
        Return 0
    EndIf
    If x \mod 2 = 0 then
        Return 2 * a(x DIV 2, y)
    EndIf
    Return y + a(x - 1, y)
EndAlgorithm
C.
Algorithm c(x, y):
    If x = 0 then
        Return 0
    EndIf
    Return y + c(x - 1, y)
EndAlgorithm
```

```
Which of the following algorithms return the same value as the algorithm f(x, y) for any values of x and y?
```

```
В.
Algorithm b(x, y):
    If x = 0 then
        Return y
    EndIf
    If x \mod 2 = 0 then
        Return b(x DIV 2, y)
    EndIf
    Return y + b(x - 1, y)
EndAlgorithm
D.
Algorithm d(x, y):
    s ← 0
    While x > 0 execute
        s ← s + y
        x ← x - 1
    EndWhile
    Return s
EndAlgorithm
```

5. Consider the algorithm ceFace(x, n), where *n* is a natural number $(1 \le n \le 10^4)$, and *x* is an array with *n* integer elements $(x[1], x[2], ..., x[n], -100 \le x[i] \le 100$, for i = 1, 2, ..., n):

Algorithm ceFace(x, n): For $i \leftarrow 1$, 10 execute For $j \leftarrow 1$, n - 1 execute If x[j] > x[j + 1] then $tmp \leftarrow x[j]$ $x[j] \leftarrow x[j + 1]$ $x[j + 1] \leftarrow tmp$ EndIf EndFor EndAlgorithm Which of the following statements will be true after the call ceFace(x, n)?

- A. The first position of array *x* will contain the minimum element of the array.
- B. The last position of array x will contain the maximum element of the array.
- C. The array x is sorted in ascending order.
- D. If n > 10, then the first 10 elements of array x are sorted in ascending order.

6. Consider the natural number n ($1 \le n \le 10^4$) and array x consisting of n natural numbers ($x[1], x[2], ..., x[n], 1 \le x[i] \le 10^3$, for i = 1, 2, ..., n). The algorithm gcd(a, b) returns the greatest common divisor of the natural numbers a and b. Which of the following implementations of the algorithm gcdVector(x, n) return the greatest common divisor of all the n elements of array x?

```
A.
```

```
Algorithm gcdVector(x, n):
    If n = 1 then
        Return 1
    EndIf
    Return gcd(x[n], gcdVector(x, n - 1))
EndAlgorithm
```

C.

```
Algorithm gcdVector(x, n):
    result ← gcd(x[1], x[n])
    i ← 2; j ← n - 1
    While i ≤ j execute
        result ← gcd(result, gcd(x[i], x[j]))
        i ← i + 1
        j ← j - 1
    EndWhile
    Return result
EndAlgorithm
```

```
B.
Algorithm gcdVector(x, n):
    result \leftarrow x[1]
    For i ← 2, n execute
         result \leftarrow gcd(x[i - 1], x[i])
    EndFor
    Return result
EndAlgorithm
D.
Algorithm gcdVector2(x, n, i):
    If i = n then
        Return x[n]
    EndIf
    Return gcd(x[i], gcdVector2(x, n, i + 1))
EndAlgorithm
Algorithm gcdVector(x, n):
    Return gcdVector2(x, n, 1)
EndAlgorithm
```

7. Consider the algorithm afla(n, x), where *n* is a natural number $(1 \le n \le 10^4)$, and *x* is an array of *n* integer elements $(x[1], x[2], ..., x[n], -100 \le x[i] \le 100$, for i = 1, 2, ..., n):

```
Algorithm afla(n, x):
                                                           What is the time complexity of the algorithm?
    M ← x[1]
                                                              A. O(3 * n)
    For i ← 1, n execute
        For j ← i, n execute
                                                              B. O(n^3)
            For k ← j, n execute
                                                              C. O(n/3)
                 If M < x[i] + x[j] + x[k] then
                                                              D. O(\log_3 n)
                     M \leftarrow x[i] + x[j] + x[k]
                 EndIf
            EndFor
        EndFor
    EndFor
    Return M
EndAlgorithm
```

8. Consider the algorithm ceFace(n), where *n* is a natural number $(1 \le n \le 100)$. The algorithm min(a, b) returns the minimum value between the numbers *a* and *b*.

```
Algorithm ceFace(n):

c1 \leftarrow 0; c2 \leftarrow 0

For i \leftarrow 1, n execute

v \leftarrow i

While v MOD 2 = 0 execute

c1 \leftarrow c1 + 1

v \leftarrow v DIV 2

EndWhile

While v MOD 5 = 0 execute

c2 \leftarrow c2 + 1

v \leftarrow v DIV 5

EndWhile

EndFor

Return min(c1, c2)

EndAlgorithm
```

Which of the following statements are true?

- A. The algorithm returns the number of even numbers from the interval [1, *n*].
- B. The algorithm returns the number of numbers that are divisible by 5 from the interval [1, *n*].
- C. The algorithm returns the number of consecutive zero digits found at the end of the sum of the first *n* natural numbers.
- D. None of the previous answers are correct.

9. Consider the array x with n ($2 \le n \le 10^5$) integer elements ($x[1], x[2], ..., x[n], -100 \le x[i] \le 100$, for i = 1, 2, ..., n). The algorithm max(a, b) returns the maximum value between the numbers a and b.

Which of the following implementations of algorithm maxPePozitiePara(x, n) return the greatest element found on an even position in the array?

```
Α.
Algorithm maxPePozitiePara(x, n):
    maxVal \leftarrow x[2]
    For i \leftarrow 4, n, 2 execute
        If x[i] > maxVal then
             maxVal \leftarrow x[i]
        EndIf
    EndFor
    Return maxVal
EndAlgorithm
C.
Algorithm maxPePozitiePara2(x, n, i):
    If i > n then
        Return -100
    EndIf
    maxRest ← maxPePozitiePara2(x, n, i + 2)
    Return max(x[i], maxRest)
EndAlgorithm
Algorithm maxPePozitiePara(x, n):
    Return maxPePozitiePara2(x, n, 1)
EndAlgorithm
```

```
B.
Algorithm maxPePozitiePara(x, n):
    maxVal ← -100
    For i ← 1, n, 2 execute
        If x[i] > maxVal then
            maxVal \leftarrow x[i]
        EndIf
    EndFor
    Return maxVal
EndAlgorithm
D.
Algorithm maxPePozitiePara2(x, n, i):
    If i > n then
        Return -100
    EndIf
    maxRest ← maxPePozitiePara2(x, n, i + 2)
    Return max(x[i], maxRest)
EndAlgorithm
Algorithm maxPePozitiePara(x, n):
    Return maxPePozitiePara2(x, n, 2)
EndAlgorithm
```

10. We consider the following statements to be true:

1. Ana goes for a walk only if it is sunny.

2. Maria goes for a walk only if Ana goes for a walk.

3. If it is sunny, Tudor goes for a walk.

Which of the following conclusions can be deduced from the given statements?

- A. If Maria goes for a walk, then Tudor also goes for a walk.
- B. If it is not sunny, then Ana does not go for a walk.
- C. If it is sunny, then Maria goes for a walk.
- D. If it is not sunny, then Tudor does not go for a walk.

11. Consider the number $x = 10000110111_{(2)}$ in base 2 and number $y = 11011_{(4)}$ in base 4.

What is the value of the sum x + y in base 10?

A. 1079 B. 1404 C. 2285

D. None of the options A, B and C

12. Consider the algorithm ceFace(n, a), where *n* is a natural number $(1 \le n \le 10^4)$, and *a* is an array of *n* natural numbers $(a[1], a[2], ..., a[n], 1 \le a[i] \le 10^9$, for i = 1, 2, ..., n).

1.	Algorithm ceFace(n, a):	Which of the following statements are true?
2.	m ← Ø	6
3.	For i ← 1, n execute	A. After the call ceFace(5, [222, 2043, 29, 2,
4.	nr ← 1	20035), the algorithm returns the value 2000.
5.	While a[i] > 9 execute	B. Regardless of the values of n and a , the algorithm
6.	nr ← nr * 10	$coE_{aco}(n-a)$ returns a number that does not
7.	a[i] ← a[i] DIV 10	
8.	EndWhile	belong to array a.
9.	<pre>If m < a[i] * nr then</pre>	C. After the call ceFace(5, [34, 254, 21, 543,
10.	m ← a[i] * nr	123), the algorithm returns the value 500.
11.	EndIf	D If the instruction on line 10 is executed n times it
12.	EndFor	means that the array a as initially given was
13.	Return m	incaris that the array u , as initially given, was
14.	EndAlgorithm	sorted in strictly ascending order.

13. We build an undirected graph as follows: for each natural number n, such that $2 \le n \le 20$, we add a node labeled with that number, and between two nodes labeled with x and y we add an edge if y is a proper divisor of x.

Which of the following statements are true?

- A. The built graph has 5 connected components.
- B. Only nodes 12, 18 and 20 have the maximum degree.
- C. For any 2 nonprime numbers $x, y (2 \le x \le y \le n)$, the degree of node x is greater than or equal to the degree of node y.
- D. There is a single node with the degree equal to 1.

14. Consider the algorithm ceva(n, v), where v is an array of n ($10 \le n \le 10^5$) integer elements ($v[1], v[2], ..., v[n], -10 \le v[i] \le 10$, for i = 1, 2, ..., n). The algorithm zero(k) returns an array with k elements, all equal to 0.

```
1. Algorithm ceva(n, v):
 2.
        fr \leftarrow zero(21)
        s ← 0
 з.
 4.
        For i ← 1, n execute
 5.
             If fr[v[i] + 11] = 0 then
 6.
                 s ← s + 1
 7.
             EndIf
 8.
             fr[v[i] + 11] ← 1
 9.
        EndFor
        Write s
10.
        p ← 1
11.
12.
        For i ← 1, n execute
             If fr[v[i] + 11] = 1 then
13.
                 p \leftarrow p * v[i]
14.
                 fr[v[i] + 11] ← 0
15.
16.
             EndIf
17.
        EndFor
18.
        Return p
19. EndAlgorithm
```

Which of the following statements are true?

- A. If the value displayed on line 10 is greater than 10, the returned result is even.
- B. If the value displayed on line 10 is greater than 11, the returned result is a negative number.
- C. If the value displayed on line 10 is 21, the returned result is equal to $(10!)^2$.
- D. The highest possible value displayed on line 10, for which the returned product does not end with the 0 digit, is 16.

15. Consider the algorithm f(x), where x is a natural number $(0 \le x \le 10^5)$.

Algorithm f(x):	Which of the following statements are true?	
If x ≤ 1 then Return 1 EndTf	A. After the call $f(10)$, there will be a total of 177 calls of the $f(x)$ algorithm including the initial call	
Return $f(x - 1) + f(x - 2)$	B. The value returned after the call $f(x)$ belongs to the Fibonacci	
EndAlgorithm	sequence (1, 1, 2, 3, 5, 8, 13,).	
	C. The value returned after the call $f(10)$ is 89.	
Return f(x - 1) + f(x - 2) EndAlgorithm	 B. The value returned after the call f(x) belongs to the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13,). C. The value returned after the call f(10) is 89. 	

D. After the call f(5) a total of 4 additions will be performed.

16. Consider the algorithm ceva(A, n, r, c, nr, x), where *n* is a natural number $(1 \le n \le 10)$, *A* is a matrix of $n \le n$ natural numbers (A[1][1], A[1][2], ..., A[n][n]), *r*, *c*, *x* are natural numbers $(1 \le r, c, x \le 10)$, and *nr* is an integer number $(-10^3 \le nr \le 10^3)$. If n = 4 and initially A[3][2] = 5 and A[1][4] = 8, which of the sequences of calls will modify the elements of matrix *A* such that A[3][2] is equal to 50 and A[1][4] is equal to 16?

Algorithm ceva(A, n, r, c, nr, x):	А.	B.
If $(r + x - 1 \le n)$ AND $(c + x - 1 \le n)$ then	ceva(A, n, 3, 2, 5, 1)	ceva(A, n, 1, 3, 2, 2)
For i ← r, r + x - 1 execute	ceva(A, n, 2, 1, 4, 3)	ceva(A, n, 3, 2, 2, 3)
For $j \leftarrow c$, $c + x - 1$ execute	ceva(A, n, 3, 3, 16, 2)	ceva(A, n, 2, 1, 10, 3)
A[i][j] ← A[i][j] * nr	C.	D.
EndFor	ceva(A, n, 2, 3, 4, 2)	None of the sequences of calls
Englor	ceva(A, n, 1, 1, 2, 4)	has the specified result.
	ceva(A, n, 3, 1, 2, 1)	nus die speenied result
EndAlgorithm	ceva(A, n, 2, 1, 5, 3)	

17. Consider the algorithm cauta(x, n, e), where x is an array of n ($1 \le n \le 10^4$) natural numbers (x[1], x[2], ..., x[n], for $i = 1, 2, ..., n, 0 \le x[i] \le 10^4$) and e is a natural number ($1 \le e \le 10^4$).

Which of the following algorithms return *True* if and only if the number *e* is found in array *x*?

A. В. Algorithm cauta(x, n, e): **Algorithm** cauta(x, n, e): g ← *False*; i ← 1 g ← False; i ← 1 While i ≤ n execute While NOT g AND i ≤ n execute $g \leftarrow (x[i] = e)$ $g \leftarrow (x[i] = e)$ i ← i + 1 i ← i + 1 EndWhile EndWhile Return g Return g EndAlgorithm EndAlgorithm C. D. Algorithm cauta(x, n, e): Algorithm cauta(x, n, e): c ← 0 g ← False; i ← 1 For i ← 1, n execute While i ≤ n execute If x[i] = e then If x[i] < e + 1 AND x[i] MOD e = 0 then g ← True c ← c + 1 Else EndIf c ← c - 1 i ← i + 1 EndIf EndWhile EndFor Return g Return n ≠ -c EndAlgorithm EndAlgorithm

```
EndAlgorit
```

18. Consider the natural numbers m and n ($0 \le m$, $n \le 10$) and the algorithm Ack(m, n) which calculates the value of the Ackerman function for the parameters m and n.

```
Algorithm Ack(m, n):
                                                 How many recursive calls will be done after the call Ack(1, 4)?
    If m = 0 then
                                                     A. There will be 9 recursive calls.
        Return n + 1
    EndIf
                                                     B. The same number of recursive calls as after the call Ack(1, 2)
    If m > 0 AND n = 0 then
                                                     C. 4 recursive calls more than after the call Ack(1, 2)
        Return Ack(m - 1, 1)
                                                     D. There will be 11 recursive calls.
    EndIf
    If m > 0 AND n > 0 then
        Return Ack(m - 1, Ack(m, n - 1))
    EndIf
EndAlgorithm
```

19. Consider the algorithm P(s, n), where s is a string of n characters ($3 \le n \le 100$). The algorithm copy(s, poz, cate) returns a subarray of array s, consisting of *cate* characters, starting from position *poz*, where $0 \le cate \le n$, respectively $1 \le poz \le n - cate + 1$. For strings, the "+" operator represents string concatenation.

```
Algorithm P(s, n):Which of the follow:i \leftarrow n DIV 2J \leftarrow n DIV ij \leftarrow n DIV iA. If s1 and s2j \leftarrow n DIV ithe calls P(s)If n MOD 2 = 0 thenof different is \leftarrow copy(s, i, i - 1) +of different icopy(s, j, j - 1)B. If the stringElsethe calls P(s)s \leftarrow copy(s, i, i - 2) +the algorithmcopy(s, j, j - 2) +copy(s, 1, 1)EndIfC. After the callReturn sD. If the stringEndAlgorithmare 72 disting
```

Which of the following statements are true?

- A. If s1 and s2 are two strings of length *n* respectively $m, n \neq m$, after the calls P(s1, n) and P(s2, m), the algorithm will return two strings of different lengths.
- B. If the string s of length n contains only characters 'a', 'b' and 'c', there are 252 distinct values for s, for which, after the call P(s, n), the algorithm will return the string "ac".
- C. After the call P("concurs de admitere", 19), the algorithm returns the string "de admic".
- D. If the string s of length n contains only characters '0' and '1', there are 72 distinct values for s, for which, after the call P(s, n), the algorithm will return the string "101".

20. We color the surfaces covered by two rectangles *A* and *B*. Each rectangle is defined by its lower left corner and its upper right corner. For rectangle *A*, the coordinates are (ax1, ay1) and (ax2, ay2), and for rectangle *B*, the coordinates are (bx1, by1) and (bx2, by2), $0 \le ax1$, ay1, ax2, ay2, bx1, by1, bx2, $by2 \le 10^4$, $ax1 \le ax2$, $ay1 \le ay2$, $bx1 \le bx2$, $by1 \le by2$. The algorithms min(a, b) and max(a, b) return the minimum value and the maximum value, respectively between the numbers *a* and *b*.

Which of the following algorithms calculate the area of the colored surface?

```
A.
                                                              В.
Algorithm calculArie(ax1, ay1, ax2, ay2, bx1, by1,
                                                              Algorithm calculArie(ax1, ay1, ax2, ay2, bx1, by1,
                                                                                                               bx2, by2):
                                                bx2, by2):
                                                                   a1 \leftarrow (ax2 - ax1) * (ay2 - ay1)
    a1 \leftarrow (ax2 - ax1) * (ay2 - ay1)
    a2 \leftarrow (bx2 - bx1) * (by2 - by1)
                                                                   a2 \leftarrow (bx2 - bx1) * (by2 - by1)
                                                                   If ax2 \le bx1 OR bx2 \le ax1 OR ay2 \le by1 OR
    xSup \leftarrow max(0, min(ax2, bx2) - max(ax1, bx1))
                                                                                                          by2 ≤ ay1 then
    ySup \leftarrow max(0, min(ay2, by2) - max(ay1, by1))
                                                                       aSup \leftarrow 0
    aSup ← xSup * ySup
                                                                   Else
    arie ← a1 + a2 - aSup
                                                                       xSup \leftarrow min(ax2, bx2) - max(ax1, bx1)
    Return arie
                                                                       ySup \leftarrow min(ay2, by2) - max(ay1, by1)
EndAlgorithm
                                                                       aSup ← xSup * ySup
                                                                   EndIf
                                                                   arie ← a1 + a2 - aSup
                                                                   Return arie
                                                              EndAlgorithm
С.
                                                              D.
Algorithm calculArie(ax1, ay1, ax2, ay2, bx1, by1,
                                                              Algorithm calculArie(ax1, ay1, ax2, ay2, bx1, by1,
                                                bx2, by2):
                                                                                                               bx2, by2):
    arie \leftarrow (ax2 - ax1) * (ay2 - ay1)
                                                                   a1 \leftarrow (ax2 - ax1) * (ay2 - ay1)
    If ax2 \le bx1 OR bx2 \le ax1 OR ay2 \le by1
                                                                   a2 \leftarrow (bx2 - bx1) * (by2 - by1)
                                        OR by2 ≤ ay1 then
                                                                   aSup \leftarrow (min(ax2, bx2) - max(ax1, bx1)) +
         arie \leftarrow arie + (bx2 - bx1) * (by2 - by1)
                                                                                       (min(ay2, by2) - max(ay1, by1))
    EndIf
                                                                   arie ← a1 + a2 - aSup
    Return arie
                                                                   Return arie
EndAlgorithm
                                                              EndAlgorithm
```

21. Consider the algorithm f(A, B, m, n, k), where m, n and k are natural numbers $(1 \le m, n, k \le 100)$, and A is an array of n integers (A[1], A[2], ..., A[n]), where $-100 \le A[i] \le 100$, for i = 1, 2, ..., n, and B is an array of n elements, all equal to zero.

```
Algorithm f(A, B, m, n, k):
                                                             If A = [4, 5, 8, 9, 3, 12, 15, 7], after the call f(A, B, 12,
    aux ← 0
                                                             8, 1) the first displayed solution will be Solutie: 12.
    For j \leftarrow 1, k - 1 execute
         aux \leftarrow aux + B[j] * A[j]
                                                             What will be the second and third displayed solutions?
    EndFor
    If aux = m then
                                                             A.
        Write "Solutie: "
                                                             Solutie: 4 8
        For j \leftarrow 1, k - 1 execute
                                                             Solutie: 4 5 3
             If B[j] = 1 then
                                                             B.
                  Write A[j], " "
             EndIf
                                                             Solutie: 4 8
        EndFor
                                                             Solutie: 5 7
        Write new line
                                                             C.
    Else
                                                             Solutie: 9 3
        If k \neq n + 1 then
             For i \leftarrow 0, 1 execute
                                                             Solutie: 5 7
                  B[k] ← i
                                                             D.
                  f(A, B, m, n, k + 1)
             EndFor
                                                             Solutie: 9 3
                                                             Solutie: 4 8
         EndIf
    EndIf
EndAlgorithm
```

22. Consider the algorithm oareCe(n1), where *n***1** is a natural number ($0 \le n\mathbf{1} \le 10^6$).

```
Algorithm oareCe(n1):
                                       Which of the following statements are true?
    n2 ← 0
                                           A. After the call oareCe(1210), the algorithm will return the value False.
    While n1 > n2 execute
        n3 ← n1 MOD 10
                                           B. The call oareCe(282) leads to the execution of the line marked with (*)
        n2 ← n2 * 10 + n3
                                           C. There are 4 distinct values of n, a natural number from the interval
        n1 ← n1 DIV 10
                                              [101, 500] for which the call oareCe(n) leads to the execution of the
    EndWhile
                                              line marked with (*).
    If n1 = n2 then
                                          D. If the algorithm is called with oareCe(((i * 6) DIV 7) * ((j * 7) DIV))
        Return True // (*)
                                               (i + j)), where i = 1 and j = 2, the algorithm returns True.
    EndIf
    Return n1 = (n2 DIV 10)
EndAlgorithm
```

23. Consider the algorithm interesant(a, b, c, n), where c and n are natural numbers $(1 \le n \le 100, 1 \le c \le 10^4)$, and a and b are two arrays of length n, with integer elements $(a[1], a[2], ..., a[n] \text{ and } b[1], b[2], ..., b[n], 1 \le a[i], b[i] \le 100$, for i = 1, 2, ..., n). The algorithm max(x, y) returns the maximum value between the numbers x and y.

Algorithm interesant(a, b, c, n):	What value is returned after the call interesant([2, 3,	
<pre>If n = 0 OR c = 0 then Return 0</pre>	1] [6 10 3] 5 3)?	
	1], [0, 10, 5], 5, 5/.	
EndIf	A. 13	
<pre>If a[n] > c then</pre>	B. 10	
Return interesant(a, b, c, n - 1)	C 16	
EndIf	D. 10	
x ← b[n] + interesant(a, b, c - a[n], n - 1)	D. 19	
y ← interesant(a, b, c, n - 1)		
Return max(x, y)		
EndAlgorithm		

24. Consider the algorithm divide(x, y) that computes the quotient of the integer division of number x to y, where x and y are integer numbers $(-10^5 \le x, y \le 10^5, y \ne 0)$. The operation a << n shifts the bits of the number a to the left with n positions, which is equivalent to multiplying the number with 2^n .

```
Algorithm divide(x, y):
                                                           What instructions must be added on lines marked with (1),
    negativ ← 1
                                                           (2) and (3) such that the algorithm divide(x, y) returns
    If x < 0 then
                                                           the correct result?
        negativ ← -negativ
        x ← -x
                                                           A.
    EndIf
                                                           (1): multiplu ← multiplu << 1</pre>
    If y < 0 then
                                                           (2): cat ← cat + multiplu
        negativ ← -negativ
                                                           (3): If negativ = -1 then
        y ← -y
                                                                     cat ← -cat
    EndIf
                                                                 EndIf
    cat ← 0
                                                           В.
    While x \ge y execute
                                                           (1): multiplu ← multiplu << 1</pre>
        temp ← y
                                                           (2): cat ← cat + 1
        multiplu ← 1
                                                           (3): cat ← -negativ * cat
        While x \ge (temp << 1) execute
            temp ← temp << 1
                                                           C.
             ... // (1)
                                                           (1): multiplu ← multiplu * 2
        EndWhile
                                                           (2): cat ← cat + 1
        x \leftarrow x - temp
                                                           (3): cat \leftarrow -negativ * cat
        ... // (2)
                                                           D.
    EndWhile
                                                           (1): multiplu ← multiplu * 2
    ... // (3)
    Return cat
                                                           (2): cat ← cat + multiplu
                                                           (3): cat ← negativ * cat
EndAlgorithm
```

BABEŞ-BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Admission Exam – July 17th, 2025 Written Exam for Computer Science GRADING AND SOLUTIONS

DEFAULT: 10 points

1	AC	3.75 points
2	D	3.75 points
3	BD	3.75 points
4	ACD	3.75 points
5	В	3.75 points
6	CD	3.75 points
7	В	3.75 points
8	D	3.75 points
9	AD	3.75 points
10	AB	3.75 points
11	В	3.75 points
12	CD	3.75 points
13	AD	3.75 points
14	AD	3.75 points
15	ABC	3.75 points
16	BC	3.75 points
17	BC	3.75 points
18	AC	3.75 points
19	CD	3.75 points
20	AB	3.75 points
21	С	3.75 points
22	CD	3.75 points
23	С	3.75 points
24	AD	3.75 points