Admission Exam - July 19 ${ }^{\text {th }} 2023$

Written Exam for Computer Science

IMPORTANT NOTE:

Without further clarification:

- Assume that all arithmetical operations are performed over boundless data types (no overflow / underflow).
- Arrays are indexed starting from 1.
- All restrictions apply for the actual parameter values at the time of the initial call.
- A subarray of an array is formed by elements that occupy consecutive positions in the array.

1. Let us consider the algorithm $F(x)$, where \boldsymbol{x} is a natural number $\left(1 \leq \boldsymbol{x} \leq 10^{6}\right)$:
```
Algorithm F(x):
    If }x=0\mathrm{ then
            Return 0
    Else
        If }x\mathrm{ MOD 3 = 0 then
                Return F(x DIV 10) + 1
        Else
            Return F(x DIV 10)
        EndIf
    EndIf
EndAlgorithm
A. \(F(21369)\)
B. \(F(6933)\)
C. \(F(4)\)
D. \(F(16639)\)
```

2. Let us consider the algorithm ceFace(a, b), where \boldsymbol{a} and \boldsymbol{b} are natural numbers $\left(1 \leq \boldsymbol{a}, \boldsymbol{b} \leq 10^{4}\right)$ which do not contain the digit 0 .

The algorithm ceFace(a, b) returns True if and only if:
A. \boldsymbol{a} and \boldsymbol{b} are equal
B. \boldsymbol{a} and \boldsymbol{b} are palindromes
C. \boldsymbol{a} is the reverse number of \boldsymbol{b}
D. the last digit of \boldsymbol{a} equals the last digit of \boldsymbol{b}

```
Algorithm ceFace(a, b):
```

Algorithm ceFace(a, b):

```
Algorithm ceFace(a, b):
    p}\leftarrow
    p}\leftarrow
    p}\leftarrow
    While a \not= 0 execute
    While a \not= 0 execute
    While a \not= 0 execute
        c}\leftarrowa\mathrm{ MOD 10
        c}\leftarrowa\mathrm{ MOD 10
        c}\leftarrowa\mathrm{ MOD 10
        p\leftarrowp* * 10+c
        p\leftarrowp* * 10+c
        p\leftarrowp* * 10+c
        p\leftarrowp
        p\leftarrowp
        p\leftarrowp
    EndWhile
    EndWhile
    EndWhile
    If p = b then
    If p = b then
    If p = b then
        Return True
        Return True
        Return True
    Else
    Else
    Else
        Return False
        Return False
        Return False
    EndIf
    EndIf
    EndIf
EndAlgoritm
```

EndAlgoritm

```
EndAlgoritm
```

3. Let us consider the algorithm ceFace(n), where \boldsymbol{n} is a natural number $\left(1 \leq \boldsymbol{n} \leq 10^{3}\right)$. The operator ,/" represents real division, for example: $3 / 2=1.5$.
```
Algorithm ceFace(n):
    s}\leftarrow
    For i & 1, n execute
        p\leftarrow(i + 1)* (i + 2)
        s}\leftarrows+(i/p
    EndFor
    Return s
EndAlgorithm
```

The value of which expression is returned by the algorithm?
A. $\frac{1}{1}+\frac{1}{1+2}+\cdots+\frac{1}{1+2+\cdots+n}$
B. $\frac{1}{2 * 3}+\frac{2}{3 * 4}+\cdots+\frac{n}{(n+1) *(n+2)}$
C. $\frac{1}{1}+\frac{1}{1 * 2}+\cdots+\frac{1}{1 * 2 * \ldots * n}$
D. $\frac{1}{2 * 3}+\frac{2}{3 * 4}+\cdots+\frac{n-1}{n *(n+1)}$
4. Let us consider the algorithm $\mathrm{f}(\mathrm{n}, \mathrm{x})$, where \boldsymbol{n} is a natural number $\left(3 \leq \boldsymbol{n} \leq 10^{4}\right)$, and \boldsymbol{x} is an array of \boldsymbol{n} natural numbers $\left(x[1], x[2], \ldots, x[n], 1 \leq x[i] \leq 10^{4}\right.$, for $\left.\boldsymbol{i}=1,2, \ldots, n\right)$.

```
Algorithm f(n, x):
    k}\leftarrow
    For i & 1, n - 1 execute
        If k = 0 then
            If x[i] = x[i + 1] then
                Return False
            EndIf
            If x[i] < x[i + 1] then
                k}\leftarrow
            EndIf
        EndIf
        If k = 1 then
            If x[i] \geq x[i + 1] then
                Return False
            EndIf
        EndIf
    EndFor
    If x[n - 1] \geq x[n] then
        Return False
    EndIf
    Return True
EndAlgorithm
```

Which of the following function calls will return True?
A. $f(6,[1000,512,23,22,1,2])$
B. $f(6,[6,4,1,1,2,3])$
C. $f(8,[3000,2538,799,424,255,256,299,1001])$
D. $f(3,[3,2,1])$

```
Algorithm calcul(a, b, c, d):
    x}\leftarrowa* b
    y\leftarrowc*d
    While y f 0 execute
        z \leftarrowx MOD y
        x}\leftarrow
        y <z
    EndWhile
    Return x
EndAlgorithm
```

Which of the following statements are true?
A. The algorithm returns the greatest common divisor of the numbers $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$
B. The algorithm returns the greatest common divisor of the numbers $\boldsymbol{a} * \boldsymbol{b}$ and $\boldsymbol{c} * \boldsymbol{d}$.
C. The algorithm returns the least common multiple of the numbers $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$.
D. The algorithm returns the least common multiple of the numbers $\boldsymbol{a} * \boldsymbol{b}$ and $\boldsymbol{c} * \boldsymbol{d}$.
6. Let us consider the algorithm $p(n a, a, n b, b)$, where $\boldsymbol{n a}$ and $\boldsymbol{n} \boldsymbol{b}$ are natural numbers $\left(0 \leq \boldsymbol{n a}, \boldsymbol{n} \boldsymbol{b} \leq 10^{4}\right)$, \boldsymbol{a} and \boldsymbol{b} are arrays of $\boldsymbol{n a}$, respectively $\boldsymbol{n b}$ natural numbers $\left(\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[\boldsymbol{n a}], 1 \leq \boldsymbol{a}[\boldsymbol{i}] \leq 10^{4}\right.$, for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n a}$ and $\boldsymbol{b}[1]$, $\boldsymbol{b}[2], \ldots, \boldsymbol{b}[\boldsymbol{n b}], 1 \leq \boldsymbol{b}[\boldsymbol{i}] \leq 10^{4}$, for $\left.\boldsymbol{i}=1,2, \ldots, \boldsymbol{n b}\right)$. The local variable \boldsymbol{c} is an array.

```
Algorithm p(na, a, nb, b):
    i}\leftarrow
    j \leftarrow 1
    nc}\leftarrow
    While i < na AND j \leq nb execute
        nc}\leftarrownc+
        If a[i] < b[j] then
            c[nc] < a[i]
                i \leftarrow i + 1
        Else
                c[nc] \leftarrow b[j]
                j \leftarrow j + 1
        EndIf
    EndWhile
    Return nc
EndAlgorithm
```

Which of the following statements are true?
A. If $\boldsymbol{n} \boldsymbol{a}=0$ and $\boldsymbol{n} \boldsymbol{b}=0$, then the value returned by $\boldsymbol{n} \boldsymbol{c}$ is equal to 0 .
B. If the elements from \boldsymbol{a} and \boldsymbol{b} are in ascending order, then the elements stored in \boldsymbol{c} are in ascending order.
C. The value returned through $\boldsymbol{n c}$ is always equal to $\boldsymbol{n a}$ $+n b$.
D. If $\boldsymbol{n a}, \boldsymbol{n} \boldsymbol{b}>0$ and the greatest element of \boldsymbol{a} is smaller than all elements of \boldsymbol{b}, then \boldsymbol{c} will have the same elements as \boldsymbol{a}.
7. Let us consider the algorithm suma(n, a, m, b), where \boldsymbol{n} and \boldsymbol{m} are natural numbers $\left(1 \leq \boldsymbol{n}, \boldsymbol{m} \leq 10^{5}\right)$, \boldsymbol{a} and \boldsymbol{b} are two arrays in ascending order having as elements \boldsymbol{n}, respectively \boldsymbol{m} natural numbers $(\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[\boldsymbol{n}]$ and $\boldsymbol{b}[1]$, $\boldsymbol{b}[2], \ldots, \boldsymbol{b}[\boldsymbol{m}])$:

```
Algorithm suma( \(n, a, m, b\) ):
    \(s \leftarrow 0\)
    For \(\mathrm{i} \leftarrow 1\), \(\mathrm{n}, 2\) execute
        \(j \leftarrow 1\)
        While \(\mathrm{j} \leq \mathrm{a}\) [i] AND \(\mathrm{j} \leq \mathrm{m}\) execute
            \(s \leftarrow s+b[j]\)
            \(j \leftarrow j+1\)
        EndWhile
    EndFor
    Return s
EndAlgorithm
```

What value will the algorithm return, if $\boldsymbol{n}=4, \boldsymbol{a}=[1,3,4,7]$, $\boldsymbol{m}=6$ and $\boldsymbol{b}=[2,4,6,8,10,12]$?
A. 42
B. 22
C. 20
D. It is not possible to determine the value that the algorithm will return.
8. Let us consider the algorithm verifica(n, p1, p2), where $\boldsymbol{n}, \boldsymbol{p} \mathbf{1}$ and $\boldsymbol{p} \mathbf{2}$ are natural numbers $\left(1 \leq \boldsymbol{n}, \boldsymbol{p} \mathbf{1}, \boldsymbol{p} \mathbf{2} \leq 10^{6}\right)$:

```
Algorithm verifica(n, p1, p2):
    bt \leftarrow(p1 + p2) DIV 2
    If p1 > p2 then
            Return False
    EndIf
    If bt * bt = n then
        Return True
    EndIf
    If bt * bt > n then
        Return verifica(n, p1, bt - 1)
    EndIf
    Return verifica(n, bt + 1, p2)
EndAlgorithm
```

Which of the following statements are true?
A. If $\boldsymbol{p} \mathbf{1}, \boldsymbol{p} \mathbf{2}$ and \boldsymbol{n} are relatively prime, then the algorithm verifica(n, p1, p2) returns True.
B. The algorithm uses the binary search method and if \boldsymbol{n} is prime, the call verifica($n, 1, n$) returns True.
C. For the call verifica($n, 1, n$) the algorithm returns True if and only if \boldsymbol{n} is a square number.
D. If $\boldsymbol{p} \mathbf{1} \leq \boldsymbol{n} \leq \boldsymbol{p} \mathbf{2}$ and in each of the intervals $[\boldsymbol{p} \mathbf{1}, \boldsymbol{n}]$ and $[\boldsymbol{n}$, p2] there exists at least one square number, then the call verifica(n, p1, p2) returns True.
9. Let us consider the algorithm ceFace(n), where \boldsymbol{n} is a natural number ($1 \leq \boldsymbol{n} \leq 3000$).

```
Algorithm ceFace(n):
    s}\leftarrow
    i}\leftarrow
    While s < n execute
        s}\leftarrows+
        If s = n then
            Return True
        Else
            i}\leftarrow i + 2
        EndIf
    EndWhile
    Return False
EndAlgorithm
EndWhile
Return False
EndAlgorithm
```

Which of the following statements are true?
A. If $\boldsymbol{n}=36$, the algorithm returns True.
B. If \boldsymbol{n} is equal to a sum of odd consecutive numbers starting from 1, the algorithm returns True.
C. If \boldsymbol{n} is a square number, the algorithm returns True, otherwise it returns False.
D. If $\boldsymbol{n}=64$, the algorithm returns False.
10. Let us consider the algorithm ceFace(a), where \boldsymbol{a} is a natural number $\left(1 \leq \boldsymbol{a} \leq 10^{4}\right)$.

```
Algorithm ceFace(a):
    ok \(\leftarrow 0\)
    While ok = 0 execute
        \(\mathrm{b} \leftarrow \mathrm{a}\)
        \(c \leftarrow 0\)
        While b \(\neq 0\) execute
            \(c \leftarrow c * 10+b\) MOD 10
            \(\mathrm{b} \leftarrow \mathrm{b}\) DIV 10
        EndWhile
        If \(c=a\) then
            ok \(\leftarrow 1\)
        Else
            \(a \leftarrow a+1\)
        EndIf
    EndWhile
    Return a
EndAlgorithm
```

11. Let us consider the algorithm calcul(v, n, where \boldsymbol{n} is a natural number $\left(1 \leq \boldsymbol{n} \leq 10^{4}\right)$, and \boldsymbol{v} is an array of \boldsymbol{n} natural numbers $\left(v[1], v[2], \ldots, v[n], 1 \leq v[i] \leq 10^{4}\right.$, for $\left.\boldsymbol{i}=1,2, \ldots, n\right)$:
```
Algorithm calcul(v, n):
    i \leftarrow2
    x}\leftarrow
    If v[1] MOD 2 f 0 then
        Return False
    EndIf
    While i \leq n execute
        If x = 0 AND v[i] MOD 2 = 0 then
            Return False
        Else
            If x = 1 AND v[i] MOD 2 = 1 then
            Return False
        Else
            i}\leftarrowi+
            x}\leftarrow(x+1) MOD 2,
                EndIf
        EndIf
    EndWhile
    Return True
EndAlgorithm
```

In which of the following situations does the algorithm return True?
A. If the array v contains the values $[2,3,10,7$, $20,5,18]$ and $\boldsymbol{n}=7$
B. If the array \boldsymbol{v} has values according to the following pattern: odd, even, odd, even...
C. If the array \boldsymbol{v} contains the values $[3,8,17,20$, 15,10] and $\boldsymbol{n}=6$
D. If the array \boldsymbol{v} has values according to the following pattern: even, odd, even, odd...
12. Let us consider the algorithm ceFace (a, n), where \boldsymbol{n} is a natural number $\left(2 \leq \boldsymbol{n} \leq 10^{4}\right)$ and \boldsymbol{a} is an array of \boldsymbol{n} integer numbers $(\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[\boldsymbol{n}],-100 \leq \boldsymbol{a}[\mathrm{i}] \leq 100, \boldsymbol{i}=1,2, \ldots, \boldsymbol{n})$. In the array \boldsymbol{a} there is at least one positive number.

```
Algorithm ceFace(a, n):
    b}\leftarrow
    c}\leftarrow
    For i & 1, n execute
        b}\leftarrowb+a[i
        If b < 0 then
            b}\leftarrow
        EndIf
        If b > c then
        c}\leftarrow
        EndIf
    EndFor
    Return c
EndAlgorithm
```

Which of the following statements are true?
A. The algorithm returns the sum of all elements of the array \boldsymbol{a}
B. The algorithm returns the sum of the elements of the subarray of maximum length that contains only positive elements from array \boldsymbol{a}.
C. The algorithm returns the sum of all positive elements in the array \boldsymbol{a}.
D. The algorithm returns the sum of a subarray with the maximum sum from array \boldsymbol{a}.
13. Let us consider the matrix \boldsymbol{A} of integer numbers with \boldsymbol{n} rows and \boldsymbol{m} columns $\left(1 \leq \boldsymbol{n}, \boldsymbol{m} \leq 10^{4}\right)$. Considering that \boldsymbol{n} * \boldsymbol{m} $=\boldsymbol{p}^{*} \boldsymbol{q}$, we intend to resize this matrix to a matrix \boldsymbol{B} of integer numbers having \boldsymbol{p} rows and \boldsymbol{q} columns $\left(1 \leq \boldsymbol{p}, \boldsymbol{q} \leq 10^{4}\right)$, as in the example below, where $\boldsymbol{n}=4, \boldsymbol{m}=6, \boldsymbol{p}=3$ and $\boldsymbol{q}=8$. Rows and columns are indexed starting from 1 .
A:

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

$\boldsymbol{B}: \quad$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Which of the following options presents an algorithm that, for the pair of natural numbers \boldsymbol{i} and $\boldsymbol{j}(1 \leq \boldsymbol{i} \leq \boldsymbol{n}, 1 \leq \boldsymbol{j} \leq \boldsymbol{m})$ that represent indexes in matrix \boldsymbol{A}, will return the pair of indexes from \boldsymbol{B} corresponding to the value $\boldsymbol{A}[\boldsymbol{i}][\boldsymbol{j}]$?
A.

```
Algorithm reshape(i, j, n, m, p, q):
    Return (i * m + j) DIV q, (i * m + j) MOD q
EndAlgorithm
```

C.

```
Algorithm reshape(i, j, n, m, p, q):
    i}\leftarrow i - 1
    j < j - 1
    Return (i * m + j) DIV q + 1,
        (i * m + j) MOD q + 1
```

EndAlgorithm
B.

```
Algorithm reshape(i, j, n, m, p, q):
    i \leftarrow i - 1
    j}\leftarrowj-
    Return (i * m + j) DIV q, (i * m + j) MOD q
EndAlgorithm
Algorithm reshape(i, j, n, m, p, q):
    Return (i * m + j - 1) DIV q + 1,
                (i * m + j - 1) MOD q + 1
EndAlgorithm
```

D.
14. Let us consider the algorithm ceFace(n, m, where \boldsymbol{n} is a natural number $\left(1 \leq \boldsymbol{n} \leq 10^{4}\right)$, and \boldsymbol{m} is a matrix with \boldsymbol{n} rows and \boldsymbol{n} columns, and its elements are natural numbers ($\boldsymbol{m}[1][1], \ldots, \boldsymbol{m}[1][\boldsymbol{n}], \boldsymbol{m}[2][1], \ldots, \boldsymbol{m}[2][\boldsymbol{n}], \ldots, \boldsymbol{m}[\boldsymbol{n}][1]$, $\ldots, \boldsymbol{m}[\boldsymbol{n}][\boldsymbol{n}])$. Let us consider that the elements of matrix \boldsymbol{m} are initially equal to 0 .

```
Algorithm ceFace(n, m):
    a}\leftarrow
    b}\leftarrow
    For j}\leftarrow1, n execut
        i}\leftarrow
        While i + j s n - 1 execute
                If (i MOD 2 = 1) AND (j MOD 2 = 1) then
                m[i][j]}\leftarrow\textrm{b
                c}\leftarrowa+
                a}\leftarrow\textrm{b
                b}\leftarrow
            EndIf
        i}\leftarrow i + 1
        EndWhile
    EndFor
EndAlgorithm
```

Which of the following statements are FALSE?
A. If $\boldsymbol{n}=11$, the value of $\boldsymbol{m}[6][4]$ is 21
B. If $\boldsymbol{n}=7$, the value of \boldsymbol{m} [3][5] is 4
C. If $\boldsymbol{n}=10$, the value of $\boldsymbol{m}[6][4]$ is 21
D. If $\boldsymbol{n}=7$, the maximum value in the matrix is 8
15. The algorithms below process an ascending sorted array \boldsymbol{x}, having \boldsymbol{n} natural numbers elements $\left(1 \leq \boldsymbol{n} \leq 10^{4}, \boldsymbol{x}[1]\right.$, $\boldsymbol{x}[2], \ldots, \boldsymbol{x}[\boldsymbol{n}])$. Parameters first and last are natural numbers ($1 \leq$ first $\leq \boldsymbol{l}$ ast $\leq \boldsymbol{n}$).
Choose the algorithms that have the lowest time complexity when called in the form of $A(x, 1, n, n)$.

```
A.
    Algorithm A(x, first, last, n):
        If first > last then
            Return 0
        EndIf
        m}\leftarrow\mathrm{ (first + last) DIV 2
        If }x[m]=n the
            Return m
        Else
            If x[m]>n then
                Return A(x, first, m - 1, n)
            Else
                If x[m]< n then
                    Return A(x, m + 1, last, n)
                EndIf
            EndIf
        EndIf
        EndAlgorithm
C.
Algorithm A(x, first, last, n):
    For i }\leftarrow\mathrm{ first, last execute
            If x[i] = n then
                Return i
            EndIf
    EndFor
    Return 0
EndAlgorithm
```

B.

```
    Algorithm \(A(x\), first, last, \(n\) ):
    While first < last execute
        \(\mathrm{m} \leftarrow\) (first + last) DIV 2
        If \(x[m]=n\) then
            Return m
        Else
            If \(x[m]>n\) then
                    last \(\leftarrow m-1\)
                Else
                    If \(\mathrm{x}[\mathrm{m}]<\mathrm{n}\) then
                    first \(\leftarrow m+1\)
                    EndIf
                EndIf
                EndIf
        EndWhile
        Return 0
EndAlgorithm
```

D.
Algorithm A(x, first, last, n):
For $i \leftarrow f i r s t$, last execute
If $x[i]=n$ then
EndIf
EndFor
EndAlgorithm

$$
x[\mathrm{i}] \leftarrow 3 * \mathrm{n}
$$

16. Andrei is playing with the following algorithm, where \boldsymbol{n} and \boldsymbol{m} are non-zero natural numbers $\left(1 \leq \boldsymbol{n}, \boldsymbol{m} \leq 10^{4}\right)$. The algorithm abs (\boldsymbol{x}) returns the absolute value of \boldsymbol{x}.
```
Algorithm problema(n, m):
    b}\leftarrowabs(m-n
    c}\leftarrow\textrm{n}-\textrm{m
    If b - c = 0 then
        a}\leftarrow\textrm{n}\mathrm{ MOD m
    Else
        a\leftarrow(m + 2) MOD n
    EndIf
    Return a
EndAlgorithm
```

He observes that regardless of the value of the variable \boldsymbol{n} corresponding to the specification, there are at least two values of \boldsymbol{m} for which the algorithm problema(n, m) returns 0 . What are these values of \boldsymbol{m} ?
A. 1 and \boldsymbol{n}
B. 1 and $\boldsymbol{n}+2$
C. \boldsymbol{n} and $\boldsymbol{n}+2$
D. 1 and $\boldsymbol{n}-2$
17. A student wants to generate, using the backtracking method, all odd numbers with three digits, with digits taken from the array $[4,3,8,5,7,6]$, in the given order. Knowing that the first 5 generated numbers are, in this order: 443 , $445,447,433,435$, what will be the tenth generated number?
A. 487
B. 453
C. 457
D. 455
18. Let us consider the algorithm $f(k, n, x)$, where $\boldsymbol{k}, \boldsymbol{n}$ are natural numbers $\left(1 \leq \boldsymbol{k}, \boldsymbol{n} \leq 10^{3}\right)$ and \boldsymbol{x} is an array of \boldsymbol{n} natural numbers $\left(\boldsymbol{x}[1], \boldsymbol{x}[2], \ldots, \boldsymbol{x}[\boldsymbol{n}], 1 \leq \boldsymbol{x}[\boldsymbol{i}] \leq 10^{4}\right.$, for $\left.\boldsymbol{i}=1,2, \ldots, n\right)$.

```
Algorithm f(k, n, x):
    If n = 0 then
            Return 0
    Else
            d}\leftarrow
            For i}\leftarrow2, x[n] DIV 2 execut
            If (x[n] MOD i) = 0 then
                d}\leftarrowd+
            EndIf
            EndFor
            If d = k then
                    Return 1 + f(k, n - 1, x)
            Else
            Return f(k, n - 1, x)
        EndIf
    EndIf
EndAlgorithm
```

Which of the following statements are true?
A. For $\boldsymbol{x}=[4,9,26,121]$ the result of the call $f(1,4, x)$ will be 3 .
B. For $\boldsymbol{x}=[4,8,6,144]$ the result of the call $f(2$, $4, x$) will be 3 .
C. For $\boldsymbol{x}=[4,9,25,144]$ the result of the call $f(1,4, x)$ will be 3 .
D. For $\boldsymbol{x}=[8,27,25,121]$ the result of the call $f(2,4, x)$ will be 3 .
19. Let us consider the algorithm $\operatorname{check}(n)$, where \boldsymbol{n} is a natural number $\left(1 \leq \boldsymbol{n} \leq 10^{5}\right)$.

```
Algorithm check(n):
    While n > 0 execute
        If n MOD 3 > 1 then
            Return False
        EndIf
        n}\leftarrown\mathrm{ DIV 3
    EndWhile
    Return True
EndAlgorithm
```

Specify the effect of the algorithm.
A. The algorithm returns True if \boldsymbol{n} is a power of 3 and False otherwise.
B. The algorithm returns True if the representation of \boldsymbol{n} in base 3 contains only digits 0 and 1 and False otherwise.
C. The algorithm returns True if \boldsymbol{n} can be written as a power of 3 or as a sum of distinct powers of 3 and False otherwise.
D. The algorithm returns True if the representation of \boldsymbol{n} in base 3 contains only digit 2 and False otherwise.
20. One event was supposed to take place in a certain room I, but must be moved to room II, where the numbering of the seats is different. In both rooms there are \boldsymbol{L} rows of chairs ($2 \leq \boldsymbol{L} \leq 50$), each row is divided halfway by an aisle and has \boldsymbol{K} chairs $(2 \leq \boldsymbol{K} \leq 50)$ on each side of the aisle (hence, the room has a total of $2 * \boldsymbol{K} * \boldsymbol{L}$ chairs).

In room I, each seat is identified by a single number. The seats on the left of the aisle have even numbers, and the numbering of seats begins with the row in front of the scene. Therefore, the chairs in the front row have numbers (starting from the aisle toward the edge of the room) 2, 4, 6 etc. After all the chairs from a row were numbered, the numbering on the following row begins with the chair next to the aisle using the next even number. The seats on the right of the aisle are numbered similarly but using odd numbers. Hence, the chairs in the first row have the numbers (starting from the aisle toward the edge of the room) 1, 3, 5 etc.

In room II each seat is identified by three values. Row number (a value between 1 and \boldsymbol{L}, row 1 being the one in front of the scene), the direction of the seat related to the aisle (value "stânga" (left) or "dreapta" (right)) and the number of the seat in that row (a value between 1 and \boldsymbol{K}, chair 1 being next to the aisle).

Since the event must be relocated, the seats on the tickets for room I (given by a single number) must be transformed to valid seats in room II (given by row, seat, direction).

Which of the following algorithms, given input data $\boldsymbol{L}, \boldsymbol{K}, \boldsymbol{n r L o c}$ according to the statement, correctly performs the transformation? A transformation is considered correct if each spectator will have a unique seat in room II.
A.

Algorithm transforma(L, K, nrLoc):
If nrLoc MOD $2=1$ then directie \leftarrow "dreapta" $n r$ Loc $\leftarrow n r$ Loc +1
Else
directie \leftarrow "stanga"
EndIf
If nrLoc MOD (2 * K) $=0$ then
rand $\leftarrow \operatorname{nrLoc}$ DIV $(2 * K)$
Else
rand $\leftarrow \operatorname{nrLoc}$ DIV $(2 * K)+1$
EndIf
loc $\leftarrow($ nrLoc $-(r a n d-1) * 2 * K)$ DIV 2
Return rand, loc, directie
EndAlgorithm
C.

Algorithm transforma($\mathrm{L}, \mathrm{K}, \mathrm{nrLoc}$):
If nrLoc MOD $2=1$ then
directie \leftarrow "dreapta"
$n r$ Loc $\leftarrow n r$ Loc +1
Else
directie \leftarrow "stanga"
EndIf
rand $\leftarrow \operatorname{nrLoc}$ DIV (2 * K) +1
loc $\leftarrow($ nrLoc $-($ rand -1$) * 2 *$ K) DIV 2
Return rand, loc, directie
EndAlgorithm
B.

```
Algorithm transforma(L, K, nrLoc):
    If nrLoc MOD \(2=1\) then
        directie \(\leftarrow\) "dreapta"
    Else
        directie \(\leftarrow\) "stanga"
    EndIf
    If nrLoc MOD \((2 * K)=0\) then
        rand \(\leftarrow \operatorname{nrLoc}\) DIV ( \(2 * K\) )
    Else
        rand \(\leftarrow \operatorname{nrLoc}\) DIV \(\left(2{ }^{*} K\right)+1\)
    EndIf
    loc \(\leftarrow(\mathrm{nrLoc}-(\mathrm{rand}-1) * 2 * \mathrm{~K})\) DIV 2
    Return rand, loc, directie
EndAlgorithm
```

D.

```
Algorithm transforma(L, K, nrLoc):
    If nrLoc MOD 2 = 1 then
        directie \leftarrow "dreapta"
        nrLoc \leftarrownrLoc + 1
    Else
        directie \leftarrow "stanga"
    EndIf
    If nrLoc MOD (2 * K) = 0 then
        rand \leftarrownrLoc DIV (2 * K)
    Else
        rand \leftarrownrLoc DIV (2 * K) + 1
    EndIf
    loc \leftarrow (nrLoc - (rand - 1) * 2 * K) DIV 2 + 1
    Return rand, loc, directie
EndAlgorithm
```

21. Let us consider algorithm $p(x, n, k$, final $)$, where \boldsymbol{x} is an array of $\boldsymbol{n}+1$ natural numbers $(\boldsymbol{x}[0], \boldsymbol{x}[1], \ldots, \boldsymbol{x}[\boldsymbol{n}])$. Initially $\boldsymbol{x}[\boldsymbol{i}]=0$, for $\boldsymbol{i}=0,1,2, \ldots, \boldsymbol{n}$. Variables \boldsymbol{n} and \boldsymbol{k} are non-zero natural numbers $(1 \leq \boldsymbol{n}, \boldsymbol{k} \leq 20)$, and final is of type boolean. The algorithm $\operatorname{Afis}(x, 1, n)$ displays the elements $\boldsymbol{x}[1], \boldsymbol{x}[2], \ldots, \boldsymbol{x}[\boldsymbol{n}]$.
```
Algorithm p(x, n, k, final):
    While final = False execute
    While x[k] < n execute
                x[k]}\leftarrowx[k]+
                If OK(x, k) = True then
                    If k = n then
                Afis(x, 1, n)
            Else
                k}\leftarrowk+
                x[k]}\leftarrow
            EndIf
        EndIf
        EndWhile
        ___ // insert code sequence here
```

```
Algorithm OK(x, k):
```

Algorithm OK(x, k):
For i}\leftarrow1, k - 1 execut
For i}\leftarrow1, k - 1 execut
If x[k] = x[i] then
If x[k] = x[i] then
Return False
Return False
EndIf
EndIf
EndFor
EndFor
Return True
Return True
EndAlgorithm
EndAlgorithm
What code sequence should be inserted into the algorithm so that, after calling $p(x, n, 1$, False) all permutations of order \boldsymbol{n} are displayed, each only once?
EndWhile
EndAlgorithm

```
A.
If \(k>1\) then
\(k \leftarrow k-1\)
Else
final \(\leftarrow\) True
EndIf
B.
If \(k>0\) then
\(k \leftarrow k-1\)
Else
final \(\leftarrow\) True
EndIf
C.
final \(\leftarrow\) True
D.
If \(k>1\) then
\(k \leftarrow k-1\)
final \(\leftarrow\) True
EndIf
22. Let us consider the algorithms problema(n) and calcul(a, b), where \(\boldsymbol{n}, \boldsymbol{a}, \boldsymbol{b}\) are natural numbers \((0 \leq \boldsymbol{n}, \boldsymbol{a}, \boldsymbol{b} \leq\) 9).
```

Algorithm problema(n):
rezultat \leftarrow 0
For k \leftarrow 0, n execute
For p}\leftarrow0,n\mathrm{ execute
For j}\leftarrow0,n\mathrm{ execute
If p MOD 2 = 0 then
rezultat \leftarrow rezultat + 1
EndIf
EndFor
EndFor
EndFor
Return rezultat
EndAlgorithm

```
```

Algorithm calcul(a, b):
t}\leftarrow
For cifra \leftarrow a, b execute
t}\leftarrowt+\mathrm{ problema(cifra)
EndFor
Write t
EndAlgorithm

```

Which of the following statements are true?
A. The call calcul \((1,8)\) displays 1095.
B. The call calcul \((1,8)\) displays 1094.
C. The call calcul \((0,9)\) displays 1095.
D. The call calcul \((0,9)\) displays 1595 .
23. Let us consider the algorithm checkAcc (n,f,w,lw), where \(\boldsymbol{n}\) is a non-zero natural number \(\left(1 \leq \boldsymbol{n} \leq 10^{4}\right)\), \(\boldsymbol{f}\) is a natural number, \(\boldsymbol{w}\) is an array of \(\boldsymbol{l} \boldsymbol{w}\left(1 \leq \boldsymbol{l} \boldsymbol{w} \leq 10^{4}\right)\) natural numbers \(\left(\boldsymbol{w}[1], \boldsymbol{w}[2], \ldots, \boldsymbol{w}[\boldsymbol{l} \boldsymbol{w}]\right.\), where \(0 \leq \boldsymbol{w}[\boldsymbol{p}] \leq 10^{4}\), for \(\boldsymbol{p}=1,2, \ldots, \boldsymbol{l} \boldsymbol{w}\) ). The algorithm \(\operatorname{checkAcc}(\mathrm{n}, \mathrm{f}, \mathrm{w}, \mathrm{lw})\) calls the algorithm \(\mathrm{t}(\mathrm{i}, \mathrm{j}, \mathrm{k})\), where \(\boldsymbol{i}, \boldsymbol{j}\) and \(\boldsymbol{k}\) are natural numbers. The algorithm \(t(i, j, k)\) returns a boolean result.
```

Algorithm checkAcc(n, f, w, lw):
acc}\leftarrow\mathrm{ True
If lw = 0 AND f }=1\mathrm{ then
acc \leftarrowFalse
Else
index }\leftarrow
q}\leftarrow
While (acc = True) AND (index \leq lw) execute
crt }\leftarrow
changed }\leftarrow\mathrm{ False
While (changed = False) AND (crt \leq n) execute
If t(q, w[index], crt) then
q}\leftarrowcr
changed }\leftarrow\mathrm{ True
Else
crt \leftarrowcrt + 1
EndIf
EndWhile
If changed = False then
acc \leftarrowFalse
Else
index }\leftarrow index + 1
EndIf
EndWhile
If (index > lw) AND (acc = True) AND (q \# f) then
acc }\leftarrow\mathrm{ False
EndIf
EndIf
Return acc
EndAlgorithm

```
24. Let us consider the array of digits \(\boldsymbol{a}=[0,1,2,3,4,5,6,7,8,9]\). To display the elements of array \(\boldsymbol{a}\) in a different order, the array \(\boldsymbol{b}\) (initially empty) is constructed. At each step, one can choose one of the following operations:
- Add - the first element of array \(\boldsymbol{a}\) is added to the end of array \(\boldsymbol{b}\) and is deleted from array \(\boldsymbol{a}\).
- Delete - displays, then deletes the last element of array \(\boldsymbol{b}\).

Notes:
- The elements of array \(\boldsymbol{a}\) are processed in the given order.
- The \(A d d\) operation cannot be used if array \(\boldsymbol{a}\) is empty and the Delete operation cannot be used if array \(\boldsymbol{b}\) is empty.
- The processing ends when arrays \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are both empty.

Which of the following digit orderings CANNOT be displayed by considering the rules above?
A. 0123456789
B. 9876543210
C. 2465370198
D. 2314508976

Admission Exam - July 19 \({ }^{\text {th }}, 2023\)
Written Exam for Computer Science
GRADING AND SOLUTIONS

DEFAULT: 10 points
\begin{tabular}{lcl} 
1. & AB & 3.75 points \\
2. & C & 3.75 points \\
3. & B & 3.75 points \\
4. & AC & 3.75 points \\
\(\mathbf{5 .}\) & B & 3.75 points \\
6. & ABD & 3.75 points \\
7. & B & 3.75 points \\
\(\mathbf{8 .}\) & C & 3.75 points \\
9. & ABC & 3.75 points \\
10. & A & 3.75 points \\
11. & AD & 3.75 points \\
12. & D & 3.75 points \\
13. & C & 3.75 points \\
14. & ABC & 3.75 points \\
15. & AB & 3.75 points \\
16. & A & 3.75 points \\
17. & B & 3.75 points \\
18. & AC & 3.75 points \\
19. & BC & 3.75 points \\
20. & A & 3.75 points \\
21. & A & 3.75 points \\
22. & BD & 3.75 points \\
23. & CD & 3.75 points \\
24. & C & 3.75 points
\end{tabular}```

