BABES-BOLYAI UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Mate-Info Contest - March 26 ${ }^{\text {th }}, 2023$

Written Test in Computer Science

IMPORTANT NOTE:

In the absence of other specifications:

- Assume that all arithmetic operations are performed on unlimited data types (there is no overflow/underflow).
- Arrays are indexed starting from 1.
- All constraints refer to the values of the actual parameters at the time of the initial call.

1. Let us consider the algorithm $f(\mathrm{a}, \mathrm{b})$, where \boldsymbol{a} and \boldsymbol{b} are non-zero natural numbers $\left(1 \leq \boldsymbol{a}, \boldsymbol{b} \leq 10^{9}\right)$.
```
Algorithm f(a, b):
    If a = b then
        Return a
    EndIf
    If a > b then
        Return f(a - b, b)
    EndIf
    Return f(a, b - a)
EndAlgorithm
```

Which of the following statements are true?
A. For the call $f(2000,21)$, the algorithm returns 1.
B. For the call $f(2000,21)$ the algorithm does not finish its execution due to the condition on line 2.
C. In order for the algorithm to return the greatest common divisor of \boldsymbol{a} and \boldsymbol{b}, line 8 should be changed to:

Return $f(b-a, b)$.
D. In order for the call $f(2000,21)$ to return the value 1 , line 8 should be changed to: Return $f(b-a, b-a)$.
2. Let us consider the following algorithm sequence, where \boldsymbol{a} is an array of \boldsymbol{n} natural numbers ($\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[\boldsymbol{n}]$, $1 \leq \boldsymbol{a}[\boldsymbol{i}] \leq 10^{4}$, for $\left.\boldsymbol{i}=1,2, \ldots, \boldsymbol{n}\right)$, and \boldsymbol{n} is a non-zero natural number ($1 \leq \boldsymbol{n} \leq 10^{4}$):

```
For i & 1, n - 1 execute
    poz \leftarrow i
    For j i i + 1, n execute
        If a[j] < a[poz] then
                poz \leftarrow j
            EndIf
    EndFor
    If poz * i then
            temp \leftarrowa[i]
            a[i]}\leftarrowa[poz
            a[poz] \leftarrow temp
    EndIf
EndFor
Which of the following statements are true in the moment when \(\boldsymbol{i}\) becomes 2 ?
A. \(\boldsymbol{a}[1] \leq \boldsymbol{a}[\boldsymbol{k}]\) for any \(\boldsymbol{k} \in\{1,2, \ldots, \boldsymbol{n}\}\)
B. \(\boldsymbol{a}[\boldsymbol{n}] \leq \boldsymbol{a}[\boldsymbol{k}]\) for any \(\boldsymbol{k} \in\{1,2, \ldots, \boldsymbol{n}\}\)
C. \(\boldsymbol{a}[1] \geq \boldsymbol{a}[\boldsymbol{k}]\) for any \(\boldsymbol{k} \in\{1,2, \ldots, \boldsymbol{n}\}\)
D. \(\boldsymbol{a}[\boldsymbol{k}] \leq \boldsymbol{a}[\boldsymbol{k}+1]\) for any \(\boldsymbol{k} \in\{1,2, \ldots, \boldsymbol{n}-1\}\)
```

3. Let us consider the algorithm alg (n), where \boldsymbol{n} is a natural number $\left(0 \leq \boldsymbol{n} \leq 10^{9}\right)$.
```
Algorithm alg(n):
    If n MOD 2 = 0 then
        Return n + alg(n - 1)
    Else
        Return n
    EndIf
EndAlgorithm
```

Which of the following statements are true?
A. If $\boldsymbol{n}=4$, the value returned by the algorithm is 7 .
B. The algorithm returns the sum of all natural numbers that are smaller than \boldsymbol{n}.
C. The algorithm returns the sum of all natural numbers that are smaller or equal to \boldsymbol{n}.
D. If $\boldsymbol{n}=7$, the algorithm returns the value 7 .
4. Let us consider the algorithm $f(n r)$, where $\boldsymbol{n r}$ is an integer $\left(-10^{4} \leq \boldsymbol{n r} \leq 10^{4}\right)$.

```
Algorithm f(nr):
    If nr < 0 then
        Return f(-nr)
    EndIf
    If (nr = 0) OR ( nr = 7) then
    Return 1
    EndIf
    If nr < 10 then
        Return 0
    EndIf
    Return f((nr DIV 10) - 2* (nr MOD 10))
EndAlgorithm value 1 ?
A. 308
B. -7
C. 7098
EndIf
D. 57
If \(\mathrm{nr}<10\) then
Return 0
EndIf
Return \(\mathrm{f}((\mathrm{nr}\) DIV 10) - 2 * ( nr MOD 10))
EndAlgorithm
```

For what values of $\boldsymbol{n r}$ will the algorithm return the
5. Let us consider the algorithm afis(n), where \boldsymbol{n} is a natural number $\left(1 \leq \boldsymbol{n} \leq 10^{4}\right)$:

```
Algorithm afis(n):
    If n > 9 then
        If n MOD 2 = 0 then
                afis(n DIV 100)
                Write n MOD 10, " "
        Else
                afis(n DIV 10)
        EndIf
    EndIf
EndAlgorithm
```

6. Let us consider the algorithm Afișare(a), where \boldsymbol{a} is a natural number $\left(1 \leq \boldsymbol{a} \leq 10^{4}\right)$.
7. Let us consider the algorithm $f(n, x)$, where \boldsymbol{n} is a natural number $\left(3 \leq \boldsymbol{n} \leq 10^{4}\right)$, and \boldsymbol{x} is an array of \boldsymbol{n} natural numbers $\left(x[1], x[2], \ldots, x[n], 1 \leq x[i] \leq 10^{4}\right.$, for $\left.\boldsymbol{i}=1,2, \ldots, n\right)$:

For which of the following calls will the values 24 be printed, in this exact order?
A. afis(1234)
B. afis(1224)
C. afis(4224)
D. afis(4321)
EndAlgorithm

```
```

Algorithm Afiṣare(a):

```
Algorithm Afiṣare(a):
    If a < 9000 then
    If a < 9000 then
        Write a, " "
        Write a, " "
        Afiṣare(3 * a)
        Afiṣare(3 * a)
        Write a, " "
        Write a, " "
    EndIf
```

 EndIf
    ```

What will be displayed for the call Afișare(1000)?
A. 100030009000900030001000
B. 10003000900030001000
C. 1000300030001000
D. 100030009000
```

 D. 1000 3000 9000
    ```
For which of the following calls will the algorithm return True?
A. \(f(3,[10,15,25])\)
B. \(f(4,[0,0,0,0])\)
C. \(f(5,[100,535,635,1170,1805])\)
D. \(f(4,[0,1,0,1])\)
```

EndFor
Return True

```
Algorithm f(n, x):
```

Algorithm f(n, x):

```
Algorithm f(n, x):
    For i}\leftarrow1,n-2 execut
    For i}\leftarrow1,n-2 execut
        If x[i] + x[i + 1] # x[i + 2] then
        If x[i] + x[i + 1] # x[i + 2] then
            Return False
            Return False
        EndIf
        EndIf
    EndFor
    EndFor
    Return True
    Return True
EndAlgorithm
```

8. What is the result of converting the base 10 number $2^{10}-2^{5}-1$ to base 2 ?
A. 1111011111
B. 1010011001
C. 1000011001
D. None of the answers A, B, or C
9. Let us consider the algorithms one (a, b) and two (n, m) where the input parameters $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{n}$ and \boldsymbol{m} are natural numbers $\left(2 \leq \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{n}, \boldsymbol{m} \leq 10^{6}, \boldsymbol{n}<\boldsymbol{m}\right)$.
```
Algorithm one(a, b):
    s}\leftarrow
    For i}\leftarrow1, a execut
        If a MOD i = 0 then
                s}\leftarrow\textrm{s}+\textrm{i
        EndIf
    EndFor
    For i}\leftarrow1, b execut
        If b MOD i = 0 then
                s}\leftarrow\textrm{s}+\textrm{i
        EndIf
    EndFor
    Return s
EndAlgorithm
```

Which of the following statements are true?
A. The algorithm two (n, m) will not print anything, regardless of the values of its input parameters.
B. The algorithm two (n, m) prints the prime numbers from the interval $[\boldsymbol{n}, \boldsymbol{m}]$.
C. The algorithm two (n, m) prints the numbers that are divisible by 2 from the interval $[\boldsymbol{n}, \boldsymbol{m}]$.
D. None of the other variants is correct.
10. Let us consider the algorithm decide(n, x), where \boldsymbol{n} is a non-zero natural number $\left(1 \leq \boldsymbol{n} \leq 10^{4}\right)$, and \boldsymbol{x} is an array of \boldsymbol{n} natural numbers $(\boldsymbol{x}[1], \boldsymbol{x}[2], \ldots, \boldsymbol{x}[\boldsymbol{n}], 0 \leq \boldsymbol{x}[\boldsymbol{i}] \leq 100$, for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n})$.

```
Algorithm decide(n, x):
    i}\leftarrow
    j}\leftarrow
    While i < j AND x[i] = x[j] execute
        i}\leftarrow i + 1
        j}\leftarrowj-
    EndWhile
    If i \geq j then
        Return True
    Else
        Return False
    EndIf
EndAlgorithm
```

11. Let us consider the algorithm $\operatorname{alg}(\mathrm{a}, \mathrm{b})$, where \boldsymbol{a} and \boldsymbol{b} are natural numbers $\left(1 \leq \boldsymbol{a}, \boldsymbol{b} \leq 10^{3}\right)$.
```
Algorithm \(\operatorname{alg}(\mathrm{a}, \mathrm{b})\) :
    If \(b=0\) then
        Return 1
    Else
        Return a * \(\operatorname{alg}(\mathrm{a}, \mathrm{b}-1)\)
    EndIf
EndAlgorithm
```

Which of the following statements are true?
A. For the call $\operatorname{alg}(2,3)$ the algorithm returns 7 .
B. For the call $\operatorname{alg}(2,3)$ the algorithm is called 4 times, taking into account the initial call.
C. The algorithm calculates and returns the value of $\boldsymbol{a}^{\boldsymbol{b}-1}$.
D. The algorithm calculates and returns the value of $\boldsymbol{a}^{\boldsymbol{b}}$.
12. Let us consider the algorithm ceFace(a, b), where \boldsymbol{a} and \boldsymbol{b} are natural numbers ($1<\boldsymbol{a}, \boldsymbol{b} \leq 10^{5}$). The algorithm $\operatorname{prim}(\mathrm{n})$ returns True if the number $\boldsymbol{n}>1$ is prime, otherwise it returns False.

```
Algorithm ceFace(a, b):
    If prim(a) = True then
        Write a, " "
    Else
        If prim(b) # True then
                ceFace(a, b + 1)
        Else
                If b > a then
                    Write a, " "
                Else
                    If a MOD b = 0 then
                    Write b, " "
                            ceFace(a DIV b, b)
                    Else
                        ceFace(a, b + 1)
                        Endif
                EndIf
        EndIf
    EndIf
EndAlgorithm
```

What will be printed after the call ceFace $(100,2)$?
A. 2555
B. 5522
C. 2225
D. 2255
13. Let us consider the algorithm $f(n, p)$ where \boldsymbol{n} is a non-zero natural number $\left(1 \leq \boldsymbol{n} \leq 10^{9}\right)$, and \boldsymbol{p} is a natural number $\left(0 \leq \boldsymbol{p} \leq 10^{9}\right)$:

```
Algorithm f(n, p):
    If n < 9 then
        If n MOD 2 = 0 then
            Return 10 * p + n
        Else
            Return p
        EndIf
    Else
        If n MOD 2 = 0 then
```



```
        EndIf
        Return f(n DIV 10, p)
    EndIf
EndAlgorithm
```

Else If n MOD $2=0$ then $\mathrm{p} \leftarrow \mathrm{p} * 10+\mathrm{n}$ MOD 10 EndIf Return f(n DIV 10, p)
EndIf
EndAlgorithm

Which of the following calls will return the value 22 ?
A. $f(23572,0)$
B. $f(23527,0)$
C. $f(2,0)$
D. $f(1242,0)$
14. Let us consider the algorithm cifre(n), where \boldsymbol{n} is a natural number $\left(0 \leq \boldsymbol{n} \leq 10^{3}\right)$.

```
Algorithm cifre(n):
    If n \geq 1 then
        If (n * 5) MOD 10 = 0 then
            Return cifre(n DIV 10)
        Else
            Return n MOD 10
        EndIf
    Else
        Return -1
    EndIf
EndAlgorithm
```

Which of the following statements are true?
A. The algorithm always returns a number smaller than 10 .
B. The algorithm returns -1 if and only if the initial value of \boldsymbol{n} is 0 .
C. For $\boldsymbol{n} \geq 1$, the algorithm returns the least significant odd digit of \boldsymbol{n}, or -1 , if this does not exist.
D. For $\boldsymbol{n} \geq 1$ the algorithm returns the most significant odd digit of \boldsymbol{n}, or -1 , if this does not exist.
15. Let us consider the algorithm ceFace(a, b), where \boldsymbol{a} and \boldsymbol{b} are natural numbers $\left(0 \leq \boldsymbol{a}, \boldsymbol{b} \leq 10^{6}\right)$.

```
Algorithm ceFace(a, b):
    \(c \leftarrow 0\)
    \(p \leftarrow 1\)
    While \(a * b \neq 0\) execute
        If (a MOD 10) \(=(\mathrm{b}\) MOD 10) then
            \(c \leftarrow(a \operatorname{MOD} 10) * p+c\)
        Else
            If (a MOD 10) < (b MOD 10) then
                \(c \leftarrow((b \operatorname{MOD} 10-a \operatorname{MOD} 10) \operatorname{DIV} 2) * p+c\)
            Else
                \(c \leftarrow((a \operatorname{MOD} 10-b \operatorname{MOD} 10) \operatorname{DIV} 2) * p+c\)
            EndIf
        EndIf
        \(p \leftarrow p * 10\)
        \(a \leftarrow a \operatorname{DIV} 10\)
        \(b \leftarrow b\) DIV 10
    EndWhile
    Return c
EndAlgorithm
```

Which of the following statements are true?
A. If $\boldsymbol{a}=0$ and $\boldsymbol{b}=0$, the algorithm returns 1 .
B. If $\boldsymbol{a}=11$ and $\boldsymbol{b}=111$, the algorithm returns 11 .
C. If $\boldsymbol{a}=5678$ and $\boldsymbol{b}=5162738$, the algorithm returns 1024 .
D. If $\boldsymbol{a}=112233$ and $\boldsymbol{b}=331122$, the algorithm returns 110000 .
16. Let us consider the algorithms ceva (n, m) and altceva (n, m), where \boldsymbol{n} and \boldsymbol{m} are non-zero natural numbers $(1 \leq$ $\boldsymbol{n}, \boldsymbol{m} \leq 10^{12}$ and $\boldsymbol{m} \leq \boldsymbol{n}$).

```
Algorithm ceva(n, m):
    nc}\leftarrow\textrm{n
    mc}\leftarrow
    While nc > 0 AND mc > 0 execute
        nc}\leftarrow\textrm{nc}\mathrm{ DIV 10
        mc \leftarrowmc DIV 10
    EndWhile
    If nc = mc then
        Return True
    Else
        Return False
    EndIf
EndAlgorithm
```

Which of the following statements are true?
A. The time complexity of algorithm ceva (n, m) is $O(\log m)$.
B. The algorithm altceva (n, m) returns 0 if and only if $\boldsymbol{n}=\boldsymbol{m}$.
C. The precondition $\boldsymbol{m} \leq \boldsymbol{n}$ is required, since if $\boldsymbol{m}>\boldsymbol{n}$ the algorithm altceva(n, m) will always enter an infinite loop.
D. There exist \boldsymbol{n} and $\boldsymbol{m}(\boldsymbol{m} \leq \boldsymbol{n})$ for which altceva (n, m) displays two values in ascending order.
17. Let us consider the algorithm $h(s, d, A)$, where \boldsymbol{s} and \boldsymbol{d} are non-zero natural numbers $\left(1 \leq \boldsymbol{s}, \boldsymbol{d} \leq 10^{3}\right)$ and \boldsymbol{A} is an array of \boldsymbol{n} non-zero natural numbers $\left(\boldsymbol{A}[1], \boldsymbol{A}[2], \ldots, \boldsymbol{A}[\boldsymbol{n}], 1 \leq \boldsymbol{A}[\boldsymbol{i}] \leq 10^{3}\right.$, for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n}$).

```
Algorithm h(s, d, A):
    If s = d then
        x}\leftarrow\textrm{A}[\textrm{s}
        y}\leftarrowx\mathrm{ MOD 10
        x}\leftarrowx\mathrm{ DIV 10
        While x > 0 execute
            z}\leftarrowx\mathrm{ MOD 10
                If z - y f 2 then
                Return 0
            EndIf
            y}\leftarrow
            x}\leftarrowx\mathrm{ DIV 10
        EndWhile
        Return 1
    Else
            Return h(s, (s + d) DIV 2, A) + h((s + d) DIV 2 + 1, d, A)
    EndIf
EndAlgorithm
```

For which values of the number \boldsymbol{n} and array \boldsymbol{A} will the call $\mathrm{h}(1, \mathrm{n}, \mathrm{A})$ return the value 5 ?
A. $\boldsymbol{n}=7, \boldsymbol{A}=(20,53,10,42,31,131,42)$
B. $n=10, \boldsymbol{A}=(420,75,68,86,97,975,53,64,24,57)$
C. $\boldsymbol{n}=10, \boldsymbol{A}=(402,75,6,86,7,9,35,46,24,57)$
D. $n=10, \boldsymbol{A}=(642,97,6,64,7,9,75,4,53,31)$
18. Let us consider the algorithm $f(a, x)$, where \boldsymbol{x} is a non-zero natural number $\left(1 \leq \boldsymbol{x} \leq 10^{4}\right)$ and \boldsymbol{a} is an array of 10 non-zero natural numbers ($\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[10]$) .

```
Algorithm f(a, x):
    i}\leftarrow1,j\leftarrow1
    k}\leftarrow
    While a[k] & x AND i < j execute
        k\leftarrow(i + j) DIV 2
        If a[k] < x then
            i}\leftarrow
        Else
            j}\leftarrow
        EndIf
    EndWhile
    If a[k] = x then
        Return True
    Else
        Return False
    EndIf
EndAlgorithm
```

19. Let us consider the algorithm $f(a)$, where \boldsymbol{a} is a natural number $\left(1 \leq \boldsymbol{a} \leq 10^{9}\right)$.
```
Algorithm f(a):
    x}\leftarrowa\mp@code{MOD 10
    If x = a then
        If x MOD 2 = 0 then
            Return a
        Else
            Return 0
            EndIf
    EndIf
    If x MOD 2 = 0 then
        Return 10*f(a DIV 10) + x
    EndIf
    Return f(a DIV 10)
EndAlgorithm

Which of the following statements are true?
A. For \(\boldsymbol{a}=253401976\) the algorithm \(f(a)\) is called 8 times. The initial call is also counted.
B. For \(\boldsymbol{a}=253401976\) the algorithm \(f(a)\) is called 9 times. The initial call is also counted.
C. For \(\boldsymbol{a}=253401976\) the result returned by the algorithm is 2406 .
D. The result returned by the algorithm \(f(a)\) for the number \(\boldsymbol{a}\) formed using only even digits equals \(\boldsymbol{a}\).
20. Let us consider the algorithm \(\mathrm{A}(\mathrm{k})\), where parameter \(\boldsymbol{k}\) is a non-zero natural number \(\left(1 \leq \boldsymbol{k} \leq 10^{9}\right)\).
```

Algorithm A(k):
$g r \leftarrow(-1+\operatorname{radical}(1+8 * k)) / 2$
If $\mathrm{gr}=$ [gr] then
$p \leftarrow g r$
Else
$p \leftarrow[g r]+1$
EndIf
Return p - ($\mathrm{k}-\mathrm{p}$ * ($\mathrm{p}-1$) DIV 2 - 1)
EndAlgorithm

```
- Where \([\boldsymbol{g r}]\) is the integer part of \(\boldsymbol{g r}\).
- The algorithm radical(x) returns the square root of \(\boldsymbol{x}\).
- The / operator represents real number division, for example: \(7 / 2=3.5\)

Which of the following statements are correct?
A. The algorithm \(\mathrm{A} 1(k)\) defined below is equivalent with algorithm \(A(k)\).
```

Algorithm A1(k):
c}\leftarrow
i}\leftarrow
While c < k execute
j}\leftarrow
While j s i execute
If c < k then
c}\leftarrowc+
If c = k then
Return j
Else
j}\leftarrowj+
EndIf
Else
Return j
EndIf
EndWhile
i}\leftarrowi+
EndWhile
EndAlgorithm

```
B. The algorithm \(\mathrm{A} 2(\mathrm{k})\) defined below is equivalent with algorithm \(A(k)\).
```

Algorithm A2(k):
c}\leftarrow
i}\leftarrow
While c < k execute
j}\leftarrow
While j \geq 1 execute
If c<k then
c}\leftarrowc+
If c = k then
Return j
Else
j}\leftarrowj-
EndIf
Else
Return j
EndIf
EndWhile
i}\leftarrow\mathbf{i}+
EndWhile
EndAlgorithm
EndWorithm

```
C. The algorithm \(\mathrm{A}(\mathrm{k})\) returns the \(k\)-th element of the sequence formed from concatenating the arrays in the form of \([1,2, \ldots, i]\), for each \(\boldsymbol{i}=1,2, \ldots, \boldsymbol{k}\), in this order (that is \([1,1,2,1,2,3,1,2,3,4, \ldots]\) ).
D. The algorithm \(\mathrm{A}(\mathrm{k})\) returns the \(\boldsymbol{k}\)-th element of the sequence formed from concatenating the arrays in the form of \([i, \ldots, 2,1]\), for each \(\boldsymbol{i}=1,2, \ldots, \boldsymbol{k}\), in this order (that is \([1,2,1,3,2,1,4,3,2,1, \ldots]\) )
21. Let us consider the algorithm ceface (a, lung), where lung is a natural number ( \(1 \leq \boldsymbol{l u n g} \leq 10^{5}\) ), and \(\boldsymbol{a}\) is an array of lung integers (a[1], a[2], ..., a[lung]). The array \(\boldsymbol{a}\) contains at least one positive number.
```

Algorithm ceFace(a, lung):
value1 \leftarrow0
value2 \leftarrow0
For i \& 1, lung execute
value2 \leftarrowvalue2 + a[i]
If value1 < value2 then
value1 \leftarrowvalue2
EndIf
If value2 < 0 then
value2 \leftarrow0
EndIf
EndFor
Return value1
EndAlgorithm

```

Knowing that a subarray of array \(\boldsymbol{x}=[\boldsymbol{x}[1], \boldsymbol{x}[2], \ldots, \boldsymbol{x}[\boldsymbol{n}]]\) is formed by elements of the array \(\boldsymbol{x}\) that occupy consecutive positions (for example \(\boldsymbol{y}=[\boldsymbol{x}[3], \boldsymbol{x}[4], \boldsymbol{x}[5], \boldsymbol{x}[6]]\) ) is a length 4 subarray of array \(\boldsymbol{x}\) ), specify which of the following statements are true:
A. If there is only one positive number in array \(\boldsymbol{a}\), the algorithm returns its value.
B. The algorithm returns the length of one of the subarrays that have the maximum sum in array \(\boldsymbol{a}\).
C. The algorithm returns the sum of one of the subarrays that have the maximum sum in array \(\boldsymbol{a}\).
D. The algorithm returns the sum of the positive numbers that are on consecutive positions at the end of array \(\boldsymbol{a}\).
22. Let us consider the algorithm ceFace(sir, a, b), where sir is an array of \(\boldsymbol{n}(1 \leq \boldsymbol{n} \leq 100)\) non-zero distinct natural numbers in ascending order \((\operatorname{sir}[1], \operatorname{sir}[2], \ldots, \operatorname{sir}[\boldsymbol{n}]), \boldsymbol{a}\) and \(\boldsymbol{b}\) are natural numbers \((1 \leq \boldsymbol{a}, \boldsymbol{b} \leq \boldsymbol{n})\).
```

Algorithm ceFace(sir, a, b):
If a > b then
Return a
EndIf
c}\leftarrowa+(b - a) DIV 2
If sir[c] = c then
Return ceFace(sir, c + 1, b)
Else
Return ceFace(sir, a, c - 1)
EndIf
EndAlgorithm

```

Which of the following statements are true, considering the initial call ceFace(sir, \(1, n\) )?
A. If array sir is comprised of the first \(\boldsymbol{n}\) distinct natural numbers, then the algorithm returns \(\boldsymbol{n}+1\).
B. The algorithm returns the greatest position \(\boldsymbol{p}\) that is less than or equal to \(\boldsymbol{n}\) DIV 2 for which \(\operatorname{sir}[\boldsymbol{p}]=\boldsymbol{p}\) or 1 , if such a position does not exist ( \(1 \leq \boldsymbol{p} \leq \boldsymbol{n}\) ).
C. The algorithm returns the greatest position \(\boldsymbol{p}\) that is less than or equal to \(\boldsymbol{n}\) DIV 2 for which \(\operatorname{sir}[\boldsymbol{p}] \neq \boldsymbol{p}\) or \(\boldsymbol{n}+1\), if such a position does not exist \((1 \leq \boldsymbol{p} \leq \boldsymbol{n})\).
D. The algorithm returns the smallest non-zero natural number that does not appear in the array sir.
23. Let us consider the algorithm ceFace (s, \(x, c, y, n, m, k\) ), where \(s\) is an array of characters ( \(s[1], s[2], \ldots\), \(\boldsymbol{s}[\boldsymbol{x}]\) ) of length \(\boldsymbol{x}\), and \(\boldsymbol{c}\) is an array of characters \((\boldsymbol{c}[1], \boldsymbol{c}[2], \ldots, \boldsymbol{c}[\boldsymbol{y}])\) of length \(\boldsymbol{y}\). The identifiers \(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{n}, \boldsymbol{m}\) and \(\boldsymbol{k}\) memorize non-zero natural numbers ( \(1 \leq \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{n}, \boldsymbol{m}, \boldsymbol{k} \leq 100\) ).
```

Algorithm ceFace(s, x, c, y, n, m, k):
If (n\geq0) AND (m\geq0) AND (}n\leqx)\mathrm{ AND (m < y) then
If k MOD 2 = 0 then
Write s[(n + k) MOD x + 1]
ceFace(s, x, c, y, n - 1, m, k)
EndIf
If k MOD 2 = 1 then
Write c[(m + k) MOD y + 1]
ceFace(s, x, c, y, n, m - 1, k)
EndIf
EndIf
EndAlgorithm

```

By calling ceFace("+-", 2, "123", 3, 2, 2, 4), we aim to obtain a valid arithmetic expression (that is an arithmetic expression created by alternating one operator with one operand; it can start with one of the operators ' + ' or '-' and must end with an operand). Which of the following statements are NOT true?
A. Lines 5 and 10 can be filled in with the instruction \(k \leftarrow k+7\).
B. Line 5 can be filled in with the instruction \(k \leftarrow k+2\), and line 10 with the instruction \(k \leftarrow k+5\).
C. Lines 5 and 10 can be filled in with the instruction \(k \leftarrow k+2\).
D. Line 5 can be filled in with the instruction \(k \leftarrow k+7\), and line 10 with the instruction \(k \leftarrow k-1\).
24. Let us consider the natural number \(\boldsymbol{n}(1 \leq \boldsymbol{n} \leq 50)\) and the array \(\boldsymbol{x}\) having \(\boldsymbol{n}\) integer elements \((\boldsymbol{x}[1], \boldsymbol{x}[2], \ldots\), \(\boldsymbol{x}[\boldsymbol{n}])\). Which of the following statements are true, regardless of the value of \(\boldsymbol{n}\) and the values of the array's elements?
A. There exists a natural number \(\boldsymbol{k}(1 \leq \boldsymbol{k} \leq \boldsymbol{n})\), so that \(\boldsymbol{x}[1]+\boldsymbol{x}[2]+\ldots+\boldsymbol{x}[\boldsymbol{k}]\) is divisible by \(\boldsymbol{n}\).
B. There exist \((\boldsymbol{i}, \boldsymbol{j}), 0 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}\), so that the sum \(\boldsymbol{x}[\boldsymbol{i}+1]+\boldsymbol{x}[\boldsymbol{i}+2]+\ldots+\boldsymbol{x}[\boldsymbol{j}]\) is divisible by \(\boldsymbol{n}\).
C. Neither of statements A and B is true.
D. Knowing that a subarray of array \(\boldsymbol{x}=[\boldsymbol{x}[1], \boldsymbol{x}[2], \ldots, \boldsymbol{x}[\boldsymbol{n}]]\) is comprised of elements of array \(\boldsymbol{x}\) that occupy consecutive positions (for example, \(\boldsymbol{y}=[\boldsymbol{x}[3], \boldsymbol{x}[4], \boldsymbol{x}[5], \boldsymbol{x}[6]]\) is a length 4 subarray of \(\boldsymbol{x}\) ), there exists a natural number \(\boldsymbol{k},(1 \leq \boldsymbol{k} \leq \boldsymbol{n})\), so that in the array \(\boldsymbol{x}\) there exists a subarray of \(\boldsymbol{k}\) elements \((1 \leq \boldsymbol{k} \leq \boldsymbol{n})\) whose sum is divisible by \(\boldsymbol{n}\).

\section*{BABEŞ-BOLYAI UNIVERSITY}

\section*{FACULTY OF MATHEMATICS AND COMPUTER SCIENCE}

Mate-Info Contest - March 26 \({ }^{\text {th }}, 2023\)
Written Exam for Computer Science
GRADING AND SOLUTIONS

DEFAULT: 10 points
\begin{tabular}{ccc}
\(\mathbf{1}\) & A & 3.75 points \\
\(\mathbf{2}\) & A & 3.75 points \\
\(\mathbf{3}\) & AD & 3.75 points \\
\(\mathbf{4}\) & ABC & 3.75 points \\
\(\mathbf{5}\) & ABC & 3.75 points \\
\(\mathbf{6}\) & C & 3.75 points \\
\(\mathbf{7}\) & AC & 3.75 points \\
\(\mathbf{8}\) & A & 3.75 points \\
\(\mathbf{9}\) & B & 3.75 points \\
\(\mathbf{1 0}\) & CD & 3.75 points \\
\(\mathbf{1 1}\) & BD & 3.75 points \\
\(\mathbf{1 2}\) & D & 3.75 points \\
\(\mathbf{1 3}\) & AB & 3.75 points \\
\(\mathbf{1 4}\) & AC & 3.75 points \\
\(\mathbf{1 5}\) & BD & 3.75 points \\
\(\mathbf{1 6}\) & AD & 3.75 points \\
\(\mathbf{1 7}\) & AC & 3.75 points \\
\(\mathbf{1 8}\) & AC & 3.75 points \\
\(\mathbf{1 9}\) & BCD & 3.75 points \\
\(\mathbf{2 0}\) & BD & 3.75 points \\
\(\mathbf{2 1}\) & AC & 3.75 points \\
\(\mathbf{2 2}\) & AD & 3.75 points \\
\(\mathbf{2 3}\) & BC & 3.75 points \\
\(\mathbf{2 4}\) & BD & 3.75 points
\end{tabular}```

