MATHE-INFO UBB WETTBEWERB 2022 Schriftliche Prüfung in MATHEMATIK

WICHTIG ZU BEACHTEN: Jede Ankreuzaufgabe hat eine oder mehrere richtige Ant-

Bewertung der Ankreuzaufgaben erfolgt nach dem in der Prüfungsordnung vorgesehenen Benotungssystem.
1. Es sei $x = \sin \frac{12133}{6} \pi$. Dann ist:
$\boxed{\mathbf{A}} \ x = \frac{\sqrt{3}}{2}; \qquad \boxed{\mathbf{B}} \ x = \frac{1}{2}; \qquad \boxed{\mathbf{C}} \ x > 0; \qquad \boxed{\mathbf{D}} \ x < 0.$
2. Haben in einem kartesischen Koordinatensystem die Eckpunkte des Dreiecks ABC die Koordinaten $A(2,3), B(-1,1), C(-3,4)$, und ist G der Schwerpunkt des Dreiecks ABC , dann hat der Mittelpunkt F der Strecke AG die Koordinaten:
$\boxed{\mathbf{A}} F(0,0);$ $\boxed{\mathbf{B}} F(\frac{2}{3},\frac{17}{6});$ $\boxed{\mathbf{C}} F(-\frac{2}{3},\frac{8}{3});$ $\boxed{\mathbf{D}}$ andere Werte.
3. Die Anzahl der Lösungen der Gleichung $3\sin x - 2 = 0$ im Intervall $[0,\pi]$ ist:
$oxed{A}$ 0; $oxed{D}$ unendlich.
4. Gegeben sei in \mathbb{R} die Gleichung $\sqrt{x^2 - 3} = x^2 - 5$. Welche der folgenden Aussagen sind wahr?
ADie Gleichung hat keine Lösung.BDie Gleichung hat genau zwei Lösungen.CDie Gleichung hat genau vier Lösungen.DDie Gleichung hat nur positive Lösungen.
5. Die Anzahl der rationalen Glieder aus der Binomialentwicklung von $(\sqrt{2} + \sqrt[3]{5})^{300}$ beträgt:
A 50; B 51; C 52; D 150.
6. Gegeben sei die Matrix $A=\begin{pmatrix}1&1\\1&0\end{pmatrix}\in\mathcal{M}_2(\mathbb{R}).$ Die Summe der Elemente der Matrix A^5 beträgt:
$oxed{A}$ 19; $oxed{D}$ 20; $oxed{C}$ 21;
7. Es sei $(x_n)_{n\geq 1}$ eine Folge positiver reeller Zahlen mit der Eigenschaft, dass $(n+1)x_{n+1} - nx_n < 0$ für alle $n\geq 1$ ist. Dann ist der Grenzwert der Folge:

ür

A 1; $\boxed{\mathbf{B}} \infty;$ C er existiert nicht; |D|0.

8. Die Funktion $f: \mathbb{R} \to \mathbb{R}$, definiert durch

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{dacă } x < 0\\ x^3 + x + \alpha & \text{dacă } x \ge 0, \end{cases}$$

ist stetig, falls:

$\boxed{A} - 12y + x - 15 = 0; \qquad \boxed{B} \ 12y$	-x - 15 = 0;	$\boxed{\mathbf{C}} y - 12x - 15 = 0;$	$\boxed{\mathbf{D}} y + 12x + 15 = 0.$			
10. Die Lösungsmenge der Gleichung						
$4 \cdot \sin x \cdot \cos^3 x - 4 \cdot \sin^3 x \cdot \cos x = 1$						
ist: $\boxed{\mathbf{A}} \left\{ \frac{\pi}{8} + \frac{k\pi}{4} \mid k \in \mathbb{Z} \right\}; \qquad \boxed{\mathbf{B}} \left\{ \frac{\pi}{8} - \frac{\pi}{8} \right\}$	$+\frac{k\pi}{2}\mid k\in\mathbb{Z}\};$	$\boxed{\mathbf{C}} \left\{ \frac{\pi}{8} - k\pi \mid k \in \mathbb{Z} \right\};$	$\boxed{D} \left\{ \frac{\pi}{4} + \frac{k\pi}{8} \mid k \in \mathbb{Z} \right\}.$			
11. Die Eckpunkte A und B des Paralle Schnittpunkt O der Diagonalen AC undes Eckpunktes A , dann ist die Gleiche	nd BD hat die K	Coordinaten $(3,4)$. Sind $(6,4)$				
$\boxed{A} x + 3y - 42 = 0; \qquad \boxed{B} x - 3$	$y - 6 = 0; \qquad \boxed{\mathbf{C}}$	$3x - y - 6 = 0; \qquad \boxed{\mathbf{D}}$	y = 3x + 6.			
12. Gegeben sei die Funktion $f : \mathbb{R} \to \mathbb{R}$ $a \in \mathbb{R}$ bezeichnet wird. Welche der folg			der ganze Teil der Zahl			
$\boxed{\textbf{A}}$ f hat die Periode $\frac{1}{2}$. $\boxed{\textbf{B}}$	f ist injektiv.	$\boxed{\mathbf{C}}$ f ist surjektiv.	$\boxed{\mathrm{D}}$ f ist gerade.			
13. Gegeben sei die Summe $S_n = i + 2i^2 + 3i^3 + \cdots + ni^n, n \in \mathbb{N}^*$, wobei i die imaginäre Einheit darstellt $(i^2 = -1)$. Welche der folgenden Aussagen sind wahr? A S_{2020} ist eine reelle Zahl. B $ S_{2020} $ ist eine irrationale Zahl. C Der Imaginärteil von S_{2022} ist 1011. D $ S_{2022} = 1011$.						
14. Es sei $(x,y) \in \mathbb{R}^2_+$ die Lösung des G	Gleichungssystem	S				
·	Gleichungssystems $\begin{cases} \log_{225} x + \log_{64} \\ \log_x 225 - \log_y \end{cases}$					
·	$\begin{cases} \log_{225} x + \log_{64} \\ \log_x 225 - \log_y \end{cases}$					
	$\begin{cases} \log_{225} x + \log_{64} \\ \log_x 225 - \log_y \\ \log_{30} y \text{ beträgt:} \end{cases}$		D 10.			
Der Wert des Ausdrucks $\log_{30}(x^3)$ – lo A 0; B 1 15. Die Summe der Lösungen der Gleichen Gereichen Ger	$\begin{cases} \log_{225} x + \log_{6x} \\ \log_{x} 225 - \log_{y} \\ \log_{30} y \text{ beträgt:} \end{cases}$ (2) (2) (3) (4) (4) (4) (4) (5) (4) (4) (5) (6) (7) (7) (7) (7) (8) (7) (8) $($	y = 0, $64 = 1$.	D 10.			
Der Wert des Ausdrucks $\log_{30}(x^3)$ – lo A 0; B 1 15. Die Summe der Lösungen der Gleichen Gereichen Ger	$\begin{cases} \log_{225} x + \log_{6x} \\ \log_x 225 - \log_y \\ \log_{30} y \text{ beträgt:} \end{cases}$	y = 0, $64 = 1$.	D 10.			
Der Wert des Ausdrucks $\log_{30}(x^3)$ – lo A 0; B 1 15. Die Summe der Lösungen der Gleichen Gereichen Ger	$\begin{cases} \log_{225} x + \log_{6x} \\ \log_{x} 225 - \log_{y} \\ \log_{30} y \text{ beträgt:} \end{cases}$ $22;$ $22;$ $23;$ $24 + \log_{6x} x + 1 - 4^{x} = 1$ $35 + \log_{6x} x + 1 - 4^{x} = 1$ $36 + \log_{6x} x + 1 - 4^{x} = 1$ $37 + \log_{6x} x + 1 - 4^{x} = 1$ $38 + \log_{6x} x + \log_{6x} x + 1$ $48 + \log_{6x} x + \log_{6x} x + 1$ $48 + \log_{6x} x + \log_{6x} x + 1$ $48 + \log_{6x} x + \log_{6x} x + 1$ $48 + \log_{6x} x + \log_{6x} x + \log_{6x} x + 1$ $48 + \log_{6x} x + \log_{6x} x + \log_{6x} x + \log_{6x} x + 1$ $48 + \log_{6x} x +$	$y = 0$ $0.64 = 1$. C 1; $y = 3^{2x}$ ist: C 1; S, dessen eine Diagonale auch sind wahr? Diagonale liegt, ist $x + y + y = 0$	D 2. auf der Gerade mit der			
Der Wert des Ausdrucks $\log_{30}(x^3) - \log A$ A 0; B 1 15. Die Summe der Lösungen der Gleic A -1; B 16. Der Punkt $A(3,1)$ ist der Eckpunk Gleichung $y - x = 0$ liegt. Welche der f A Der Abstand von A zu dieser B Die Gleichung der Gerade, auf C Der Flächeninhalt des Quadra D Der Punkt $C(1,3)$ ist ebenfalls 17. Gegeben sei das Dreieck ABC , in werden. Es wird angenommen, dass die	$\begin{cases} \log_{225} x + \log_{6} x \\ \log_{x} 225 - \log_{y} x \\ \log_{30} y \text{ beträgt:} \end{cases}$ $\begin{cases} 2; \\ \text{chung } 6^{x+1} - 4^{x} = x \\ 0; \\ \text{chung } 6^{x+1} - 4^{x} = x \\ chung $	$y = 0$ $y = 64 = 1$. C 1; $y = 3^{2x}$ ist: $y =$	D 2. The proof of			
Der Wert des Ausdrucks $\log_{30}(x^3) - \log A$ A 0; B 1 15. Die Summe der Lösungen der Gleic A -1; B 16. Der Punkt $A(3,1)$ ist der Eckpunk Gleichung $y - x = 0$ liegt. Welche der f A Der Abstand von A zu dieser B Die Gleichung der Gerade, auf C Der Flächeninhalt des Quadra D Der Punkt $C(1,3)$ ist ebenfalls 17. Gegeben sei das Dreieck ABC , in	$\begin{cases} \log_{225} x + \log_{6} x \\ \log_{x} 225 - \log_{y} x \\ \log_{30} y \text{ beträgt:} \end{cases}$ $\begin{cases} 2; \\ \text{chung } 6^{x+1} - 4^{x} = x \\ 0; \\ \text{chung } 6^{x+1} - 4^{x} = x \\ chung $	$y = 0$ $y = 64 = 1$. C 1; $y = 3^{2x}$ ist: $y =$	D 2. The proof of			

9. Die Gleichung der Tangente an den Graphen der Funktion $f(x) = \sqrt[3]{x-1}$ im Punkt mit der Abszisse

 $\begin{array}{|c|c|} \hline A & \alpha \in \mathbb{R}; \\ \hline C & \alpha = 0; \end{array}$

x = 9 ist:

10 D W + 1 C + 1'	(1 1).				
18. Der Wert des Grenzwertes li	$\underset{\to}{\text{m}} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right) \text{ ist:}$		1		
$\boxed{\mathrm{A}} - \frac{1}{3};$	$\boxed{\mathrm{B}}$ -1 ;	$\boxed{ ext{C}}$ 0;	$\boxed{\mathrm{D}} \frac{1}{2}$.		
19. Gegeben sei die Funktion f : der folgenden Aussagen sind wah		$\operatorname{arctg} x + \operatorname{arcctg} x$, für alle $x \in$	\mathbb{R} . Welche		
$\boxed{\mathbf{A}} f(-1) = -\frac{\pi}{2}.$					
$\boxed{\mathbf{B}} f(x) = \frac{\pi}{2}, \text{ für alle } x \in (0, \infty)$					
$oxed{C}$ Die Funktion f ist unger	rade.				
$\left[\underline{\mathbf{D}} \right] \lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x).$					
20. Die Anzahl der reellen Lösur	ngen der Gleichung $xe^x = -\frac{1}{3}$	beträgt:			
$\boxed{\mathbf{A}}$ 0;	B 1;	$\boxed{ ext{C}}$ 2;	D 3.		
21. Es seien ABC ein Dreieck ur Sind \mathcal{A}_{ABC} der Flächeninhalt de dann gilt:	ad $A' \in [BC], B' \in [CA], C' \in$ es Dreiecks ABC und $\mathcal{A}_{A'B'C'}$	$[AB]$ so, dass $\frac{BA'}{BC} = \frac{CB'}{CA} = \frac{A}{A}$ der Flächeninhalt des Dreiech	$\frac{C'}{B} = \alpha \text{ ist.}$ ks $A'B'C'$,		
$\boxed{A} \frac{\mathcal{A}_{A'B'C'}}{\mathcal{A}_{ABC}} = 1 - 3\alpha(1 - \alpha)$ $\boxed{C} \frac{\mathcal{A}_{A'B'C'}}{\mathcal{A}_{ABC}} = 1 - 12\alpha^2(1 - \alpha)$	$(B) \frac{\mathcal{A}_{A'B'C'}}{\mathcal{A}_{ABC}} \in \left[\frac{1}{4}, 1\right];$ $(A)^{2}; \qquad (D) \frac{\mathcal{A}_{A'B'C'}}{\mathcal{A}_{ABC}} \in \left[\frac{1}{2}, 1\right].$				
22. Der Wert des Grenzwertes li	$\underset{\stackrel{\rightarrow}{\rightarrow} \frac{\pi}{4}}{\text{m}} \frac{\int_{1}^{\text{tg } x} e^{t^{2}} dt}{\int_{1}^{\text{ctg } x} e^{t^{2}} dt} \text{ ist:}$				
$\boxed{\mathbf{A}}$ 1;	$\boxed{\mathrm{B}}\ \pi;$	$\boxed{ extbf{C}}$ 0;	$\boxed{\mathrm{D}}$ -1 .		
23. Das Dreieck, in dem die Gleichheit $\sin(B) + \cos(B) = \sin(C) + \cos(C)$ gilt, ist:					
A rechtwinklig; B gleich	nschenklig; C gleichseitig;	D rechtwinklig oder gleichsch	nenklig.		
24. Gegeben sei die Folge $(a_n)_{n\in$	$_{\mathbb{N}^*}$ mit				
$a_n = \sqrt{\frac{1}{n^2} + \frac{1}{n^3}} + \sqrt{\frac{1}{n^2} + \frac{2}{n^3}} + \dots + \sqrt{\frac{1}{n^2} + \frac{n}{n^3}}, \text{ für alle } n \in \mathbb{N}^*.$					
Es sei $\ell = \lim_{n \to \infty} a_n$. Welche der fo	lgenden Aussagen sind wahr?				
$\begin{bmatrix} \mathbf{A} \end{bmatrix} \ell = 0.$	$\boxed{3} \ell = \frac{\sqrt{2}}{3}.$	\mathbb{C} $\ell \in \mathbb{R} \setminus \mathbb{Q}$.	D $\ell = \infty$.		
25. Zwei Seiten eines Rechtecks	liegen auf den Geraden mit de	n Gleichungen:			
	$(d_1): 2x - 3y + 5 = 0$				
$(d_2): 3x + 2y - 7 = 0.$					
Ist $A(2,-3)$ ein Eckpunkt des I Geraden:	Rechtecks, so liegen die beider	n anderen Seiten des Rechtech	ks auf den		

B $y + 3 = \frac{2}{3}(x - 2)$ und $y + 3 = -\frac{3}{2}(x - 2)$; $\boxed{\mathbf{A}} \ 2x - 3y - 13 = 0 \text{ und } 3x + 2y = 0;$

D $y-3=\frac{2}{3}(x-2)$ und $y-3=-\frac{3}{2}(x-2)$. C 2x - 3y + 13 = 0 und 3x - 2y = 0;

26.	Gegeben	seien e	$\alpha \in \mathbb{C}$ ein	Parameter	und das	lineare	Gleichungssytem	mit 3	Unbekannten
20.	Gegenen	SCICII ($\alpha \subset C$	1 arameter	una aas	micarc	Official and party of the	11110 0	CHOCKMIIIICH

$$\begin{cases} 2x + \alpha y + 2z &= 1\\ 4x - y + 5z &= 1\\ 2x + 10y + z &= 1. \end{cases}$$

Welche der folgenden Aussagen sind wahr?

- A Der Rang der Matrix ist 3 für jeden Wert von α .
- B Der Rang der erweiterten Matrix des Systems ist 3 für jeden Werte von α .
- $\boxed{\mathbb{C}}$ Das System ist genau dann unlösbar, wenn $\alpha \neq 3$ ist.
- D Das System ist genau dann lösbar, wenn $\alpha \neq 3$ ist.

27. Es sei $G \subseteq \mathbb{R}$ eine Menge mit der Eigenschaft, dass der Ausdruck

$$x*y = \frac{xy}{2xy - x - y + 1}, \forall x, y \in G,$$

eine Operation auf G darstellt. Welche der folgenden Aussagen sind wahr?

- \overline{A} G kann das Intervall (0,2) sein.
- \fbox{B} G kann das Intervall (0,1) sein.
- $\overline{|C|}$ Ist G = (0, 1), dann hat "*" ein neutrales Element.
- D Ist G = (0, 1), dann ist $\frac{2}{3}$ das symmetrische Element von $\frac{1}{3}$.

28. Der Wert des Integrals

$$\int_{\frac{1}{2022}}^{2022} \frac{\ln x}{1+x^2} \,\mathrm{d}x$$

ist:

 $oxed{A} 0; oxed{B} 1; oxed{C} 2;$

- **29.** Gegeben seien $x, y, z \in \mathbb{Z}^*$ so, dass xy, yz, zx eine geometrische Folge mit dem Quotienten eine von 1 verschiedene ganze Zahl bilden. Welche der folgenden Aussagen sind wahr?
 - $\boxed{\mathbf{A}}$ Ist y eine Quadratzahl, dann ist auch z eine Quadratzahl.
 - $\overline{\mathbf{B}}$ Ist z eine Quadratzahl, dann ist auch y eine Quadratzahl.
 - $\overline{\mathbb{C}}$ Ist y eine Quadratzahl, dann ist auch x eine Quadratzahl.
 - $\overline{|D|}$ Ist z eine Quadratzahl, dann ist auch x eine Quadratzahl.
- **30.** Die Folge $(x_n)_{n\in\mathbb{N}^*}$ sei durch $x_n = \int_0^2 \frac{(2-x)^{2n-1}}{(2+x)^{2n+1}} \, \mathrm{d}x$, für alle $n\in\mathbb{N}^*$, definiert. Welche der folgenden Aussagen sind wahr?

$$\boxed{\textbf{A}} \ x_{23} = \frac{1}{184}. \qquad \boxed{\textbf{B}} \lim_{n \to \infty} n^2 x_n = 1. \qquad \boxed{\textbf{C}} \lim_{n \to \infty} n x_n = \frac{1}{8}. \qquad \boxed{\textbf{D}} \lim_{n \to \infty} n x_n = 0.$$

BABEŞ-BOLYAI-UNIVERSITÄT CLUJ-NAPOCA FAKULTÄT FÜR MATHEMATIK UND INFORMATIK

MATHE-INFO UBB WETTBEWERB 2022 Schriftliche Prüfung in MATHEMATIK Antworten

- 1. B, C
- 2. B
- 3. C
- 4. B
- 5. B
- 6. C
- 7. D
- 8. C
- 9. B
- 10. B
- 11. C
- 12. A
- 13. B, C
- 14. B
- 15. B
- 16. C, D
- 17. B, D
- 18. A
- 19. B, D
- 20. C
- 21. A, B
- 22. D
- 23. D
- 24. C
- 25. A, B
- 26. B, D
- 27. B, C, D
- 28. A
- 29. A, B
- 30. A, C

MATHE-INFO UBB WETTBEWERB 2022 Schriftliche Prüfung in MATHEMATIK ANTWORTEN und LÖSUNGEN

ANTWORTEN und LÖSUNGEN				
1. Es sei $x = \sin \frac{12133}{6}$	3 - π. Dann ist:			
$\boxed{\mathbf{A}} \ x = \frac{\sqrt{3}}{2};$	$\boxed{\mathbf{B}} \ x = \frac{1}{2}; \qquad \boxed{\mathbf{C}} \ :$	$x > 0;$ $\boxed{D} x < 0.$		
$\begin{array}{ c c } Antwort: \\ \hline \textbf{A} & \textbf{falsch}; \end{array}$	$oxed{f B}$ wahr;	$oxedcolon{f C}$ wahr;	D falsch.	
Lösung: Aus $\frac{12133}{6}$	$\frac{1}{6} = 2022 + \frac{1}{6} \text{ folgt } \frac{12133}{6} \pi =$	$=2022\pi + \frac{\pi}{6}$. Also ist $\sin \left(2022\pi\right)$	$\pi + \frac{\pi}{6} = \sin \frac{\pi}{6} = \frac{1}{2}.$	
2. Haben in einem kartesischen Koordinatensystem die Eckpunkte des Dreiecks ABC die Koordinaten $A(2,3), B(-1,1), C(-3,4)$, und ist G der Schwerpunkt des Dreiecks ABC , dann hat der Mittelpunkt F der Strecke AG die Koordinaten:				
$\boxed{\mathbf{A}} F(0,0);$	$\boxed{\mathrm{B}} F(\frac{2}{3}, \frac{17}{6});$	$\boxed{\mathbf{C}} F(-\frac{2}{3}, \frac{8}{3});$	D andere Werte.	
$\begin{array}{ c c }\hline Antwort:\\\hline \textbf{A} & \textbf{falsch};\end{array}$	$oxed{\mathbf{B}}$ wahr;	$oxedcolon{oldsymbol{oldsymbol{C}}}{ extbf{falsch}};$	$oxed{f D}$ falsch.	
Lösung: Die Koord	inaten des Schwerpunktes si	nd		
	$G\left(\frac{2+(-1)+(-3)}{3}, \frac{3}{3}\right)$	$\left(\frac{3+1+4}{3}\right) = G\left(-\frac{2}{3}, \frac{8}{3}\right).$		
Somit hat der Mittelpu	ınkt der Strecke AG die Koo	ordinaten $F\left(\frac{2+(-2/3)}{2}, \frac{3+8/3}{2}\right) =$	$=F\left(\frac{2}{3},\frac{17}{6}\right).$	
3. Die Anzahl der Löst	ungen der Gleichung $3\sin x$	$-2 = 0$ im Intervall $[0, \pi]$ ist:		
lacksquare $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$	B 1; C 2;	D unendlich.		
$\begin{array}{ c c }\hline Antwort:\\\hline \textbf{A} & \textbf{falsch};\end{array}$	$oxed{f B}$ falsch;	$oxedcolon{oxedcolon}{oxabella}{oxabella}{oxabella}{oxabella}{oxabella}{oxabella}{oxabella}{$	$oxed{f D}$ falsch.	
Lösung: Die Lösungsm	enge ist $\{\arcsin\frac{2}{3}, \pi - \arcsin$	$\{\frac{2}{3}\}$, also eine Menge mit zwei F	Elementen.	
4. Gegeben sei in \mathbb{R} di	e Gleichung $\sqrt{x^2 - 3} = x^2 - $	5. Welche der folgenden Aussa	gen sind wahr?	
	g hat keine Lösung. g hat genau vier Lösungen.	B Die Gleichung hat genau D Die Gleichung hat nur p	=	
$\begin{array}{ c c } Antwort: \\ \hline \textbf{A} & \textbf{falsch}; \end{array}$	$oxed{f B}$ wahr;	$oxed{\mathbf{C}}$ falsch;	D falsch.	

Lösung: Man setzt die Bedingungen $x^2-3\geq 0$ und $x^2-5\geq 0$, also $x\in (-\infty,-\sqrt{5}]\cup [\sqrt{5},+\infty)$. Durch Quadrieren der Gleichung erhält man

$$x^{2} - 3 = (x^{2} - 5)^{2} \iff x^{2} - 3 = x^{4} - 10x^{2} + 25 \iff x^{4} - 11x^{2} + 28 = 0.$$

Mit der Bezeichnung $y=x^2$ schreibt sich die Gleichung als $y^2-11y+28=0$, deren Lösungen $y_1=4$ und $y_2=7$ sind. Somit sind die Lösungen der Gleichung $x^4-11x^2+28=0$ die Zahlen $x_1=-2, x_2=2, x_3=-\sqrt{7}$ und $x_4=\sqrt{7}$. Nur x_3 und x_4 genügen der Bedingung $x^2-5\geq 0$, also hat die Gleichung $\sqrt{x^2-3}=x^2-5$ die Lösungen x_3 und x_4 .

5. Die Anzahl der rationalen Glieder aus der Binomialentwicklung von $\left(\sqrt{2} + \sqrt[3]{5}\right)^{300}$ beträgt:

 A
 50;
 B
 51;
 C
 52;
 D
 150.

Antwort:

A falsch; B wahr; C falsch; D falsch.

Lösung: Das allgemeine Glied der Binomialentwicklung ist $T_{k+1} = C_{300}^k 2^{150 - \frac{k}{2}} \cdot 5^{\frac{k}{3}}$, $0 \le k \le 300$. Für $k \in \{0, 1, ..., 300\}$ ist $T_{k+1} \in \mathbb{Q}$ genau dann, wenn k sowohl durch 2 als auch durch 3, also durch 6 teilbar ist. Somit ist $k \in \{0, 6, 12, ..., 300\}$. Es folgt, dass 51 Glieder rational sind.

6. Gegeben sei die Matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Die Summe der Elemente der Matrix A^5 beträgt:

 $oxed{A}$ 19; $oxed{B}$ 20; $oxed{C}$ 21; $oxed{D}$ 22.

Antwort:

A falsch; B falsch; C wahr; D falsch.

Lösung: Es gilt $A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$, für $n \in \mathbb{N}^*$, wobei $(F_n)_{n \geq 0}$ die wie folgt definierte Fibonacci-Folge ist: $F_0 = 0$, $F_1 = 1$ und $F_{n+1} = F_n + F_{n-1}$, $\forall n \geq 1$. Für $n \in \mathbb{N}^*$ ist die Summe S_n der Elemente der Matrix A^n gleich

$$S_n = (F_{n+1} + F_n) + (F_n + F_{n-1}) = F_{n+2} + F_{n+1} = F_{n+3}.$$

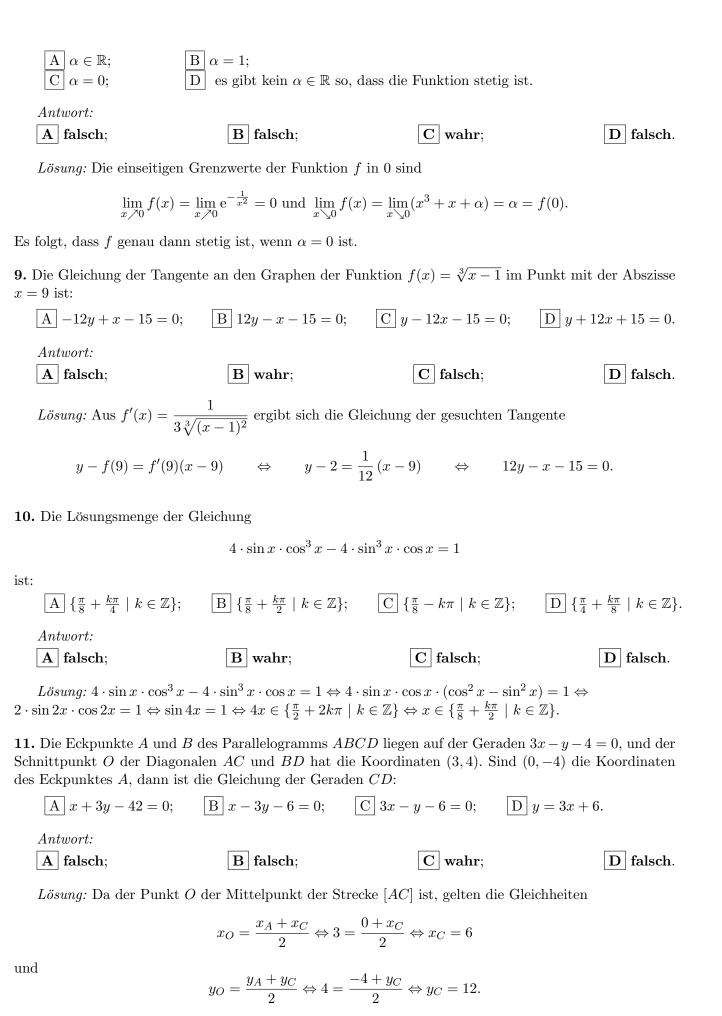
Also ist $S_5 = F_8 = 21$.

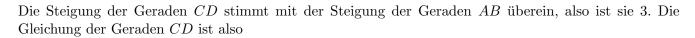
Das Ergebnis kann man auch durch das Berechnen der Matrizen $A^2,\,A^4$ und $A^5=A\cdot A^4$ erhalten.

7. Es sei $(x_n)_{n\geq 1}$ eine Folge positiver reeller Zahlen mit der Eigenschaft, dass $(n+1)x_{n+1} - nx_n < 0$ für alle $n\geq 1$ ist. Dann ist der Grenzwert der Folge:

 $\begin{bmatrix} A \end{bmatrix} 1;$ $\begin{bmatrix} B \end{bmatrix} \infty;$ $\begin{bmatrix} C \end{bmatrix}$ er existiert nicht; $\begin{bmatrix} D \end{bmatrix} 0.$

Antwort:


A falsch; B falsch; C falsch; D wahr.


Lösung: Aus $x_1 > 2x_2 > 3x_3 > \dots > nx_n \quad \Rightarrow \quad 0 < x_n < \frac{x_1}{n}, \ \forall n \in \mathbb{N}^* \quad \Rightarrow \quad \lim_{n \to \infty} x_n = 0.$

8. Die Funktion $f: \mathbb{R} \to \mathbb{R}$, definiert durch

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \operatorname{dacă} x < 0\\ x^3 + x + \alpha & \operatorname{dacă} x \ge 0, \end{cases}$$

ist stetig, falls:

$$y - 12 = 3(x - 6) \Leftrightarrow 3x - y - 6 = 0.$$

12. Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$, definiert f(x) = 2x - [2x], wobei mit [a] der ganze Teil der Zahl $a \in \mathbb{R}$ bezeichnet wird. Welche der folgenden Aussagen sind wahr?

A | f hat die Periode $\frac{1}{2}$.

 $\mid \mathbf{B} \mid f$ ist injektiv.

|C|f ist surjektiv.

D f ist gerade.

Antwort:

A wahr;

B falsch:

C falsch:

D | falsch.

Lösung: Die Funktion f hat die Periode $\frac{1}{2}$, weil für alle $x \in \mathbb{R}$ die folgenden Gleichheiten gelten

$$f\left(x+\frac{1}{2}\right) = 2\left(x+\frac{1}{2}\right) - \left[2\left(x+\frac{1}{2}\right)\right] = 2x + 1 - [2x+1] = 2x - [2x] = f(x).$$

Es folgt, dass f nicht injektiv ist. Die Funktion ist auch nicht surjektiv ist, weil $f(\mathbb{R}) \subseteq [0,1)$ ist. Aus $f(\frac{1}{8}) = \frac{1}{4}$ und $f(-\frac{1}{8}) = \frac{3}{4}$ folgt, dass die Funktion f nicht gerade ist.

13. Gegeben sei die Summe $S_n=i+2i^2+3i^3+\cdots+ni^n, n\in\mathbb{N}^*$, wobei i die imaginäre Einheit darstellt $(i^2 = -1)$. Welche der folgenden Aussagen sind wahr?

 $|B||S_{2020}|$ ist eine irrationale Zahl.

A S_{2020} ist eine reelle Zahl. B $|S_{2020}|$ ist eine C Der Imaginärteil von S_{2022} ist 1011. D $|S_{2022}| = 1011$.

Antwort:

A falsch;

B wahr;

C wahr:

D falsch.

Lösung: Es gelten $i^{4k}=1, i^{4k+1}=i, i^{4k+2}=-1, i^{4k+3}=-i$ für alle $k\in\mathbb{N}$. Wir führen die folgenden Teilsummen ein:

$$s_1 = i + 2i^2 + 3i^3 + 4i^4 = 2 - 2i$$
,
 $s_2 = 5i^5 + 6i^6 + 7i^7 + 8i^8 = 2 - 2i$,

 $s_{505} = 2017i^{2017} + 2018i^{2018} + 2019i^{2019} + 2020i^{2020} = 2 - 2i.$

Dann ist

$$S_{2020} = s_1 + s_2 + \ldots + s_{505} = 505(2 - 2i) = 1010(1 - i).$$

Es folgt, dass $S_{2020} \notin \mathbb{R}$ und $|S_{2020}| = 1010\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$. Also ist $|S_{2020}|$ eine irrationale Zahl.

$$S_{2022} = S_{2020} + 2021i^{2021} + 2022i^{2022} = 1010(1-i) + 2021i - 2022 = -1012 + 1011i$$

folgt, dass der Imaginärteil von S_{2022} gleich 1011 und $|S_{2022}| = \sqrt{(-1012)^2 + 1011^2} \neq 1011$ ist.

14. Es sei $(x,y) \in \mathbb{R}^2_+$ die Lösung des Gleichungssystems

$$\begin{cases} \log_{225} x + \log_{64} y = 0 \\ \log_x 225 - \log_y 64 = 1. \end{cases}$$

Der Wert des Ausdrucks $\log_{30}(x^3) - \log_{30} y$ beträgt:

 $A \mid 0;$

B 12;

C 1;

D | 10.

Antwort:

A falsch;	B wahr;	C falsch;	D falsch.
· ·	,		

 $L\ddot{o}sung$: Es sei $(x,y)\in\mathbb{R}^2_+$ eine Lösung dieses Systems. Bezeichnet man mit $A=\log_{225}x$ und mit $B=\log_{64}y$, so folgt aus der ersten Gleichung $A+B=0\Rightarrow B=-A$. Die zweite Gleichung liefert $\frac{1}{A}-\frac{1}{B}=\frac{1}{A}+\frac{1}{A}=1$, also A=2 und B=-2. Somit ist $\log_{225}x=2$, also $x=225^2=15^4$. Aus $\log_{64}y=-2$ erhält man $y=64^{-2}=2^{-12}$.

Somit ist also $\log_{30}(x^3) - \log_{30} y = \log_{30}(15^{12} \cdot 2^{12}) = 12.$

15. Die Summe der Lösungen der Gleichung $6^{x+1} - 4^x = 3^{2x}$ ist:

$$\boxed{A} - 1;$$
 $\boxed{D} 2.$

Antwort:

 A falsch;
 B wahr;
 C falsch;
 D falsch.

Lösung: Die gegebene Gleichung ist äquivalent zu

$$6 \cdot \left(\frac{3}{2}\right)^x - 1 = \left(\frac{3}{2}\right)^{2x}.$$

Bezeichnet man mit $t = \left(\frac{3}{2}\right)^x$, so erhält man die Gleichung zweiten Grades $t^2 - 6t + 1 = 0$ mit den Lösungen $t_{1,2} = 3 \pm 2\sqrt{2}$. Da beide Lösungen positiv sind, hat die gegebene Gleichung zwei Lösungen x_1 und x_2 . Ist $t_1 = \left(\frac{3}{2}\right)^{x_1}$ und $t_2 = \left(\frac{3}{2}\right)^{x_2}$, dann folgt

$$\left(\frac{3}{2}\right)^{x_1+x_2} = t_1 \cdot t_2 = 9 - 8 = 1,$$

also $x_1 + x_2 = 0$.

16. Der Punkt A(3,1) ist der Eckpunkt eines Quadrates, dessen eine Diagonale auf der Geraden mit der Gleichung y - x = 0 liegt. Welche der folgenden Aussagen sind wahr?

- A Der Abstand von A zu dieser Diagonale ist 2.
- B Die Gleichung der Geraden, auf der die andere Diagonale liegt, ist x + y + 2 = 0.
- C Der Flächeninhalt des Quadrates ist 4.
- $\boxed{\mathsf{D}}$ Der Punkt C(1,3) ist ebenfalls ein Eckpunkt des Quadrates.

Antwort:

 $L\ddot{o}sung$: Der Abstand von A zu der gegebenen Geraden ist

$$d = \frac{|1-3|}{\sqrt{1^2 + (-1)^2}} = \sqrt{2}.$$

Die zweite Diagonale des Quadrates enthält A. Da die beiden Diagonalen des Quadrates senkrecht aufeinander stehen, ist y-1=(-1)(x-3), also x+y-4=0, die Gleichung der Geraden, auf der die zweite Diagonale liegt.

Der Flächeninhalt des Quadrates stimmt mit der Hälfte des Quadrates der Länge der Diagonale überein, beträgt also $\frac{(2\sqrt{2})^2}{2}=4$. Da C(1,3) der zu A symmetrische Punkt bezüglich der im Text der Aufgabe erwähnten Diagonale ist, ist C ebenfalls ein Eckpunkt des Quadrates.

17. Gegeben sei das Dreieck ABC, in dem die Seitenlängen mit BC = a, AC = b, AB = c bezeichnet werden. Es wird angenommen, dass die Länge der Seitenhalbierenden AM gleich c ist. Dann gilt:

A
$$a^2 + 2c^2 = 3b^2$$
; B $a^2 + 2c^2 = 2b^2$; C $\cos C = \frac{4a}{3b}$; D $\cos C = \frac{3a}{4b}$.

1	a + a		·
\mathcal{H}	nti	UO'	$r\iota$:

A falsch;

B wahr;

C falsch;

D wahr.

Lösung: Der Lehrsatz über die Länge der Seitenhalbierenden liefert die Gleichheit $AM^2 = \frac{b^2 + c^2}{2} - \frac{a^2}{4}$. Laut Voraussetzung ist AM = c, also folgt $a^2 + 2c^2 = 2b^2$. Wendet man in dieser Gleichheit den Kosinussatz für die Seite c an, erhält man $3a = 4b\cos C$.

18. Der Wert des Grenzwertes $\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x}\right)$ ist:

$$\boxed{\mathbf{A}} - \frac{1}{3};$$

 $\boxed{\mathrm{B}}$ -1;

C 0;

 $\boxed{D} \frac{1}{2}$.

Antwort:

A wahr;

B falsch;

C falsch;

D falsch.

Lösung: Die folgenden Rechnungen liefern den zu berechnenden Grenzwert:

$$\begin{split} \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right) &= \lim_{x \to 0} \frac{\sin^2 x - x^2}{x^2 \sin^2 x} = \lim_{x \to 0} \frac{\sin x - x}{x^2 \sin x} \cdot \lim_{x \to 0} \frac{\sin x + x}{\sin x} \\ &= 2 \lim_{x \to 0} \frac{\sin x - x}{x^2 \sin x} = 2 \lim_{x \to 0} \frac{\cos x - 1}{2x \sin x + x^2 \cos x} \\ &= 2 \lim_{x \to 0} \frac{-\sin x}{2 \sin x + 4x \cos x - x^2 \sin x} \\ &= 2 \lim_{x \to 0} \frac{-\cos x}{6 \cos x - 6x \sin x - x^2 \cos x} \\ &= -\frac{1}{3}. \end{split}$$

19. Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$, definiert durch $f(x) = \arctan x + \operatorname{arcctg} x$, für alle $x \in \mathbb{R}$. Welche der folgenden Aussagen sind wahr?

$$\boxed{\mathbf{A}} f(-1) = -\frac{\pi}{2}.$$

$$\boxed{\mathbf{B}} f(x) = \frac{\pi}{2}$$
, für alle $x \in (0, \infty)$;

 $\boxed{\mathbf{C}}$ Die Funktion f ist ungerade.

$$\boxed{\mathbf{D}} \lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x).$$

Antwort:

A falsch;

B wahr;

C falsch;

D wahr.

Lösung: Wegen

$$f'(x) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$
 für alle $x \in \mathbb{R}$,

ist die Funktion f konstant auf \mathbb{R} . Also gilt $f(x) = f(0) = \frac{\pi}{2}$ für alle $x \in \mathbb{R}$. Somit sind also nur die Aussagen $\boxed{\mathbf{B}}$ und $\boxed{\mathbf{D}}$ wahr.

20. Die Anzahl der reellen Lösungen der Gleichung $xe^x = -\frac{1}{3}$ beträgt:

A 0;

B 1;

C 2;

D 3.

Antwort:

Lösung: Es sei $f: \mathbb{R} \to \mathbb{R}$, definiert durch $f(x) = xe^x$, $\forall x \in \mathbb{R}$. Dann ist $f'(x) = (x+1)e^x$ für alle $x \in \mathbb{R}$. Die folgende Tabelle gibt Aufschluss über den Verlauf der Funktion f.

Weil $-\frac{1}{e} < -\frac{1}{3} < 0$ ist, folgt aus der obigen Tabelle, dass die Gleichung $xe^x = -\frac{1}{3}$ genau zwei Lösungen hat.

21. Es seien ABC ein Dreieck und $A' \in [BC]$, $B' \in [CA]$, $C' \in [AB]$ so, dass $\frac{BA'}{BC} = \frac{CB'}{CA} = \frac{AC'}{AB} = \alpha$ ist. Sind \mathcal{A}_{ABC} der Flächeninhalt des Dreiecks ABC und $\mathcal{A}_{A'B'C'}$ der Flächeninhalt des Dreiecks A'B'C', dann gilt:

$$\begin{array}{ll}
\boxed{A} \frac{\mathcal{A}_{A'B'C'}}{\mathcal{A}_{ABC}} = 1 - 3\alpha(1 - \alpha); & \boxed{B} \frac{\mathcal{A}_{A'B'C'}}{\mathcal{A}_{ABC}} \in \left[\frac{1}{4}, 1\right]; \\
\boxed{C} \frac{\mathcal{A}_{A'B'C'}}{\mathcal{A}_{ABC}} = 1 - 12\alpha^2(1 - \alpha)^2; & \boxed{D} \frac{\mathcal{A}_{A'B'C'}}{\mathcal{A}_{ABC}} \in \left[\frac{1}{2}, 1\right].
\end{array}$$

Antwort:

A wahr;

B wahr;

C falsch;

D falsch.

Lösung: Es gilt $\frac{BA'}{BC} = \frac{CB'}{CA} = \frac{AC'}{AB} = \alpha \in [0,1]$. Die Formel (mit Sinus) für den Flächeninhalt eines Dreiecks verwendend, erhält man, dass der Flächeninhalt jedes der Dreiecke AB'C', A'BC' şi A'B'C gleich $\alpha(1-\alpha)\mathcal{A}_{ABC}$ ist. Es folgt $\mathcal{A}_{A'B'C'} = \mathcal{A}_{ABC} - 3\alpha(1-\alpha)\mathcal{A}_{ABC}$, also

$$\frac{\mathcal{A}_{A'B'C'}}{\mathcal{A}_{ABC}} = 1 - 3\alpha(1 - \alpha) = 3\alpha^2 - 3\alpha + 1 = 3\left(\alpha - \frac{1}{2}\right)^2 + \frac{1}{4} \in \left[\frac{1}{4}, 1\right].$$

22. Der Wert des Grenzwertes $\lim_{x \to \frac{\pi}{4}} \frac{\int_1^{\operatorname{tg} x} e^{t^2} dt}{\int_1^{\operatorname{ctg} x} e^{t^2} dt}$ ist:

A 1;

 $B \pi;$

C 0;

D -1.

Antwort:

A falsch;

B falsch;

C falsch;

D wahr.

Lösung: Die Funktion $f: \mathbb{R} \to \mathbb{R}$, definiert durch $f(t) = e^{t^2}$, ist stetig, besitzt also Stammfunktionen. Sei $F: \mathbb{R} \to \mathbb{R}$ eine Stammfunktion von f. Dann gelten:

$$\lim_{x \to \frac{\pi}{4}} \frac{\int_{1}^{\operatorname{tg} x} e^{t^{2}} dt}{\int_{1}^{\operatorname{ctg} x} e^{t^{2}} dt} = \lim_{x \to \frac{\pi}{4}} \frac{F(\operatorname{tg} x) - F(1)}{F(\operatorname{ctg} x) - F(1)} = \lim_{x \to \frac{\pi}{4}} \frac{f(\operatorname{tg} x)(1 + \operatorname{tg}^{2} x)}{f(\operatorname{ctg} x)(-1 - \operatorname{ctg}^{2} x)} = -1.$$

23. Das Dreieck, in dem die Gleichheit $\sin(B) + \cos(B) = \sin(C) + \cos(C)$ gilt, ist:

A rechtwinklig; B gleichschenklig; C gleichseitig; D rechtwinklig oder gleichschenklig.

Antwort:

A falsch;

B falsch;

C falsch;

D wahr.

Lösung: Die gegebene Gleichheit ist äquivalent zu $\sin(B) - \sin(C) = \cos(C) - \cos(B)$. Die Differenzen als Produkte schreibend, erhält man:

$$2\sin\frac{B-C}{2}\cos\frac{B+C}{2} = 2\sin\frac{B-C}{2}\sin\frac{B+C}{2},$$

also

$$\sin\frac{B-C}{2}\left(\cos\frac{B+C}{2} - \sin\frac{B+C}{2}\right) = 0.$$

Die Gleichheit $\sin \frac{B-C}{2} = 0$ liefert B-C=0, also ist in diesem Fall das Dreieck gleichschenklig. Aus $\cos \frac{B+C}{2} - \sin \frac{B+C}{2} = 0$ folgt $\cos \frac{B+C}{2} = \sin \left(\frac{\pi}{2} - \frac{B+C}{2}\right)$, was zu $B+C=\frac{\pi}{2}$ führt, also ist in diesem Fall das Dreieck rechtwinklig.

24. Gegeben sei die Folge $(a_n)_{n\in\mathbb{N}^*}$ mit

$$a_n = \sqrt{\frac{1}{n^2} + \frac{1}{n^3}} + \sqrt{\frac{1}{n^2} + \frac{2}{n^3}} + \dots + \sqrt{\frac{1}{n^2} + \frac{n}{n^3}}, \text{ für alle } n \in \mathbb{N}^*.$$

Es sei $\ell = \lim_{n \to \infty} a_n$. Welche der folgenden Aussagen sind wahr?

$$\boxed{\mathbf{A}} \ \ell = 0.$$
 $\boxed{\mathbf{B}} \ \ell = \frac{\sqrt{2}}{3}.$ $\boxed{\mathbf{C}} \ \ell \in \overline{\mathbb{R}} \setminus \mathbb{Q}.$ $\boxed{\mathbf{D}} \ \ell = \infty.$

Antwort:

A falsch; B falsch; C wahr; D falsch.

Lösung: Es gilt

$$a_n = \frac{1}{n} \left(\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{2}{n}} + \dots + \sqrt{1 + \frac{n}{n}} \right)$$
 für alle $n \in \mathbb{N}^*$.

Es sei $f \colon [0,1] \to \mathbb{R}, f(x) = \sqrt{1+x}$. Für alle $n \in \mathbb{N}^*$ betrachte man die Zerlegung $\Delta_n = (0,\frac{1}{n},\frac{2}{n},\dots,\frac{n-1}{n},1)$ des Intervalls [0,1] sowie den Zwischenvektor $\xi_n = (\frac{1}{n},\frac{2}{n},\dots,\frac{n-1}{n},1)$ der Zerlegung Δ_n . Für alle $n \in \mathbb{N}^*$ ist a_n die zu der Funktion f, der Zerlegung Δ_n und dem Zwischenvektor ξ_n gehörende riemannsche Summe, also $a_n = \sigma_{\Delta_n}(f,\xi_n)$. Da $\lim_{n\to\infty} ||\Delta_n|| = \lim_{n\to\infty} \frac{1}{n} = 0$ ist, impliziert die Integreierbarkeit von f, dass

$$\ell = \lim_{n \to \infty} \sigma_{\Delta_n}(f, \xi_n) = \int_0^1 f(x) dx = \int_0^1 \sqrt{1 + x} dx = \frac{2}{3} (1 + x)^{\frac{3}{2}} \Big|_0^1 = \frac{2}{3} (2\sqrt{2} - 1).$$

Somit ist also nur die Aussage C wahr.

25. Zwei Seiten eines Rechtecks liegen auf den Geraden mit den Gleichungen:

$$(d_1): 2x - 3y + 5 = 0$$

$$(d_2): 3x + 2y - 7 = 0.$$

Ist A(2,-3) ein Eckpunkt des Rechtecks, so liegen die beiden anderen Seiten des Rechtecks auf den Geraden:

A
$$2x - 3y - 13 = 0$$
 und $3x + 2y = 0$; B $y + 3 = \frac{2}{3}(x - 2)$ und $y + 3 = -\frac{3}{2}(x - 2)$;

C
$$2x - 3y + 13 = 0$$
 und $3x - 2y = 0$; D $y - 3 = \frac{2}{3}(x - 2)$ und $y - 3 = -\frac{3}{2}(x - 2)$.

Antwort:

A wahr; B wahr; C falsch; D falsch.

Lösung: Die Geraden d_1 und d_2 stehen senkrecht aufeinander, weil deren Steigungen $m_1 = \frac{2}{3}$ beziehungsweise $m_2 = -\frac{3}{2}$ sind. Außerdem liegt der Punkt A auf keiner dieser beiden Geraden. Aus diesem Grund befindet sich A auf den beiden anderen Seiten des Rechtecks. Die beiden Geraden, auf denen diese Seiten liegen, sind jeweils parallel zu d_1 und d_2 . Die A enthaltende und zu d_1 parallele Gerade hat die Gleichung $y + 3 = \frac{2}{3}(x - 2)$ oder, äquivalent, 2x - 3y - 13 = 0. Die A enthaltende und zu d_2 parallele Gerade hat die Gleichung $y + 3 = -\frac{3}{2}(x - 2)$ oder, äquivalent, 3x + 2y = 0.

26. Gegeben seien $\alpha \in \mathbb{C}$ ein Parameter und das lineare Gleichungssytem mit 3 Unbekannten

$$\begin{cases} 2x + \alpha y + 2z &= 1\\ 4x - y + 5z &= 1\\ 2x + 10y + z &= 1. \end{cases}$$

Welche der folgenden Aussagen sind wahr?

- |A| Der Rang der Matrix ist 3 für jeden Wert von α .
- B Der Rang der erweiterten Matrix des Systems ist 3 für jeden Werte von α .
- $\boxed{\mathbb{C}}$ Das System ist genau dann unlösbar, wenn $\alpha \neq 3$ ist.
- D Das System ist genau dann lösbar, wenn $\alpha \neq 3$ ist.

Antwort:

A falsch; B wahr; C falsch; D wahr.

Lösung: Die Matrix des Systems und dessen erweiterte Matrix sind

$$A = \begin{pmatrix} 2 & \alpha & 2 \\ 4 & -1 & 5 \\ 2 & 10 & 1 \end{pmatrix} \text{ beziehungsweise } \overline{A} = \begin{pmatrix} 2 & \alpha & 2 & 1 \\ 4 & -1 & 5 & 1 \\ 2 & 10 & 1 & 1 \end{pmatrix}.$$

Es gilt $\det(A) = 6\alpha - 18 = 0$ genau dann, wenn $\alpha = 3$ ist. Somit ist also $\operatorname{rang}(A) = 3$ genau dann, wenn $\alpha \neq 3$ ist. Wir stellen fest, dass $\operatorname{rang}(\overline{A}) = 3$ für alle $\alpha \in \mathbb{C}$ ist. Nach dem Theorem von Kronecker-Capelli ist also das System genau dann lösbar, wenn $\alpha \neq 3$ ist. Äquivalent kann diese Aussage auch so formuliert werden, dass das System genau dann unlösbar ist, wenn $\alpha = 3$ ist.

27. Es sei $G \subseteq \mathbb{R}$ eine Menge mit der Eigenschaft, dass der Ausdruck

$$x * y = \frac{xy}{2xy - x - y + 1}, \forall x, y \in G,$$

eine Operation auf G darstellt. Welche der folgenden Aussagen sind wahr?

- \overline{A} G kann das Intervall (0,2) sein.
- \fbox{B} G kann das Intervall (0,1) sein.
- C Ist G = (0, 1), dann hat "*ein neutrales Element.
- D Ist G = (0, 1), dann ist $\frac{2}{3}$ das symmetrische Element von $\frac{1}{3}$.

Antwort:

A falsch; B wahr; C wahr; D wahr.

Lösung: Für $x=\frac{1}{4}$ und $y=\frac{3}{2}$ ist der Ausdruck im Nenner gleich 0, also ist die Aussage $\boxed{\mathbf{A}}$ falsch. Sind 0 < x, y < 1, dann gelten xy > 0 und (1-x)(1-y) > 0. Durch Addieren dieser beiden Ungleichungen folgt 2xy-x-y+1>0. Hieraus ergibt sich 0 < x*y < 1, also ist die Aussage $\boxed{\mathbf{B}}$ wahr. Die Operation "*"ist offensichtlich kommutativ. Gilt x*e=x für alle $x\in(0,1)$, dann folgt, dass $e=\frac{1}{2}$ das neutrale Element der Operation "*"ist. Somit ist also die Aussage $\boxed{\mathbf{C}}$ wahr. Die Gleichheit $x*x'=\frac{1}{2}$ impliziert x'=1-x, also ist auch die Aussage $\boxed{\mathbf{D}}$ wahr.

$$\int_{\frac{1}{2022}}^{2022} \frac{\ln x}{1+x^2} \, \mathrm{d}x$$

ist:

A 0; B 1; C 2; D 3.

Antwort:

A wahr; B falsch; C falsch; D falsch.

Lösung: Wir führen die Substitution $x = \frac{1}{t}$ durch. Dann ist $dx = -\frac{1}{t^2} dt$, und es gelten die Gleichheiten

$$\int_{\frac{1}{2022}}^{2022} \frac{\ln x}{1+x^2} \, \mathrm{d}x = \int_{2022}^{\frac{1}{2022}} \frac{\ln \frac{1}{t}}{1+\frac{1}{t^2}} \cdot \left(-\frac{1}{t^2}\right) \, \mathrm{d}t = \int_{\frac{1}{2022}}^{2022} \frac{\ln \frac{1}{t}}{t^2+1} \, \mathrm{d}t = \int_{\frac{1}{2022}}^{2022} \frac{-\ln t}{t^2+1} \, \mathrm{d}t =$$

$$= -\int_{\frac{1}{2022}}^{2022} \frac{\ln t}{t^2+1} \, \mathrm{d}t = -\int_{\frac{1}{2022}}^{2022} \frac{\ln x}{1+x^2} \, \mathrm{d}x.$$

Hieraus ergibt sich $\int_{\frac{1}{2022}}^{2022} \frac{\ln x}{1+x^2} dx = 0.$

- **29.** Gegeben seien $x, y, z \in \mathbb{Z}^*$ so, dass xy, yz, zx eine geometrische Folge mit dem Quotienten eine von 1 verschiedene ganze Zahl bilden. Welche der folgenden Aussagen sind wahr?
 - $\boxed{\mathbf{A}}$ Ist y eine Quadratzahl, dann ist auch z eine Quadratzahl.
 - B Ist z eine Quadratzahl, dann ist auch y eine Quadratzahl.
 - $\boxed{\mathbf{C}}$ Ist y eine Quadratzahl, dann ist auch x eine Quadratzahl.
 - \Box Ist z eine Quadratzahl, dann ist auch x eine Quadratzahl.

Antwort:

A wahr; B wahr; C falsch; D falsch.

Lösung: Es sei q der Quotient der geometrischen Folge. Dann gelten die Gleichheiten qxy = yz und qyz = zx, woraus $q^2xy = zx$ folgt. Also ist $z = q^2y$. Somit sind also die Aussagen $\boxed{\mathbf{A}}$ und $\boxed{\mathbf{B}}$ wahr.

Die Zahlen y=1, x=2 und z=4 genügen den Voraussetzungen der Aufgabe. Da y und z Quadratzahlen sind, x jedoch keine Quadratzahl ist, sind die Aussagen $\boxed{\mathbf{C}}$ und $\boxed{\mathbf{D}}$ falsch.

30. Die Folge $(x_n)_{n\in\mathbb{N}^*}$ sei durch $x_n = \int_0^2 \frac{(2-x)^{2n-1}}{(2+x)^{2n+1}} \, \mathrm{d}x$, für alle $n\in\mathbb{N}^*$, definiert. Welche der folgenden Aussagen sind wahr?

$$\boxed{\textbf{A}} \ x_{23} = \frac{1}{184}. \qquad \boxed{\textbf{B}} \lim_{n \to \infty} n^2 x_n = 1. \qquad \boxed{\textbf{C}} \lim_{n \to \infty} n x_n = \frac{1}{8}. \qquad \boxed{\textbf{D}} \lim_{n \to \infty} n x_n = 0.$$

Antwort:

A wahr; B falsch; C wahr; D falsch.

Lösung: Es sei $n \in \mathbb{N}^*$. Dann gelten

$$x_n = \int_0^2 \left(\frac{2-x}{2+x}\right)^{2n-1} \cdot \frac{1}{(2+x)^2} \, \mathrm{d}x = -\frac{1}{4} \int_0^2 \left(\frac{2-x}{2+x}\right)^{2n-1} \cdot \left(\frac{2-x}{2+x}\right)' \, \mathrm{d}x = -\frac{1}{8n} \left(\frac{2-x}{2+x}\right)^{2n} \bigg|_0^2 = \frac{1}{8n}.$$

Da $184 = 8 \cdot 23$ ist, schließt man, dass nur die Aussagen $\boxed{\mathbf{A}}$ und $\boxed{\mathbf{C}}$ wahr sind.