BABEŞ-BOLYAI UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Admission Exam - July 192022
 Written Exam for Computer Science

IMPORTANT NOTE:

Unless further clarification is provided, assume that arithmetical operations are performed over boundless data types (no overflow / underflow).
Furthermore, arrays and vectors are indexed starting from 1.

1. Let us consider the algorithm ceFace (a, b), where \boldsymbol{a} and \boldsymbol{b} are natural numbers $(1 \leq \boldsymbol{a}, \boldsymbol{b} \leq 10000$ at the initial call).
```
Algorithm ceFace(a, b):
    While (a MOD 10 = b MOD 10) AND ( a f 0) AND ( b f 0) execute
        a \leftarrowa DIV 10
        b}\leftarrow\textrm{b}\mathrm{ DIV 10
    EndWhile
    If ((a = 0) AND (b = 0)) then
        return True
    else
        return False
    EndIf
EndAlgorithm
```

The algorithm ceFace (a, b) returns True if and only if:
A. \boldsymbol{a} and \boldsymbol{b} have the same number of digits
B. \boldsymbol{a} and \boldsymbol{b} are equal
C. \boldsymbol{a} and \boldsymbol{b} are written using the same digits, but in different sequence
D. the last digit of \boldsymbol{a} is equal with the last digit of \boldsymbol{b}
2. Let us consider the algorithm $f(a, n)$ where \boldsymbol{n} is a natural number $(2 \leq \boldsymbol{n} \leq 10000)$ and \boldsymbol{a} is an array of \boldsymbol{n} natural numbers $(\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[\boldsymbol{n}],-100 \leq \boldsymbol{a}[\boldsymbol{i}] \leq 100$, for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n})$. The local variable \boldsymbol{b} is an array.

```
Algorithm f(a, n):
    i}\leftarrow
    b[1] \leftarrowa[1]
    While i \leq n execute
        b[i] & b[i - 1] + a[i]
        i}\leftarrowi+
    EndWhile
    return b[n]
EndAlgorithm
```

Which of the following statements are true?
A. The algorithm returns the sum of all elements of array \boldsymbol{a}.
B. The algorithm returns the sum of the last two elements of array \boldsymbol{a}.
C. The algorithm returns the last element of array \boldsymbol{a}.
D. The algorithm returns the sum of the last $\boldsymbol{n}-1$ elements of array \boldsymbol{a}.
3. Which of the following algorithms returns the number of distinct prime factors of a given natural number $\boldsymbol{n}\left(5<\boldsymbol{n}<10^{5}\right.$ at the initial call).
A.
// The length of array prime is n
// prime[i] is True, if
// the number i is prime and False
// otherwise
Algorithm nrFactoriPrimi_A(n, prime):
$d \leftarrow 2$
$\mathrm{nr} \leftarrow 0$
$p \leftarrow 0$
While $n>0$ execute
While n MOD d $=0$ execute
$p \leftarrow p+1$
$\mathrm{n} \leftarrow \mathrm{n}$ DIV d
EndWhile
If $p \neq 0$ then
$n r \leftarrow n r+1$
EndIf
$d \leftarrow d+1$
While prime[d] = False execute

$d \leftarrow d+1$

EndWhile
$p \leftarrow 0$
EndWhile
return nr
EndAlgorithm
C.

Algorithm nrFactoriPrimi_C(n):
$n r \leftarrow 0$
For $d \leftarrow 2$, n execute
If n MOD $\mathrm{d}=0$ then

$$
n r \leftarrow n r+1
$$

EndIf
While n MOD d $=0$ execute

$\mathrm{n} \leftarrow \mathrm{n}$ DIV d

EndWhile
EndFor
return nr
EndAlgorithm
B.

Algorithm nrFactoriPrimi_B(n):
$d \leftarrow 2$
$\mathrm{nr} \leftarrow 0$
While $n>1$ execute
$p \leftarrow 0$
While n MOD $d=0$ execute
$p \leftarrow p+1$
$\mathrm{n} \leftarrow \mathrm{n}$ DIV d
EndWhile
If $p>0$ then $\mathrm{nr} \leftarrow \mathrm{nr}+1$
EndIf
If $d=2$ then
$d \leftarrow d+1$
else $d \leftarrow d+2$
EndIf
EndWhile
return nr
EndAlgorithm
D.

Algorithm nrFactoriPrimi_D(n):
$\mathrm{nr} \leftarrow 0$
$d \leftarrow 2$
While $d^{*} d \leq n$ execute
If n MOD $\mathrm{d}=0$ then $\mathrm{nr} \leftarrow \mathrm{nr}+1$
EndIf
While n MOD $\mathrm{d}=0$ execute $\mathrm{n} \leftarrow \mathrm{n}$ DIV d
EndWhile
$d \leftarrow d+1$
EndWhile
return nr
EndAlgorithm
4. Let us consider the algorithm ceFace(n, m, where \boldsymbol{n} is a natural number $(0 \leq \boldsymbol{n} \leq 1000)$ with the last digit not equal to 0 .

```
Algorithm ceFace(n, m):
    If n = 0 then
        return m
    else
        return ceFace(n DIV 10, m * 10 + n MOD 10)
    EndIf
EndAlgorithm
```

What is the result of the call ceFace $(\mathrm{n}, 0)$?
A. 0 (regardless of the value of \boldsymbol{n})
B. \boldsymbol{n} (regardless of the value of \boldsymbol{n})
C. The sum of the digits of \boldsymbol{n}
D. The reverse of number n
5. Let us consider the algorithm $f(x, n)$ where \boldsymbol{n} is a natural number ($2 \leq \boldsymbol{n} \leq 10000$), and \boldsymbol{x} is an array of \boldsymbol{n} natural numbers $(\boldsymbol{x}[1], \boldsymbol{x}[2], \ldots, \boldsymbol{x}[\boldsymbol{n}], 1 \leq \boldsymbol{x}[i] \leq 10000$, for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n})$.

```
Algorithm f(x, n):
    For i = 1, n - 1 execute
        If x[i] = x[i + 1] then
                return False
        EndIf
    EndFor
    return True
EndAlgorithm
```

Which of the following statements are true?
A. The algorithm returns False if two random elements of the array \boldsymbol{x} are distinct.
B. The algorithm returns False if two random elements of the array \boldsymbol{x} are equal.
C. The algorithm returns False if two consecutive elements of the array \boldsymbol{x} are equal.
D. The algorithm returns False if the first two elements of the array \boldsymbol{x} are equal.
6. Let us consider the algorithm $f(\mathrm{x}, \mathrm{n})$ where \boldsymbol{x} and \boldsymbol{n} are natural numbers $(0 \leq \boldsymbol{n} \leq 10000,0<\boldsymbol{x} \leq$ 10000).

```
Algorithm f(x, n):
    If n = 0 then
        return 1
    EndIf
    m*n DIV 2
    p}&f(x,m
    If n MOD 2 = 0 then
            return p * p
    EndIf
    return x * p * p
1.EndAlgorithm
```

Which of the following statements are true?
A. The algorithm returns \boldsymbol{x} at the power of \boldsymbol{n}.
B. If on line 7 , we replace n MOD 2 with m MOD 2 , then the algorithm returns \boldsymbol{x} at the power of \boldsymbol{n}.
C. Because of the recursive call on line 6 , the lines $7,8,9,10$ will never be executed.
D. The algorithm returns 1 if \boldsymbol{n} is an even number or it returns \boldsymbol{x} if \boldsymbol{n} is an odd number.
7. Considering that all multiplications and divisions require a constant amount of time, what can be stated about the time complexity of the algorithm considered in problem statement $\mathbf{6}$?
A. The time complexity depends on parameters \boldsymbol{x} and \boldsymbol{n}.
B. The time complexity does not depend on the parameter \boldsymbol{x}.
C. The time complexity is $\mathrm{O}(\log \log n)$.
D. The time complexity is logarithmic based on the parameter $\boldsymbol{n}(\mathrm{O}(\log \boldsymbol{n}))$.
8. Let us consider the algorithm afiṣare(n), where \boldsymbol{n} is a natural number ($1 \leq \boldsymbol{n} \leq 10000$).

```
Algorithm afiṣare(n):
    If n\leq4000 then
            Write n, " "
            afișare(2 * n)
            Write n, " "
        EndIf
EndAlgorithm
```

What will be displayed for the call afiṣare(1000)?
A. 100020004000
B. 100020004000400020001000
C. 10002000400020001000
D. 1000200020001000
9. Which could be the values of an array so that, applying the binary search method for value 36 , it will be successively compared with values $12,24,36$:
A. $[2,4,7,12,24,36,50]$
B. $[2,4,8,9,12,16,20,24,36,67]$
C. $[4,8,9,12,16,24,36]$
D. $[12,24,36,42,54,66]$
10. Which of the following mathematical expressions are equivalent to \times MOD y for all strictly positive natural numbers \boldsymbol{x} and $\boldsymbol{y}(0<\boldsymbol{x}, \boldsymbol{y} \leq 10000)$?
A. x DIV y
B. $x-(y *(x$ DIV $y))$
C. $x-(x *(x \operatorname{DIV} y))$
D. $x \operatorname{DIV} y+y \operatorname{DIV} x$
11. Let us consider variable \boldsymbol{n} that stores a natural number. Which of the following expressions is True if and only if \boldsymbol{n} is divisible by 2 and by 3 ?
A. (n DIV $2=0$) $O R(n \operatorname{DIV} 3 \neq 0)$
B. $(\mathrm{n} \operatorname{MOD} 3=2) \operatorname{OR}(\mathrm{n} \operatorname{MOD} 2=3)$
C. ($n \operatorname{MOD} 2 \neq 1$) AND ($\mathrm{n} \operatorname{MOD} 3=0$)
D. ($\mathrm{n} \operatorname{MOD} 2=0$) AND ($\mathrm{n} \operatorname{MOD} 3 \neq 1$)
12. Let us consider variable \boldsymbol{n} that stores a natural number. Which of the following expressions is True if and only if \boldsymbol{n} is divisible by 2 and by 3 ?
A. $(\mathrm{n} \operatorname{MOD} 2)-(\mathrm{n} \operatorname{MOD} 3)=0$
B. $(\mathrm{n} \operatorname{MOD} 2)-(\mathrm{n} \operatorname{MOD} 3)<0$
C. $(\mathrm{n} \operatorname{MOD} 2)+(\mathrm{n} \operatorname{MOD} 3)>0$
D. $(\mathrm{n}$ MOD 2) $+(\mathrm{n} \operatorname{MOD} 3)=0$
13. Let us consider the algorithm $f(n)$, where \boldsymbol{n} is a natural number $(1 \leq \boldsymbol{n} \leq 100)$. The operator "/" stands for real division (ex. $3 / 2=1,5$). State the effect of the algorithm.

```
Algorithm f(n):
    s}\leftarrow0;p\leftarrow1
    For i}\leftarrow1,n execut
        s}\leftarrows+
        p\leftarrowp * (1 / s)
    EndFor
    return p
EndAlgorithm
```

A. Evaluates the expression $1 / 1 * 1 / 2 * 1 / 3 * \ldots * 1 / n$
B. Evaluates the expression $1 / 1 * 1 /(1 * 2) * 1 /(1 * 2 * 3) * \ldots * 1 /(1 * 2 * 3 * \ldots * \boldsymbol{n})$
C. Evaluates the expression $1 / 1 * 1 /(1+2) * 1 /(1+2+3) * \ldots * 1 /(1+2+3+\ldots+\boldsymbol{n})$
D. Evaluates the expression $1 / 1+1 /(1 * 2)+1 /(1 * 2 * 3)+\ldots+1 /(1 * 2 * 3 * \ldots * \boldsymbol{n})$
14. Let us consider the algorithm prelucrare(s1, lung1, s2, lung2), where $\boldsymbol{s} \mathbf{1}$ and $\boldsymbol{s} \mathbf{2}$ are two arrays of characters of length lung1, respectively lung2 ($1 \leq \boldsymbol{l u n g} 1$, lung $2 \leq 1000$). The two strings contain only characters having ASCII codes in the interval [1, 125]. The local variable \boldsymbol{x} is an array. Let us consider the algorithm ascii(s,i), which returns the ASCII code of the i-th character of array s.

```
Algorithm prelucrare(s1, lung1, s2, lung2):
    For i = 1, 125 execute
        x[i]}\leftarrow
    EndFor
    For i = 1, lung1 execute
        x[ascii(s1, i)]}\leftarrowx[ascii(s1, i)] + 1
    EndFor
    For i = 1, lung2 execute
        x[ascii(s2, i)] <x[ascii(s2, i)] - 1
    EndFor
    ok \leftarrowTrue
    For i = 1, 125 execute
        If }x[i]\not=0\mathrm{ then
                ok \leftarrowFalse
        EndIf
    EndFor
    return ok
EndAlgorithm
```

What is the result of the algorithm?
A. The algorithm returns True if the arrays of characters $\boldsymbol{s} \mathbf{1}$ and $\boldsymbol{s} \mathbf{2}$ have the same length and False otherwise.
B. The algorithm returns True if the arrays of characters $\boldsymbol{s} \mathbf{1}$ and $\boldsymbol{s} \mathbf{2}$ contain the same characters having the same corresponding frequency and False otherwise.
C. The algorithm returns True if in both arrays of characters $\boldsymbol{s} \mathbf{1}$ and $\boldsymbol{s} \mathbf{2}$ all characters having ASCII codes in the interval [1, 125] appear and False otherwise.
D. The algorithm returns True if the two arrays of characters $\boldsymbol{s} \mathbf{1}$ and $\boldsymbol{s} \mathbf{2}$ use different characters and False otherwise.
15. What is the result of converting the binary number 100101100111 into base 10 ?
A. 2407
B. 2408
C. 1203
D. None of the answers A., B., C.
16. Let us consider an array \boldsymbol{a} of \boldsymbol{n} natural numbers $(\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[\boldsymbol{n}])$, the natural number $\boldsymbol{n}(1 \leq \boldsymbol{n} \leq$ 10000) and a natural number \boldsymbol{x}. Which of the following code sequences display the position having the minimal index where the value \boldsymbol{x} is situated in the array \boldsymbol{a}, or displays -1 if \boldsymbol{x} is not found in \boldsymbol{a} ?

```
A.
    i}\leftarrow
    While (i \leq n) AND (a[i] = x) execute
        i}\leftarrowi+
    EndWhile
    If i < n then
        Write i
    else
        Write -1
    EndIf
C.
    i}\leftarrow
    While (i < n) AND (a[i] = x) execute
        i}\leftarrowi+
    EndWhile
    If i = n + 1 then
        Write i
    else
        Write -1
    EndIf
```

B.
$i \leftarrow 1$
While (i $\leq n$) AND (a[i] $\neq x$) execute $i \leftarrow i+1$
EndWhile
If $\mathrm{i}=\mathrm{n}+1$ then Write i
else
Write -1
EndIf
D.
$i \leftarrow 1$
While ($\mathrm{i} \leq \mathrm{n}$) AND (a[i] $\neq \mathrm{x}$) execute $i \leftarrow i+1$
EndWhile
If $i \leq n$ then
Write i
else
Write -1
EndIf
17. Let us consider the algorithm $f(x)$, where \boldsymbol{x} is an integer:

```
Algorithm f(x):
    If x = 0 then
            return 0
    else
        If x MOD 3 = 0 then
            return f(x DIV 10) + 1
        else
            return f(x DIV 10)
        EndIf
    EndIf
EndAlgorithm
```

For which value of \boldsymbol{x} does the algorithm return the value 4 ?
A. 13369
B. 21369
C. 4
D. 1233
18. Let us consider the algorithm $f(n, i, j)$ where $\boldsymbol{n}, \boldsymbol{i}$ and \boldsymbol{j} are natural numbers $(1 \leq \boldsymbol{n}, \boldsymbol{i}, \boldsymbol{j} \leq 10000$ at the initial call).

```
Algorithm \(f(n, i, j):\)
    If \(i>j\) then
        Write '*'
    else
        If \(n\) MOD \(i=0\) then
            \(f(n, i-1, j)\)
        else
            If \(n\) DIV i \(\neq \mathrm{j}\) then
                    \(f(n, i+1, j-1)\)
                    Write ' 0 '
            else
                    \(f(n, i+2, j-2)\)
                    Write '\#'
            EndIf
        EndIf
    EndIf
EndAlgorithm
```

What will be displayed upon the execution of the call $f(15,3,10)$?
A. ${ }^{*} 000000$
B. *0\#000
C. *0\#0000
D. *0000000
19. Let us consider algorithm ceFace (n, x), where \boldsymbol{n} is a natural number $(1 \leq \boldsymbol{n} \leq 100)$ and \boldsymbol{x} is an array of \boldsymbol{n} natural numbers $(\boldsymbol{x}[1], x[2], \ldots, x[\boldsymbol{n}])$.

```
Algorithm ceFace(n, x):
    For i = 1, n execute
        c}\leftarrowx[i
        x[i]}\leftarrowx[n-i+1
        x[n-i + 1]}\leftarrow
    EndFor
EndAlgorithm
```

What will be the new content of array \boldsymbol{x} after executing the algorithm if $\boldsymbol{n}=6$ and $\boldsymbol{x}=[5,3,2,1,1,1]$?
A. $[1,1,2,1,3,5]$
B. $[1,1,1,2,3,5]$
C. $[5,3,2,1,1,1]$
D. None of the other options is correct.
20. Let us consider the algorithm what (n), where \boldsymbol{n} is a natural number ($1 \leq \boldsymbol{n} \leq 1000$ at the initial call).

```
Algorithm what(n):
    If n = 0 then
            return True
    EndIf
    If (n MOD 10 = 3) OR (n MOD 10 = 7) then
        return what(n DIV 10)
    else
        return False
    EndIf
EndAlgorithm
```

Which of the following statements are true?
A. The algorithm returns True if and only if either \boldsymbol{n} can be written using only the digit 3, or \boldsymbol{n} can be written using only the digit 7
B. The algorithm returns False if \boldsymbol{n} contains at least an even digit
C. The algorithm returns False if and only if \boldsymbol{n} contains at least one digit \boldsymbol{c} where $\boldsymbol{c} \neq 3$ and $\boldsymbol{c} \neq 7$
D. The algorithm returns True if and only if \boldsymbol{n} does not contain any digit from the set $\{0,1,2,4$, $5,6,8,9\}$
21. Let us consider the algorithm calcul(x, n), where \boldsymbol{x} and \boldsymbol{n} are natural numbers ($1 \leq \boldsymbol{x} \leq 10000$, 1 $\leq \boldsymbol{n} \leq 10000$), and $\boldsymbol{x} \leq \boldsymbol{n}$.

```
Algorithm calcul(x, n):
    b}\leftarrow
    For i & 1, n - x execute
        b}\leftarrow\textrm{b}* 
    EndFor
    a}\leftarrow\textrm{b
    For i}\leftarrow n - x + 1, n execut
        a\leftarrowa*i
        EndFor
        return a DIV b
    EndAlgorithm
```

Which of the following statements are true?
A. If $\boldsymbol{x}=2$ and $\boldsymbol{n}=5$, then the algorithm returns 10 .
B. The algorithm returns the number of subsets having \boldsymbol{x} elements from the set $\{1,2, \ldots, \boldsymbol{n}\}$.
C. The algorithm returns the number of partial permutations of \boldsymbol{n} elements taken \boldsymbol{x} at a time.
D. The algorithm returns the number of combinations of \boldsymbol{n} elements taken \boldsymbol{x} at a time.
22. At a farm there are chickens and rabbits, each chicken has two legs and each rabbit has four legs. The total number of heads is \boldsymbol{n} and the total number of legs is $\boldsymbol{m}\left(0 \leq \boldsymbol{n}, \boldsymbol{m} \leq 10^{4}\right)$. Which of the following algorithms returns True and displays all possible pairs of numbers of chickens and rabbits at the farm, or returns False if there are no solutions?

```
A.
Algorithm ferma_A(n, m):
    found = False
    For i & 0, n execute
            j}\leftarrown-
            If 2* i + 4* j = m then
                found \leftarrowTrue
                    Write i, ' ', j
                Write newline
        EndIf
    EndFor
    return found
EndAlgorithm
C.
Algorithm ferma_C(n, m):
    found \leftarrowFalse
    For i}\leftarrow0,n execut
            For j}\leftarrow0,n - i execut
                If 2* i + 4* j = m AND
                    i + j = n then
                found \leftarrowTrue
                Write i, ' ', j
                Write newline
                EndIf
            EndFor
        EndFor
        return found
EndAlgorithm
B.
```

```
Algorithm ferma_ \(B(n, m)\) :
```

Algorithm ferma_ $B(n, m)$:
found \leftarrow False
found \leftarrow False
For $i \leftarrow 0, n$ execute
For $i \leftarrow 0, n$ execute
For $\mathrm{j} \leftarrow 0$, n execute
For $\mathrm{j} \leftarrow 0$, n execute
If 2 * $\mathrm{i}+\mathrm{4}^{*} \mathrm{j}=\mathrm{m}$ AND
If 2 * $\mathrm{i}+\mathrm{4}^{*} \mathrm{j}=\mathrm{m}$ AND
$i+j=n$ then
$i+j=n$ then
found \leftarrow True
found \leftarrow True
Write i, ' ', j
Write i, ' ', j
Write newline
Write newline
EndIf
EndIf
EndFor
EndFor
EndFor
EndFor
return found
return found
EndAlgorithm
EndAlgorithm
D.
Algorithm ferma_D(n, m):
Algorithm ferma_D(n, m):
found \leftarrow False
found \leftarrow False
For $i \leftarrow 0, n$ execute
For $i \leftarrow 0, n$ execute
For $j \leftarrow 0$, i execute
For $j \leftarrow 0$, i execute
If 2 * $\mathrm{i}+\mathrm{H}^{*} \mathrm{j}=\mathrm{m}$ AND
If 2 * $\mathrm{i}+\mathrm{H}^{*} \mathrm{j}=\mathrm{m}$ AND
$i+j=n$ then
$i+j=n$ then
found \leftarrow True
found \leftarrow True
Write i, ' ', j
Write i, ' ', j
Write newline
Write newline
EndIf
EndIf
EndFor
EndFor
EndFor
EndFor
return found
return found
EndAlgorithm

```
EndAlgorithm
```

23. Let us consider a natural number \boldsymbol{n}, which can be written as the product of three natural numbers $\boldsymbol{a}, \boldsymbol{b}$, $\boldsymbol{c},(\boldsymbol{n}=\boldsymbol{a} * \boldsymbol{b} * \boldsymbol{c})$. Which of the following expressions has as result the remainder of the division of \boldsymbol{n} by the natural number $\boldsymbol{d}(1 \leq \boldsymbol{n}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \leq 10000)$?
A. (a MOD d) * b * c
B. $((\mathrm{a} \operatorname{MOD} \mathrm{d}) *(\mathrm{~b} \operatorname{MOD} \mathrm{~d}) *(\mathrm{c} \operatorname{MOD} \mathrm{d})) \operatorname{MOD} d$
C. $(a \operatorname{MOD} d) *(b \operatorname{MOD} d) *(c \operatorname{MOD} d)$
D. (a DIV d) * (b DIV d) * (c DIV d)
24. Let us consider the algorithm $\operatorname{det}(\mathrm{a}, \mathrm{n}, \mathrm{m})$, where \boldsymbol{a} is an array of \boldsymbol{n} natural numbers ($\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots$, $\boldsymbol{a}[\boldsymbol{n}]$ if $\boldsymbol{n} \geq 1$) or an empty array if $\boldsymbol{n}=0$. \boldsymbol{n} and \boldsymbol{m} are natural numbers $\left(0 \leq \boldsymbol{n} \leq 100,0 \leq \boldsymbol{m} \leq 10^{6}\right)$.
```
Algorithm det(a, n, m):
        For i & 1, n - 1 execute
            For j}\leftarrow\textrm{i}+1,\textrm{n}\mathrm{ execute
                If a[i] > a[j] then
                    tmp \leftarrowa[i]
                a[i]}\leftarrowa[j
                a[j]}\leftarrowtm
                EndIf
        EndFor
        EndFor
        i}\leftarrow
        j}\leftarrow
        b}\leftarrowFals
        While i < j execute
        If a[i] + a[j] = m then
                b}\leftarrowTru
        EndIf
```

```
18. If a[i] + a[j]<m then
19. i & i + 1
20. else
21. j < j - 1
22. EndIf
23. EndWhile
24. return b
25. EndAlgorithm
```

Which of the following statements are true?
A. The algorithm returns True if array \boldsymbol{a} contains a pair of numbers having their sum equal to \boldsymbol{m}.
B. The algorithm always returns False.
C. The algorithm returns False if $\boldsymbol{n}=0$.
D. Lines $2, \ldots, 10$ of the algorithm sort array \boldsymbol{a} in ascending order.
25. Let us consider the algorithm magic (n , a) , where \boldsymbol{a} is an array of \boldsymbol{n} natural numbers ($\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots$, $\boldsymbol{a}[\boldsymbol{n}], 1 \leq \boldsymbol{n} \leq 10000$).

```
Algorithm magic(n, a):
    If n < 2 then
        return False
    EndIf
    For i \leftarrow 2, n execute
        If a[i - 1] = a[i] then
            return True
        EndIf
    EndFor
    return False
EndAlgorithm
```

Which of the following statements are true?
A. For magic (5, [2, 5, 4, 5, 4]) the algorithm returns False.
B. The algorithm indicates if there are duplicates in the array \boldsymbol{a}, if and only if array \boldsymbol{a} is sorted ascending/descending.
C. For magic (9, [1, 2, 3, 4, 4, 5, 6, 7, 9]) the algorithm returns True.
D. For magic (5, [9, 5, 5, 2, 4]) the algorithm returns True.
26. Let us consider the algorithm $f(n, a, b, c)$ where \boldsymbol{n} is a natural number $(\boldsymbol{n} \leq 20)$ and $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ three integer numbers.

```
Algorithm f(n, a, b, c):
    If n = 0 then
        return 1
    else
        return f(n-1, a * a,b + 1, c* 2) + f(n-1, a - 1, b * b, c + 1) + 1
    EndIf
EndAlgorithm
```

What is the return value of the call $f(n, 1,1,2)$?
A. $2^{n+1}-1$
B. n
C. $2^{0}+2^{1}+2^{2}+\ldots+2^{n}$
D. 2^{n+1}
27. Let us consider the algorithms $f(n, p)$ and $g(n)$, where \boldsymbol{n} and \boldsymbol{p} are initially natural numbers $(1 \leq$ $\boldsymbol{n}, \boldsymbol{p} \leq 10^{6}$ at the initial call).

```
Algorithm g(n):
    If n < 2 then
        return False
    EndIf
    i}\leftarrow
    While i * i s n execute
        If n MOD i = 0 then
            return False
        EndIf
        i}\leftarrowi+
    EndWhile
    return True
EndAlgorithm
```

```
Algorithm f(n, p):
    If n = 0 then
        return 1
    EndIf
    If n > 0 AND n \geq p then
        c}\leftarrow
        If g(p) = True then
                c}\leftarrowc+f(n-p,p+1
        EndIf
        return c + f(n, p + 1)
    EndIf
    return 0
EndAlgorithm
```

Which of the following statements are true?
A. The algorithm $\mathrm{g}(\mathrm{n})$ returns True if \boldsymbol{n} is prime and False otherwise.
B. The call $f(n, 2)$ returns the number of distinct ways of writing n as a sum of at least one term of distinct prime numbers in strictly ascending order.
C. The call $f(n, 2)$ returns the sum of the prime divisors of \boldsymbol{n}.
D. The calls $f(n, 1)$ and $f(n, 2)$ will return the same result, regardless of \boldsymbol{n}.
28. Let us consider the algorithm AlexB (value, n, k, p, where value is an array of \boldsymbol{n} natural numbers (value[1], value[2], .., value [n]), and $\boldsymbol{n}, \boldsymbol{k}$ and \boldsymbol{p} are natural numbers. Initially the array value has \boldsymbol{n} elements equal to zero. The algorithm afișare(value, n) displays the array value on a single line.

```
Algorithm AlexB(value, n, k, p):
    p}\leftarrow\textrm{p}+
    value[k]}\leftarrow
    If p=n then
        afiṣare(value, n)
    else
        For i & 1, n execute
            If value[i] = 0 then
                AlexB(value, n, i, p)
        1, 0).
    A. 15234
    B. 15404
    C. 55555
        EndIf
        EndFor
    EndIf
    p}\leftarrow\textrm{p}-
    value[k]}\leftarrow
EndAlgorithm
```

 What will be displayed on the 10th line, if \(\boldsymbol{n}=5\)
 and the algorithm is called like: AlexB(value, 5,
 29. Let us consider the algorithm $f(n)$ where \boldsymbol{n} is a natural number $(1 \leq \boldsymbol{n} \leq 10000$ at the initial call).
```
Algorithm f(n):
    c}\leftarrow
    If n # 0 then
        c}\leftarrowc+
        n}\leftarrown&(n-1) // bitwise AN
        While n # 0 execute
            c}\leftarrowc+
            n}~\textrm{n}&(n-1) // bitwise AN
        EndWhile
    EndIf
    return c
EndAlgoritm
```

The \& operator is the bitwise AND operator; the truth table is:

$\&$	0	1
0	0	0
1	0	1

Example:

$2 \& 7$ in binary: $010 \& 111=010$ which is 2 in base 10 . $6 \& 1$ in binary: $110 \& 001=000$ which is 0 in base 10 .

Which of the following statements are NOT true?
A. If \boldsymbol{n} is a power of 2 , then $f(n)$ returns value 1 .
B. If $\boldsymbol{n}>16$ and $\boldsymbol{n}<32$, then $f(n)$ returns a value from the $\{2,3,4,5\}$ set.
C. The algorithm returns the number of even numbers strictly smaller than \boldsymbol{n}.
D. The algorithm returns the number of odd numbers smaller than \boldsymbol{n}.
30. Let us consider algorithm calcul(v, n), where \boldsymbol{n} is a non zero natural number $(1 \leq \boldsymbol{n} \leq 10000)$ and \boldsymbol{v} is an array of \boldsymbol{n} integer numbers $(v[1], v[2], \ldots, v[\boldsymbol{n}])$. The instruction return x, y returns the pair of values $(\boldsymbol{x}, \boldsymbol{y})$.

```
Algorithm calcul(v, n):
    i}\leftarrown\mathrm{ DIV 2 + 1
    j}\leftarrowi+
    k}\leftarrow\textrm{i
    p}\leftarrow
    While j \leq n execute
        While (j < n) AND (v[i] = v[j]) execute
                j}\leftarrowj+
        EndWhile
        If j - i > p - k then
                k}\leftarrow 
                p}\leftarrow
            EndIf
        i}\leftarrow
        j}\leftarrowj+
    EndWhile
    If j - i > p - k then
        k}\leftarrow
        p}\leftarrow
    EndIf
    return p - k, k
EndAlgorithm
```

Which of the following statements are true?
A. If the array contains only one element, the algorithm returns $0,-1$
B. If $\boldsymbol{n}=2$ and the array's two elements are symmetric with respect to 0 (for example $-5,5$), the result will be $-1,1$
C. If $\boldsymbol{n}=2$ and the array's two elements have consecutive values (for example 3,4), the algorithm will always return the values 1,2
D. One of the numbers returned by the algorithm represents the length of the longest sequence containing equal values from the second half of the array for any even number $\boldsymbol{n}>1$

