ADMISSIONS EXAM 2021 Written test in MATHEMATICS Version 1.

1. In a Cartesian coordinate system xOy consider the points A(-1,1), B(1,3), C(3,2). The equation of the line OG, where G is the gravity center of the triangle ABC is:

A y = -2x;B $y = -\frac{x}{2};$ C y = 2x;D $y = \frac{x}{2}.$

2. Relative to a Cartesian coordinate system consider the vector $\vec{v}(t, t^2)$ with $t \in \mathbb{R} \setminus \{0\}$. Indicate which of the following statements are true.

A For t = 2 the vector \vec{v} is perpendicular to the vector $\vec{a}(-1, \frac{1}{2})$.

B There exists t such that \vec{v} is collinear to the vector $\vec{b}(17, 19)$.

C There exists t such that \vec{v} is collinear to the vector $\vec{c}(-1, -1)$.

D There exists t such that \vec{v} is collinear to the vector $\vec{d}(0,1)$.

3. If (-4,0) and (1,-1) are two vertices of a triangle with area 4, then the third vertex may belong to the line:

A
$$x + 5y = 0;$$
B $x + 5y + 8 = 0;$ C $x + 5y - 4 = 0;$ D $x + 5y + 12 = 0.$

4. If the line of equation ax + cy - 2b = 0, a, b, c > 0 forms a triangle with area 2 with the coordinate axes, then:

- $|\mathbf{A}| a, b, c$ are in geometric progression;
- \underline{B} a, -b, c are in geometric progression;

 $\overline{\mathbf{C}}$ a, 2b, c are in geometric progression; $\overline{\mathbf{D}}$ a, -

D = a, -2b, c are in geometric progression.

5. Consider the function

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \begin{cases} \left| \frac{1}{2}x - 3 \right|, & \text{if } x \in (-\infty, -2] \\ x + 3, & \text{if } x \in (-2, 1) \\ 3 - 2x, & \text{if } x \in [1, \infty). \end{cases}$$

Possibly using the graph of the function, indicate which of the following statements are true.

A f is surjective, but not injective.

B f is bijective.

 $\overline{\mathbf{C}} f$ is injective, but not surjective.

 $\mathbf{D} \mid f$ is neither surjective, nor injective.

6. Consider the family of quadratic functions $f_m : \mathbb{R} \to \mathbb{R}$, $f_m(x) = mx^2 - (2m+1)x + m + 1, \forall x \in \mathbb{R}$, with $m \in \mathbb{R} \setminus \{0\}$. The value of $m \in \mathbb{R} \setminus \{0\}$ for which the vertex of the parabola associated with the function f_m lies on the line of equation 2x + 3y + 6 = 0 is:

$$\boxed{A} \frac{1}{16}; \qquad \qquad \boxed{B} - \frac{1}{32}; \qquad \qquad \boxed{C} - \frac{1}{24}; \qquad \qquad \boxed{D} - \frac{5}{32}.$$

7. Consider the system of equations

$$\begin{cases} ax + y + z &= 1\\ x + ay + z &= 2\\ x + y + z &= 4 \end{cases}$$

where a is a real parameter. Which of the following statements are true?

- A The determinant of the system does not depend on the parameter a.
- B For a < 0 the system is determinate compatible.
- \overline{C} For a = 1 the system is indeterminate compatible.
- D For a = 1 the system is incompatible.
- 8. Let $A = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$, with $a \in \mathbb{R}$. Which of the following statements are true? A There exists $a \in \mathbb{R}$ such that $A^2 = O_2$. B There exists $a \in \mathbb{R}$ such that $A^2 = I_2$. C There exists $a \in \mathbb{R}$ such that $A^2 = A$. D There exist $a, b \in \mathbb{R}$ such that $A^2 = \begin{pmatrix} b & b \\ b & b \end{pmatrix}$. **9.** Let $(x_n)_{n\geq 1}$ be the sequence defined by $x_n = \frac{3^n}{(n+1)!}$. Which of the following statements are true?

AThe sequence
$$(x_n)_{n\geq 1}$$
 is decreasing.B $0 < x_n < 1$ for any $n \geq 1$.C $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 0.$ D $\lim_{n \to \infty} x_n = 0.$

10. Given $a \in \mathbb{R} \setminus \{0\}$, the value of the limit $\lim_{x \to \infty} \left(\frac{x+a}{x-a}\right)^x$ is A e^{-2a} ;

11. Let
$$L = \lim_{a \to \infty} \int_{0}^{a} x e^{-x} dx$$
. Indicate which of the following statements are true.
 $\boxed{A} \ L = \infty$. $\boxed{B} \ L = 1$. $\boxed{C} \ L < e$. $\boxed{D} \ L$ does not exist.

 $C e^{2a};$

 $D \propto$.

12. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x^4 + ax + 1, & \text{if } x < 1\\ b + \ln x, & \text{if } x \ge 1. \end{cases}$$

The values of the real parameters a and b for which f is differentiable on \mathbb{R} are:

B 1;

$$A$$
 $a = 3, b = 1;$
 B $a = -3, b = 1;$
 C $a = -3, b = -1;$
 D $a = 1, b = 3$

13. If r and R are the radii of the inscribed and circumscribed circles, respectively, to a triangle whose sides have lengths 3, 4 and 5, then the ratio $\frac{r}{R}$ is:

$$\boxed{A} \frac{2}{5}; \qquad \qquad \boxed{B} \frac{5}{2}; \qquad \qquad \boxed{C} \frac{4}{5}; \qquad \qquad \boxed{D} \frac{1}{5}.$$

14. Consider the triangle ABC and the points M, N, P such that M is the midpoint of $AB, \overrightarrow{AP} = 2\overrightarrow{AC}$ and $\overrightarrow{BN} = k\overrightarrow{BC}$. The value of the real parameter k, for which $\overrightarrow{MP} = 3\overrightarrow{MN}$ is

$$\boxed{A} \frac{3}{2}; \qquad \qquad \boxed{B} \frac{1}{3}; \qquad \qquad \boxed{C} \frac{1}{2}; \qquad \qquad \boxed{D} \frac{2}{3}.$$

15. Consider in \mathbb{R} the equation

$$\log_3 \sqrt{3+x} + \log_9(3-x) = \frac{1}{2}.$$

The set of its solutions is:

A
$$S = \{0\};$$
 B $S = \{-\sqrt{3}, \sqrt{3}\};$ C $S = \{-\sqrt{6}, \sqrt{6}\};$ D $S = \{-\sqrt{12}, \sqrt{12}\}.$

16. The product of the real solutions of the equation $x^2 + x + 4 = 2\sqrt{x^2 + x + 7}$ is:

A 12;
 B
$$-12;$$
 C 2;
 D $-2.$

17. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x + |x^3 - x^2| + \max\{x^3, x^4\}$. Indicate which of the following statements are true.

A $f(x) = x^4 - x^3 + x^2 + x$ for any $x \in (-\infty, 0)$.

B $f(x) = x^2 - x$ for any $x \in [0, 1]$.

C The function f is not differentiable at 0.

D The tangent to the graph of f at the point O(0,0) is the first bisector.

18. Consider the set

$$A := \{ a \in \mathbb{R} \mid \text{ function } f : [a, \infty) \to \mathbb{R}, \ f(x) = x^4 - 10x^2 + 2021 \text{ is strictly increasing} \}.$$

Indicate which of the following statements are true.

$$A = \emptyset$$
. $B [3, \infty) \subseteq A$. C The set A has a smallest element. $D 2 \notin A$.

19. The set of values of the real parameter a for which the equation $x^2(1 - \ln x) = a$ has two distinct real solutions is:

A
$$(\sqrt{e}, e);$$
B $\left(-\infty, \frac{e}{2}\right);$ C $\left(0, \frac{e}{2}\right);$ D $\left[0, \frac{e}{2}\right]$

20. If $\cos x = -\frac{7}{25}$ and $x \in \left(\frac{5\pi}{2}, 3\pi\right)$, then:

$$\boxed{A} \cos \frac{x}{2} = \frac{3}{5}; \qquad \qquad \boxed{B} \cos \frac{x}{2} = \frac{4}{5}; \qquad \qquad \boxed{C} \cos \frac{x}{2} = -\frac{3}{5}; \qquad \qquad \boxed{D} \cos \frac{x}{2} = -\frac{4}{5};$$

21. With the usual notations in a triangle *ABC*, let a = 13, b = 1 and $tg\frac{C}{2} = \frac{2}{3}$. Indicate which of the following statements is true.

A
$$c = 4\sqrt{10}.$$
B $c = 6\sqrt{5}.$ C $\sin C = \frac{12}{13}.$ D $Area(ABC) = 6.$

22. If a is a parameter and the equation $\cos 2x + a \sin x - 2a + 7 = 0$ has solutions, then:

 $\begin{array}{l} \hline \mathbf{A} & 0 < a \leq 5; \\ \hline \mathbf{B} & 2 \leq a \leq 6; \\ \hline \mathbf{C} & \text{for } a = 5 \text{ the set of solutions is } S = \left\{ (-1)^k \frac{\pi}{6} + k\pi | k \in \mathbb{Z} \right\}; \\ \hline \mathbf{D} & \text{for } a = 5 \text{ the set of solutions is } S = \left\{ (-1)^k \frac{\pi}{3} + k\pi | k \in \mathbb{Z} \right\}. \end{array}$

23. Let $\alpha \neq 1$ be a root of the equation $z^3 = 1$. Indicate which of the following statements are true.

$$\begin{array}{|c|c|c|c|c|} \hline \mathbf{A} & |\alpha| = 1. \\ \hline \mathbf{C} & \alpha^{2021} = -\alpha - 1. \end{array} \end{array} \begin{array}{|c|c|c|} \hline \mathbf{B} & 1 + \frac{1}{\alpha} + \frac{1}{\alpha^2} \not\in \mathbb{R}. \\ \hline \mathbf{D} & \text{the number } -\alpha \text{ is a root of the equation } z^2 - z + 1 = 0. \end{array}$$

- **24.** In the ring $(\mathbb{Z}_{12}, +, \cdot)$ the equation $x^2 + \widehat{4}x + \widehat{3} = \widehat{0}$
 - A has no solutions;
 - B does not have a unique solution;
 - C has exactly two distinct solutions;
 - D has exactly four distinct solutions.
- 25. Consider the expression

$$x * y = \frac{xy - 2}{x + y - 4}.$$

Which of the following statements are true?

A* is a composition law on \mathbb{R} .B* is a composition law on $(2, +\infty)$.C $3 * (3 * 3) = \frac{18}{5}$.Dx * 4 = x, for any x > 3.

26. The value of the integral
$$\int_{-\pi/3}^{\pi/3} \sqrt{(1-\cos x)(1-\cos 2x)} \, \mathrm{d}x$$
 is:

A 0;B
$$\frac{4}{3}$$
;C $\frac{2}{3}$;D $\frac{4\sqrt{2}}{3}$

27. Let $f: (-1, \infty) \to \mathbb{R}$ be the function defined by $f(x) = e^x - 1 - \ln(1+x)$ and let $a, b \in (-1, \infty)$ such that a < b. Indicate which of the following statements are true.

AFunction f has a single global minimum point.BFunction f is injective.C $\int_a^b (1 + \ln(1 + x)) dx < \int_a^b e^x dx.$ DFunction f has at least one global maximum point.

28. In the *xOy* coordinate system consider the points A(-6,2), B(4,-3), $M(\alpha,0)$ and $N(0,\beta)$. If the sum AM + MB + BN + NA is minimum, then:

A
$$MN = 0;$$
B $MN = 1;$ C $MN = \sqrt{2};$ D $MN = \sqrt{5}.$

29. Let $A = \{1, 2, ..., 99, 100\}$. How many sums equal to 5044 can be formed with the elements of the set A (sums that do not contain repetitive elements)?

30. For each $n \in \mathbb{N}^*$, denote $I_n = \int_0^1 \frac{x^{2n}}{1+x^2} \, \mathrm{d}x$. Indicate which of the following statements are true.

$$\boxed{\mathbf{A}} I_n + I_{n+1} = \frac{1}{2n+1}, \quad \forall n \in \mathbb{N}^*. \qquad \boxed{\mathbf{B}} \lim_{n \to \infty} I_n = 0. \qquad \boxed{\mathbf{C}} \lim_{n \to \infty} nI_n = \frac{1}{2}. \qquad \boxed{\mathbf{D}} \lim_{n \to \infty} nI_n = \frac{1}{4}$$

BABEŞ-BOLYAI UNIVERSITY CLUJ-NAPOCA FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Correct Answers

ADMISSIONS EXAM 2021 Written test in MATHEMATICS Version 1

