ADMISSIONS EXAM 2021 Written test in MATHEMATICS
 Version 1.

1. In a Cartesian coordinate system $x O y$ consider the points $A(-1,1), B(1,3), C(3,2)$. The equation of the line $O G$, where G is the gravity center of the triangle $A B C$ is:
A $y=-2 x$;
B $y=-\frac{x}{2}$;
C $y=2 x$;
D $y=\frac{x}{2}$.
2. Relative to a Cartesian coordinate system consider the vector $\vec{v}\left(t, t^{2}\right)$ with $t \in \mathbb{R} \backslash\{0\}$. Indicate which of the following statements are true.

A For $t=2$ the vector \vec{v} is perpendicular to the vector $\vec{a}\left(-1, \frac{1}{2}\right)$.
B There exists t such that \vec{v} is collinear to the vector $\vec{b}(17,19)$.
C There exists t such that \vec{v} is collinear to the vector $\vec{c}(-1,-1)$.
D There exists t such that \vec{v} is collinear to the vector $\vec{d}(0,1)$.
3. If $(-4,0)$ and $(1,-1)$ are two vertices of a triangle with area 4 , then the third vertex may belong to the line:
A $x+5 y=0 ;$
B $x+5 y+8=0$;
C $x+5 y-4=0$;
D $x+5 y+12=0$.
4. If the line of equation $a x+c y-2 b=0, a, b, c>0$ forms a triangle with area 2 with the coordinate axes, then:

A	a, b, c are in geometric progression;	B
C	$a,-2 b, c$ are in geometric progression;	$\mathrm{D} a,-2 b, c$ are in in geometric progression;
D	$a,-2 b$ are progression.	

5. Consider the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, f(x)= \begin{cases}\left|\frac{1}{2} x-3\right|, & \text { if } x \in(-\infty,-2] \\ x+3, & \text { if } x \in(-2,1) \\ 3-2 x, & \text { if } x \in[1, \infty)\end{cases}
$$

Possibly using the graph of the function, indicate which of the following statements are true.
A f is surjective, but not injective.
B f is bijective.
C f is injective, but not surjective.
D f is neither surjective, nor injective.
6. Consider the family of quadratic functions $f_{m}: \mathbb{R} \rightarrow \mathbb{R}, f_{m}(x)=m x^{2}-(2 m+1) x+m+1, \forall x \in \mathbb{R}$, with $m \in \mathbb{R} \backslash\{0\}$. The value of $m \in \mathbb{R} \backslash\{0\}$ for which the vertex of the parabola associated with the function f_{m} lies on the line of equation $2 x+3 y+6=0$ is:
A $\frac{1}{16}$;
(B) $-\frac{1}{32}$;
C $-\frac{1}{24}$;
D $-\frac{5}{32}$.
7. Consider the system of equations

$$
\left\{\begin{array}{l}
a x+y+z=1 \\
x+a y+z=2 \\
x+y+z=4
\end{array}\right.
$$

where a is a real parameter. Which of the following statements are true?
A The determinant of the system does not depend on the parameter a.
B For $a<0$ the system is determinate compatible.
C For $a=1$ the system is indeterminate compatible.
D For $a=1$ the system is incompatible.
8. Let $A=\left(\begin{array}{ll}1 & a \\ a & 1\end{array}\right)$, with $a \in \mathbb{R}$. Which of the following statements are true?
$\begin{array}{lll}\text { A There exists } a \in \mathbb{R} \text { such that } A^{2}=O_{2} . & & \text { B There exists } a \in \mathbb{R} \text { such that } A^{2}=I_{2} . \\ \text { (C There exists } a \in \mathbb{R} \text { such that } A^{2}=A . & \text { D There exist } a, b \in \mathbb{R} \text { such that } A^{2}=\left(\begin{array}{ll}b & b \\ b & b\end{array}\right) .\end{array}$
9. Let $\left(x_{n}\right)_{n \geq 1}$ be the sequence defined by $x_{n}=\frac{3^{n}}{(n+1)!}$. Which of the following statements are true?

$$
\begin{array}{ll}
\hline \text { A The sequence }\left(x_{n}\right)_{n \geq 1} \text { is decreasing. } & \text { B } 0<x_{n}<1 \text { for any } n \geq 1 . \\
\hline \text { C } \lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=0 . & \text { D } \lim _{n \rightarrow \infty} x_{n}=0 .
\end{array}
$$

10. Given $a \in \mathbb{R} \backslash\{0\}$, the value of the limit $\lim _{x \rightarrow \infty}\left(\frac{x+a}{x-a}\right)^{x}$ is
A $\mathrm{e}^{-2 a}$;
B 1;
C $\mathrm{e}^{2 a} ;$
$\mathrm{D} \infty$.
11. Let $L=\lim _{a \rightarrow \infty} \int_{0}^{a} x \mathrm{e}^{-x} \mathrm{~d} x$. Indicate which of the following statements are true.
A $L=\infty$.
B $L=1$.
C $L<\mathrm{e}$.
D L does not exist.
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=\left\{\begin{array}{cl}
x^{4}+a x+1, & \text { if } x<1 \\
b+\ln x, & \text { if } x \geq 1
\end{array}\right.
$$

The values of the real parameters a and b for which f is differentiable on \mathbb{R} are:
A $a=3, b=1$;
B $a=-3, b=1$;
C $a=-3, b=-1$;
D $a=1, b=3$.
13. If r and R are the radii of the inscribed and circumscribed circles, respectively, to a triangle whose sides have lengths 3,4 and 5 , then the ratio $\frac{r}{R}$ is:
A $\frac{2}{5} ;$
(B) $\frac{5}{2}$;
C $\frac{4}{5}$;
D $\frac{1}{5}$.
14. Consider the triangle $A B C$ and the points M, N, P such that M is the midpoint of $A B, \overrightarrow{A P}=2 \overrightarrow{A C}$ and $\overrightarrow{B N}=k \overrightarrow{B C}$. The value of the real parameter k, for which $\overrightarrow{M P}=3 \overrightarrow{M N}$ is
A $\frac{3}{2}$;
B $\frac{1}{3}$;
C $\frac{1}{2}$;
D $\frac{2}{3}$.
15. Consider in \mathbb{R} the equation

$$
\log _{3} \sqrt{3+x}+\log _{9}(3-x)=\frac{1}{2}
$$

The set of its solutions is:
A $S=\{0\}$;
B $S=\{-\sqrt{3}, \sqrt{3}\}$;
C $S=\{-\sqrt{6}, \sqrt{6}\}$;
D $S=\{-\sqrt{12}, \sqrt{12}\}$.
16. The product of the real solutions of the equation $x^{2}+x+4=2 \sqrt{x^{2}+x+7}$ is:
A 12;
B -12 ;
C 2 ;
D -2 .
17. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x+\left|x^{3}-x^{2}\right|+\max \left\{x^{3}, x^{4}\right\}$. Indicate which of the following statements are true.

A $f(x)=x^{4}-x^{3}+x^{2}+x$ for any $x \in(-\infty, 0)$.
B $f(x)=x^{2}-x$ for any $x \in[0,1]$.
C The function f is not differentiable at 0 .
D The tangent to the graph of f at the point $O(0,0)$ is the first bisector.
18. Consider the set

$$
A:=\left\{a \in \mathbb{R} \quad \mid \text { function } f:[a, \infty) \rightarrow \mathbb{R}, f(x)=x^{4}-10 x^{2}+2021 \text { is strictly increasing }\right\} .
$$

Indicate which of the following statements are true.

$$
\begin{array}{lll}
\mathrm{A} & A=\emptyset . & \mathrm{B} \\
\mathrm{~A} & {[3, \infty) \subseteq A .} & \mathrm{C} \text { The set } A \text { has a smallest element. } \quad \mathrm{D} 2 \notin A .
\end{array}
$$

19. The set of values of the real parameter a for which the equation $x^{2}(1-\ln x)=a$ has two distinct real solutions is:
$\mathrm{A}(\sqrt{\mathrm{e}}, \mathrm{e})$;
B $\left(-\infty, \frac{\mathrm{e}}{2}\right)$;
C $\left(0, \frac{\mathrm{e}}{2}\right)$;
D $\left[0, \frac{\mathrm{e}}{2}\right]$.
20. If $\cos x=-\frac{7}{25}$ and $x \in\left(\frac{5 \pi}{2}, 3 \pi\right)$, then:
A $\cos \frac{x}{2}=\frac{3}{5}$;
(B) $\cos \frac{x}{2}=\frac{4}{5}$;
C $\cos \frac{x}{2}=-\frac{3}{5}$;
D $\cos \frac{x}{2}=-\frac{4}{5}$.
21. With the usual notations in a triangle $A B C$, let $a=13, b=1$ and $\operatorname{tg} \frac{C}{2}=\frac{2}{3}$. Indicate which of the following statements is true.
A $c=4 \sqrt{10}$.
B $c=6 \sqrt{5}$.
(C) $\sin C=\frac{12}{13}$.
D Area $(A B C)=6$.
22. If a is a parameter and the equation $\cos 2 x+a \sin x-2 a+7=0$ has solutions, then:

A $0<a \leq 5$;
(B) $2 \leq a \leq 6$;

C for $a=5$ the set of solutions is $S=\left\{\left.(-1)^{k} \frac{\pi}{6}+k \pi \right\rvert\, k \in \mathbb{Z}\right\}$;
D for $a=5$ the set of solutions is $S=\left\{\left.(-1)^{k} \frac{\pi}{3}+k \pi \right\rvert\, k \in \mathbb{Z}\right\}$.
23. Let $\alpha \neq 1$ be a root of the equation $z^{3}=1$. Indicate which of the following statements are true.
A $|\alpha|=1$.
(B) $1+\frac{1}{\alpha}+\frac{1}{\alpha^{2}} \notin \mathbb{R}$.
C $\alpha^{2021}=-\alpha-1$.
D the number $-\alpha$ is a root of the equation $z^{2}-z+1=0$.
24. In the ring $\left(\mathbb{Z}_{12},+, \cdot\right)$ the equation $x^{2}+\widehat{4} x+\widehat{3}=\widehat{0}$

A has no solutions;
B does not have a unique solution;
C has exactly two distinct solutions;
D has exactly four distinct solutions.
25. Consider the expression

$$
x * y=\frac{x y-2}{x+y-4} .
$$

Which of the following statements are true?
$\mathrm{A} *$ is a composition law on \mathbb{R}.
B $*$ is a composition law on $(2,+\infty)$.
C $3 *(3 * 3)=\frac{18}{5}$.
D $x * 4=x$, for any $x>3$.
26. The value of the integral $\int_{-\pi / 3}^{\pi / 3} \sqrt{(1-\cos x)(1-\cos 2 x)} \mathrm{d} x$ is:
A 0;
B $\frac{4}{3}$;
C $\frac{2}{3}$;
D $\frac{4 \sqrt{2}}{3}$.
27. Let $f:(-1, \infty) \rightarrow \mathbb{R}$ be the function defined by $f(x)=\mathrm{e}^{x}-1-\ln (1+x)$ and let $a, b \in(-1, \infty)$ such that $a<b$. Indicate which of the following statements are true.

A Function f has a single global minimum point.
B Function f is injective.
C $\int_{a}^{b}(1+\ln (1+x)) \mathrm{d} x<\int_{a}^{b} \mathrm{e}^{x} \mathrm{~d} x$.
D Function f has at least one global maximum point.
28. In the $x O y$ coordinate system consider the points $A(-6,2), B(4,-3), M(\alpha, 0)$ and $N(0, \beta)$. If the sum $A M+M B+B N+N A$ is minimum, then:
A $M N=0$;
B $M N=1$;
(C $M N=\sqrt{2}$;
D $M N=\sqrt{5}$.
29. Let $A=\{1,2, \ldots, 99,100\}$. How many sums equal to 5044 can be formed with the elements of the set A (sums that do not contain repetitive elements)?
A 3 ;
B 4;
C 5;
D 6 .
30. For each $n \in \mathbb{N}^{*}$, denote $I_{n}=\int_{0}^{1} \frac{x^{2 n}}{1+x^{2}} \mathrm{~d} x$. Indicate which of the following statements are true.

$$
\mathrm{A} I_{n}+I_{n+1}=\frac{1}{2 n+1}, \quad \forall n \in \mathbb{N}^{*} . \quad \mathrm{B} \lim _{n \rightarrow \infty} I_{n}=0 . \quad \mathrm{C} \lim _{n \rightarrow \infty} n I_{n}=\frac{1}{2} . \quad \mathrm{D} \lim _{n \rightarrow \infty} n I_{n}=\frac{1}{4} .
$$

Correct Answers

ADMISSIONS EXAM 2021

Written test in MATHEMATICS
Version 1

1. C
2. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
3. C, D
4. A, B
5. B
6. B
7. B, D
8. $\mathbf{B}, \mathbf{C}, \mathbf{D}$
9. A, C, D
10. C
11. B, C
12. C
13. A
14. D
15. C
16. D
17. A, D
18. $\mathrm{B}, \mathrm{C}, \mathrm{D}$
19. C
20. C
21. $\mathrm{A}, \mathrm{C}, \mathrm{D}$
22. B, C
23. $\mathrm{A}, \mathrm{C}, \mathrm{D}$
24. B D
25. B
26. C
27. A, C
28. D
29. B
30. A , B , D
