BABEŞ-BOLYAI UNIVERSITY
 FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Mate-Info UBB Competition and Admissions Exam - Model 2021 Written Test in Computer Science

1. The generate(n) subalgorithm processes natural number $\boldsymbol{n}(0<\boldsymbol{n}<100)$.
```
Subalgorithm generate(n):
    nr}\leftarrow
    For i}\leftarrow1,1801 d
        usedi
    EndFor
    While not usedn do
        sum}\leftarrow0,\mp@subsup{used}{n}{}\leftarrow\mathrm{ true
        While ( }n\not=0)\mathrm{ do
            digit \leftarrow n MOD 10, n \leftarrow n DIV 10
            sum \leftarrow sum + digit * digit * digit
        EndWhile
        n}\leftarrow\mathrm{ sum, nr }\leftarrow\textrm{nr}+
    EndWhile
    return nr
EndSubalgorithm
```

State the effect of this subalgorithm.
A. repeatedly calculates the sum of the cubes of \boldsymbol{n} 's digits until the sum is equal to \boldsymbol{n}, after which it returns the number of repetitions
B. calculates the sum of the cubes of \boldsymbol{n} 's digits and returns this sum
C. calculates the sum of the cubes of \boldsymbol{n} 's digits, replaces \boldsymbol{n} with the obtained sum and returns it
D. calculates how many times number \boldsymbol{n} was replaced with the sum of the cubes of \boldsymbol{n} 's digits until a previously calculated value or the number itself is obtained; this number is then returned

2 Let us consider array \boldsymbol{s} with \boldsymbol{k} boolean elements and subalgorithm evaluation(s, k, i), where \boldsymbol{k} and \boldsymbol{i} are natural numbers $(0 \leq \boldsymbol{i} \leq \boldsymbol{k} \leq 100)$.

```
Subalgorithm evaluation(s, k, i)
    If i s k then
        If }\mp@subsup{s}{i}{}\mathrm{ then
            return Si
        else
            return ( }\mp@subsup{\textrm{S}}{\textrm{i}}{}\mathrm{ or evaluation(s, k, i + 1))
        EndIf
    else
        return false
    EndIf
EndSubalgorithm
```

State how many times subalgorithm evaluation(s, k, i) is self-called given the following instruction sequence:

```
s \leftarrow(false, false, false, false, false, false, true, false, false, false)
k}\leftarrow1
i}\leftarrow
evaluation(s, k, i)
```

A. 3 times
B. the same number of times as in the following instruction sequence

```
s \leftarrow(false, false, false, false, false, false, false, true)
k}\leftarrow
i}\leftarrow
evaluation(s, k, i)
C. 6 times
D. infinite number of times
```

3. Consider the expression(n) subalgorithm, with \boldsymbol{n} a natural number $(1 \leq \boldsymbol{n} \leq 10000)$.
```
Subalgorithm expression(n):
    If n > 0 then
        If n MOD 2 = 0 then
            return -n * (n + 1) + expression(n - 1)
        else
            return n * (n + 1) + expression(n - 1)
            EndIf
    else
        return 0
    EndIf
EndSubalgorithm
```

Specify the mathematical form for expression $E(n)$ as calculated by the following subalgorithm:
A. $\mathrm{E}(n)=1 * 2-2 * 3+3 * 4+\ldots+(-1)^{n+1} * n *(n+1)$
B. $\mathrm{E}(n)=1 * 2-2 * 3+3 * 4+\ldots+(-1)^{n} * n *(n+1)$
C. $\mathrm{E}(n)=1 * 2+2 * 3+3 * 4+\ldots+(-1)^{n+1} * n *(n+1)$
D. $\mathrm{E}(n)=1 * 2-2 * 3-3 * 4-\ldots-(-1)^{n} * n *(n+1)$
4. An integer data type represented using \boldsymbol{x} bits (\boldsymbol{x} a strictly positive natural number) can hold values from the following range:
A. $\left[0,2^{\mathrm{x}}\right]$
B. $\left[0,2^{x-1}-1\right]$
C. $\left[-2^{x-1}, 2^{x-1}-1\right]$
D. $\left[-2^{x}, 2^{x}-1\right]$
5. Consider subalgorithm $f(a, b)$:

```
Subalgorithm f(a, b):
    If a > 1 then
        return b * f(a - 1, b)
    else
        return b * f(a + 1, b)
    EndIf
EndSubalgorithm
```

How many times will subalgorithm f be self-called by executing the following instruction sequence:

```
a}\leftarrow
b}\leftarrow
c}\leftarrowf(a,b
```

A. 4 times
B. 3 times
C. infinite number of times
D. never
6. Let us consider the following logical expression: (NOT Y OR Z) OR (X AND Y). Choose values for X, $\boldsymbol{r}, \boldsymbol{Z}$ such that the result of evaluating the expression is true:
A. $\boldsymbol{X} \leftarrow$ false; $\boldsymbol{Y} \leftarrow$ false; $\boldsymbol{Z} \leftarrow$ false;
B. $X \leftarrow$ false; $Y \leftarrow$ true; $Z \leftarrow$ false;
C. $X \leftarrow$ true; $Y \leftarrow$ false; $Z \leftarrow$ true;
D. $\boldsymbol{X} \leftarrow$ false; $\boldsymbol{Y} \leftarrow$ true; $\boldsymbol{Z} \leftarrow$ true;
7. Specify which of the following expressions is true if and only if the natural number \boldsymbol{n} is divisible by 3 and has the last digit 4 or 6 :
A. n DIV $3=0$ and ($n \operatorname{MOD} 10=4$ or $n \operatorname{MOD} 10=6$)
B. $n \operatorname{MOD} 3=0$ and ($n \operatorname{MOD} 10=4$ or $n \operatorname{MOD} 10=6$)
C. ($n \operatorname{MOD} 3=0$ and $n \operatorname{MOD} 10=4$) or ($n \operatorname{MOD} 3=0$ and $n \operatorname{MOD} 10=6$)
D. (n MOD $3=0$ and $n \operatorname{MOD} 10=4$) or $n \operatorname{MOD~} 10=6$
8. Consider the following subalgorithm:

```
Subalgorithm f(a):
    If a != 0 then
        return a + f(a - 1)
    else
        return 0
    EndIf
EndSubalgorithm
```

Which of the following statements are false?
A. if a is negative, the subalgorithm returns 0
B. the value calculated by f is $\mathrm{a} *(\mathrm{a}+1) / 4$
C. the subalgorithm computes the sum of the natural numbers smaller or equal to a
D. calling $f(-5)$ results in an infinite cycle.
9. Consider the following subalgorithm:

```
Subalgorithm SA9(a):
    If a < 50 then
        If a MOD 3 = 0 then
            return SA9(2 * a - 3)
        else
            return SA9(2 * a - 1)
        EndIf
    else
        return a
    EndIf
EndSubalgorithm
```

For which values of input parameter \boldsymbol{a} will the subalgorithm return 61 ?
A. 16
B. 61
C. 4
D. 31
10. Consider subalgorithm process (v, k), where \boldsymbol{v} is an array of \boldsymbol{k} natural numbers $(1 \leq \boldsymbol{k} \leq 1000)$.

```
Subalgorithm process(v, k)
    i}\leftarrow1,n\leftarrow
    While i < k and vi
        y\leftarrowvi,c}\leftarrow<
        While y > 0 do
                If y MOD 10 > c then
                    c}\leftarrowy MOD 10
                EndIf
                y & DIV 10
        EndWhile
        n}\leftarrow\textrm{n}*10+\textrm{c
        i}\leftarrowi+
    EndWhile
    return n
EndSubalgorithm
```

State for which values of \boldsymbol{v} and \boldsymbol{k} the subalgorithm returns 928 .
A. $\boldsymbol{v}=(194,121,782,0)$ and $\boldsymbol{k}=4$
B. $\boldsymbol{v}=(928)$ and $\boldsymbol{k}=1$
C. $\boldsymbol{v}=(9,2,8,0)$ and $\boldsymbol{k}=4$
D. $\boldsymbol{v}=(8,2,9)$ and $\boldsymbol{k}=3$
11. Let us consider the following logical expression: (X OR Z) AND (NOT X OR Y). Choose values for \boldsymbol{X}, $\boldsymbol{Y}, \boldsymbol{Z}$ such that the result of evaluating the expression is TRUE:
A. $X \leftarrow$ FALSE; $\boldsymbol{Y} \leftarrow$ FALSE; $Z \leftarrow$ TRUE;
B. $X \leftarrow$ TRUE; $Y \leftarrow$ FALSE; $Z \leftarrow$ FALSE;
C. $X \leftarrow$ FALSE; $Y \leftarrow$ TRUE; $Z \leftarrow$ FALSE;
D. $\boldsymbol{X} \leftarrow$ TRUE; $\boldsymbol{Y} \leftarrow$ TRUE; $\boldsymbol{Z} \leftarrow$ TRUE;
12. Consider the following program:

C Version	C++ Version	Pascal Version
\#include <stdio.h>	\#include <iostream> using namespace std;	type vector=array [1..10] of integer; function prelVector (v: vector;
int prelVector(int v[], int *n) \{ int $\mathrm{s}=0$; int $\mathrm{i}=2$; while (i <= *n) \{	int prelVector(int v[] , int\&n) \{ int $\mathrm{s}=0$; int $\mathrm{i}=2$; while (i <= n) \{	var n : integer): integer; var s, i: integer; begin
$\begin{aligned} & s=s+v[i]-v[i-1] ; \\ & i f(v[i]==v[i-1]) \\ & \quad{ }^{n}=*_{n}-1 ; \end{aligned}$	$\begin{aligned} & s=s+v[i]-v[i-1] ; \\ & \text { if }(v[i]==v[i-1]) \\ & n--; \end{aligned}$	$\begin{aligned} & s:=0 ; \text { i }:=2 ; \\ & \text { while (i <= n) do } \\ & \text { begin } \end{aligned}$
$\} \quad \stackrel{i++;}{\text { return } \mathrm{s} ;}$	$\underset{\text { return } \mathrm{s} ;}{\quad \mathrm{i}++;}$	$\begin{aligned} & s:=s+v[i]-v[i-1] ; \\ & \text { if }(v[i]=v[i-1]) \text { then } \\ & n:=n-1 ; \end{aligned}$
\}		$\begin{aligned} & \text { i := i + 1; } \\ & \text { end; } \\ & \text { prelVector := s; } \end{aligned}$
int main() \{	int main() $\{$.	end;
int v[8];	int v[8];	var n, result :integer; v:vector;
$v[1]=1 ; ~ v[2] ~=~ 4 ; ~ v[3] ~=~ 2 ; ~$ $v[4] ~=~ 3 ; ~$ [5] = 3; v[6] = 10;		begin n := 7;
$\mathrm{v}[7]=12$;	$\mathrm{v}[7]=12$;	$\mathrm{v}[1]:=1 ; \mathrm{v}[2]:=4 ; \mathrm{v}[3]:=2$;
int $\mathrm{n}=7$;	int $\mathrm{n}=7$;	v[4] := 3; v[5] := 3; v[6] := 10;
int result $=$ prelVector(v, \&n); printf("\%d;\%d", n, result); return 0;	int result $=$ prelVector(v, n); cout << n <<";" << result; return 0;	```v[7] := 12; result := prelVector(v,n); write(n, ';', result);```
\}		end.

Which of the following pairs is displayed after the execution of the program.
A. $7 ; 11$
B. $6 ; 9$
C. $7 ; 9$
D. $7 ; 12$
13. Consider the following algorithm in pseudocode:

```
read a
For i=1, a-1 do
    For j=i+2, a do
        If i+j>a-1 then
        write a, ' ', i, ' ', j
        start new line
        EndIf
    EndFor
EndFor
```

How many pairs of numbers will be displayed after the execution of the algorithm for $a=8$?
A. 13
B. 15
C. 20
D. No answer is correct
14. Which of the following subalgorithms returns the largest multiple of number \boldsymbol{a}, multiple that is smaller or equal with natural number $\boldsymbol{b}(0<\boldsymbol{a}<10000,0<\boldsymbol{b}<10000, \boldsymbol{a}<\boldsymbol{b})$?
A.

Subalgorithm $f(a, b)$:
$c \leftarrow \mathrm{~b}$
While c MOD $a=0$ execute
$c \leftarrow c-1$
EndWhile
return c
EndSubalgorithm
B.

Subalgorithm $f(a, b)$: If $a<b$ then return $f(2 * a, b)$ else If $a=b$ then return a else
return b
EndIf
EndIf
EndSubalgorithm
C.

Subalgorithm $f(a, b)$: return (b DIV a) * a
EndSubalgorithm
D.

```
Subalgorithm f(a, b):
    If b MOD a = 0 then
            return b
    EndIf
    return f(a, b - 1)
```

15. Consider all arrays having length $\boldsymbol{l} \in\{1,2,3\}$ built using letters from the set $\{a, b, c, d, e\}$. How many of them are sorted strictly decreasing and have an odd number of vowels? (a and e are vowels)
A. 14
B. 7
C. 81
D. 78
16. Consider subalgorithm belongs (x, a, n), which checks whether natural number \boldsymbol{x} belongs to set \boldsymbol{a} having \boldsymbol{n} elements; \boldsymbol{a} is an array of \boldsymbol{n} elements that represents a natural numbers set ($1 \leq \boldsymbol{n} \leq 200$, $1 \leq \boldsymbol{x} \leq 1000$). Let us consider subalgorithms reunion (a, n, b, m, c, p) and compute (a, n, b, m, c, p), described below, where $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} are arrays that represent natural number sets having \boldsymbol{n}, \boldsymbol{m} and \boldsymbol{p} elements respectively $(1 \leq \boldsymbol{n} \leq 200,1 \leq \boldsymbol{m} \leq 200,1 \leq \boldsymbol{p} \leq 400)$. Input parameters are $\boldsymbol{a}, \boldsymbol{n}, \boldsymbol{b}$, \boldsymbol{m} and \boldsymbol{p}, and output parameters are \boldsymbol{c} and \boldsymbol{p}.

1.	Subalgorithm reunion(a, n, b, m, c, p):		Subalgorithm compute(a, n, b, m, c,
2.	If $\mathrm{n}=0$ then		p):
3.	For $\mathrm{i} \leftarrow 1$, m do	2	$p \leftarrow 0$
4.	$p \leftarrow p+1$	3	reunion(a, n, b, m, c, p)
5.	$\mathrm{c}_{\mathrm{p}} \leftarrow \mathrm{b}_{\mathrm{i}}$		EndSubalgorithm
6.	EndFor		
7.	else		
8.	If not belongs ($\mathrm{a}_{\mathrm{n}}, \mathrm{b}, \mathrm{m}$) then		
9.	$p \leftarrow p+1$		
10.	$\mathrm{c}_{\mathrm{p}} \leftarrow \mathrm{a}_{\mathrm{n}}$		
11.	EndIf		
12.	reunion($\mathrm{a}, \mathrm{n}-1, \mathrm{~b}, \mathrm{~m}, \mathrm{c}, \mathrm{p}$)		
13.	EndIf		
14.	EndSubalgorithm		

Which of the following statements are always true:
A. when set \boldsymbol{a} contains a single element, calling subalgorithm compute (a, n, b, m, c, p) results in an infinite loop
B. when set \boldsymbol{a} contains 4 elements, calling subalgorithm compute (a, n, b, m, c, p) results in executing the instruction on line 12 a number of 4 times
C. when set \boldsymbol{a} contains 5 elements, calling subalgorithm compute (a, n, b, m, c, p) results in executing the instruction on line 2 of the reunion subalgorithm a number of 5 times
D. when sets \boldsymbol{a} and \boldsymbol{b} have the same elements, after the execution of subalgorithm compute (a, n, b, m, c, p) set \boldsymbol{c} will have the same number of elements as set \boldsymbol{a}
17. Consider the compute (n) subalgorithm, with \boldsymbol{n} a natural number $(1 \leq \boldsymbol{n} \leq 10000)$.

```
Subalgorithm compute(n):
    x}\leftarrow0, z\leftarrow
    While z \leq n do
        x}\leftarrow\textrm{x}+
        z}\leftarrow\textrm{z}+\mp@subsup{2}{}{*}\textrm{x
        z}\leftarrowz+
    EndWhile
    return x
EndSubalgorithm
```

Which of the following statements are false?
A. If $\boldsymbol{n}<8$, then compute (n) returns 3 .
B. If $\boldsymbol{n} \geq 85$ and $\boldsymbol{n}<100$, then compute(n) returns 9 .
C. The subalgorithm computes and returns the number of strictly positive and strictly smaller than n perfect squares.
D. The subalgorithm computes and returns the integer part of \boldsymbol{n} 's root.
18. Consider square matrix mat of size $\boldsymbol{n} \times \boldsymbol{n}(\boldsymbol{n}-$ odd natural number, $3 \leq \boldsymbol{n} \leq 100)$ and subalgorithm placeB(mat, n, i, j) which places character ' b ' on certain positions of matrix mat. Parameters \boldsymbol{i} and \boldsymbol{j} are natural numbers $(1 \leq \boldsymbol{i} \leq \boldsymbol{n}, 1 \leq \boldsymbol{j} \leq \boldsymbol{n})$.

```
Subalgorithm placeB(mat, n, i, j):
    If i < n DIV 2 then
        If j <n- i then
            mat[i][j] \leftarrow 'b'
            placeB(mat, n, i, j + 1)
        else
            placeB(mat, n, i + 1, i + 2)
        EndIf
    EndIf
EndSubalgorithm
```

How many times will subalgorithm placeB(mat, n, i, j) is self-called for the following instruction sequence:

```
n\leftarrow7, i\leftarrow2, j\leftarrow4
placeB(mat, n, i, j)
```

A. 5 times
B. The same number of times as for the next instruction sequence

$$
\begin{aligned}
& n \leftarrow 9, i \leftarrow 3, j \leftarrow 5 \\
& \text { placeB (mat, } n, i, j)
\end{aligned}
$$

C. 10 times
D. infinite number of times
19. Consider the compute (a, b) subalgorithm, where \boldsymbol{a} and \boldsymbol{b} are natural numbers, $1 \leq \boldsymbol{a} \leq 1000,1 \leq \boldsymbol{b}$ ≤ 1000.

```
Subalgorithm compute(a, b):
    If a \not=0 then
                return compute(a DIV 2, b + b) + b * (a MOD 2)
    EndIf
    return 0
    EndSubalgorithm
```

Which of the following statements are false?
A. if \boldsymbol{a} and \boldsymbol{b} are equal, the subalgorithm return \boldsymbol{a} value
B. if $\boldsymbol{a}=1000$ and $\boldsymbol{b}=2$, the subalgorithm calls itself 10 times
C. the subalgorithm computes and returns $\boldsymbol{a} / 2+2 * \boldsymbol{b}$
D. the instruction on line 5 is executed only once
20. Consider the primeFactors (n, d, k, x) subalgorithm that determines the \boldsymbol{k} prime factors for natural number \boldsymbol{n}, starting the search from the value \boldsymbol{d}. Input parameters are natural numbers $\boldsymbol{n}, \boldsymbol{d}$ și \boldsymbol{k}, and the output parameter is array \boldsymbol{x} consisting of the \boldsymbol{k} prime factors $(1 \leq \boldsymbol{n} \leq 10000,2 \leq \boldsymbol{d} \leq 10000,0 \leq \boldsymbol{k} \leq$ 10000).

```
Subalgorithm primeFactors(n, d, k, x):
    If n MOD d = 0 then
        k}\leftarrowk+
        x[k]}\leftarrow
    EndIf
    While n MOD d = 0 do
        n}\leftarrown\mathrm{ DIV d
    EndWhile
    If n > 1 then
        primeFactors(n, d + 1, k, x)
    EndIf
EndSubalgorithm
```

How many times will the primeFactors(n, d, k, x) subalgorithm is self-called by executing the following instruction sequence:

```
n}\leftarrow1
d}\leftarrow
k}\leftarrow
primeFactors(n, d, k, x)
```

A. 3 times
B. 5 times
C. 9 times
D. the same number of times as in the following sequence:

```
n}\leftarrow75
d}\leftarrow
k}\leftarrow
primeFactors(n, d, k, x)
```

21. Consider the natural numbers \boldsymbol{m} and $\boldsymbol{n}(0 \leq \boldsymbol{m} \leq 10,0 \leq \boldsymbol{n} \leq 10)$ and the subagorithm Ack(m, n) which computes the value of Ackermann function for \boldsymbol{m} and \boldsymbol{n} values.
```
Subalgorithm Ack(m, n)
    If m = 0 then
        return n + 1
    else
        If m > 0 and n = 0 then
            return Ack(m - 1, 1)
        else
            return Ack(m - 1, Ack(m, n - 1))
        EndIf
    EndIf
EndSubalgorithm
```

How many times the subalgorithm $\operatorname{Ack}(m, n)$ is self-called executing the following sequence:

```
m\leftarrow1,n n 2 
```

A. 7 times
B. 5 times
C. 10 times
D. the same number of times as in the following sequence:

```
m}\leftarrow1,\textrm{n}\leftarrow
Ack(m, n)
```

22. Let us define the operation truncation of a natural number with \boldsymbol{k} digits $\overline{c_{1} c_{2} \ldots c_{k}}$ so that: truncation $\left(\overline{c_{1} c_{2} \ldots c_{k}}\right)=\left\{\begin{array}{cc}0, & \text { if } k<2 ; \\ \overline{c_{1} c_{2}}, & \text { else }\end{array}\right.$
State which of the following subalgorithms computes the sum of the truncations of the elements of an array \boldsymbol{x} with \boldsymbol{n} natural numbers smaller than 1000000 (\boldsymbol{n} - număr natural, $1 \leq \boldsymbol{n} \leq 1000$)? For example, if $\boldsymbol{n}=4$ and $\boldsymbol{x}=(213,7,78347,22)$, then the sum of truncations is $21+0+78+22=121$.
A.

Subalgorithm sumTruncation(n, x)
$s \leftarrow 0$
While $n>0$ do
If $\mathrm{x}[\mathrm{n}]>9$ then
While $x[n]>99$ do $\mathrm{x}[\mathrm{n}] \leftarrow \mathrm{x}[\mathrm{n}]$ DIV 10 EndWhile $\mathrm{s} \leftarrow \mathrm{s}+\mathrm{x}[\mathrm{n}]$ EndIf
$\mathrm{n} \leftarrow \mathrm{n}-1$
EndWhile
return s
EndSubalgorithm
B.

```
Subalgorithm sumTruncation (n, x)
    s}\leftarrow
    While n > 0 do
        If }\textrm{x}[\textrm{n}]>9\mathrm{ then
        While x[n] > 99 do
                x[n] < x[n] DIV 10
            EndWhile
            s}\leftarrow\textrm{s}+\textrm{x}[\textrm{n}
            EndIf
            n}\leftarrow\textrm{n}-
        EndWhile
        return s
EndSubalgorithm
```

C.

```
Subalgorithm sumTruncation ( }n,x\mathrm{ )
    s}\leftarrow
    While n > 0 do
            If x[n] > 9 then
                While x[n] > 99 do
                    x[n]}\leftarrowx[n] DIV 10
                    s \leftarrows + x[n]
            EndWhile
```

```
            EndIf
            n}\leftarrow\textrm{n}-
        EndWhile
        return s
EndSubalgorithm
```

D.

```
Subalgorithm sumTruncation (n, x)
    s}\leftarrow
    While x[n] > 99 do
        x[n]}\leftarrowx[n] DIV 10
    EndWhile
        s \leftarrow s + x[n]
    return s
EndSubalgorithm
```

23. Let us consider the array \boldsymbol{s} with natural number elements, where $s_{i}=\left\{\begin{array}{ll}x, & \text { if } i=1 \\ x+1, & \text { if } i=2 \\ s_{(i-1)} @ s_{(i-2)} & \text { if } i>2\end{array},(i\right.$ $=1,2, \ldots)$. The operator @ concatenates the digits of the left-hand operand with the digits of the righthand operand, in this order (the digits correspond to the base-10 representation of the number), and \boldsymbol{x} is a natural number $(1 \leq \boldsymbol{x} \leq 99)$. For example, if $\boldsymbol{x}=3$, the array \boldsymbol{s} contains the following values 3, 4, 43, 434, 43443, State the number of digits of the element of \boldsymbol{s} that precedes the element with \boldsymbol{k} digits ($1 \leq \boldsymbol{k} \leq 30$).
A. if $\boldsymbol{x}=15$ and $\boldsymbol{k}=6$, the number of digits of the element of \boldsymbol{s} that precedes the element with \boldsymbol{k} digits is 5 .
B. dacă $\boldsymbol{x}=2$ și $\boldsymbol{k}=8$, the number of digits of the element of \boldsymbol{s} that precedes the element with \boldsymbol{k} digits is 5 .
C. dacă $\boldsymbol{x}=14$ și $\boldsymbol{k}=26$, the number of digits of the element of \boldsymbol{s} that precedes the element with \boldsymbol{k} digits is 16 .
D. dacă $\boldsymbol{x}=5$ și $\boldsymbol{k}=13$, the number of digits of the element of \boldsymbol{s} that precedes the element with \boldsymbol{k} digits is 10 .
24. Let us consider the array \boldsymbol{x} with \boldsymbol{n} natural number elements $(3 \leq \boldsymbol{n} \leq 10000)$ and a natural number \boldsymbol{k} $(1 \leq \boldsymbol{k}<\boldsymbol{n})$. The subalgorithm permCirc(n, k, x) should generate a circular permutation of the array \boldsymbol{x} with \boldsymbol{k} positions to left (for example, the array $(4,5,2,1,3)$ is a circular permutation with 2 positions to left of the array $(1,3,4,5,2)$). Unfortunately $\operatorname{permCirc}(n, k, x)$ subalgorithm is not correct, because it does not compute the correct result for certain values of \boldsymbol{n} and \boldsymbol{k}.
```
Subalgorithm permCirc(n, k, x)
    c}\leftarrow
    For j = 1, c do
        permTo \leftarrow j
        nr}\leftarrowx[permTo
        For i = 1, n / c - 1 do
            permFrom \leftarrow permTo + k
            If permFrom > n then
                permFrom \leftarrow permFrom - n
            EndIf
            x[permTo ] }\leftarrowx[\mathrm{ permFrom]
            permTo \leftarrow permFrom
        EndFor
        x[permTo] &nr
    EndFor
EndSubalgorithm
```

Chose the values of $\boldsymbol{n}, \boldsymbol{k}$ and \boldsymbol{x} for which the subalgorithm $\operatorname{permCirc}(\mathrm{n}, \mathrm{k}, \mathrm{x})$ generates a circular permutation of the array \boldsymbol{x} with \boldsymbol{k} positions to left:
A. $\boldsymbol{n}=6, \boldsymbol{k}=2, \boldsymbol{x}=(1,2,3,4,5,6)$
B. $\boldsymbol{n}=8, \boldsymbol{k}=3, \boldsymbol{x}=(1,2,3,4,5,6,7,8)$
C. $\boldsymbol{n}=5, \boldsymbol{k}=3, \boldsymbol{x}=(1,2,3,4,5)$
D. $\boldsymbol{n}=8, \boldsymbol{k}=4, \boldsymbol{x}=(1,2,3,4,5,6,7,8)$
25. A non-zero natural number \boldsymbol{x} is lucky if its square can be written as a sum of \boldsymbol{x} consecutive natural numbers. For example, 7 is a lucky number because $7^{2}=4+5+6+7+8+9+10$.

Which of the following subalgorithms check whether natural number $\boldsymbol{x}(2 \leq \boldsymbol{x} \leq 1000)$ is lucky? Each subalgorithm has \boldsymbol{x} as input, and non-zero natural number start and boolean variable isLucky as outputs. If \boldsymbol{x} is lucky, then isLucky $=$ true and the value of start is the first number of the sum (for example, if \boldsymbol{x} $=7$, then start $=4$); if \boldsymbol{x} is not lucky, then isLucky $=$ false and start $=-1$.

```
A.
```

```
Subalgorithm lucky(x, start, isLucky):
```

Subalgorithm lucky(x, start, isLucky):
xsquare \leftarrow x * x
xsquare \leftarrow x * x
isLucky }\leftarrow\mathrm{ false
isLucky }\leftarrow\mathrm{ false
start \leftarrow-1, k \leftarrow 1, s \leftarrow0
start \leftarrow-1, k \leftarrow 1, s \leftarrow0
While k \leq xsquare - x and not isLucky do
While k \leq xsquare - x and not isLucky do
For i \& k, k + x - 1 do
For i \& k, k + x - 1 do
s}\leftarrow\textrm{s}+\textrm{I
s}\leftarrow\textrm{s}+\textrm{I
EndFor
EndFor
If s = xsquare then
If s = xsquare then
isLucky \leftarrow true
isLucky \leftarrow true
start \leftarrowk
start \leftarrowk
EndIf
EndIf
EndWhile
EndWhile
EndSubalgorithm
EndSubalgorithm
B.

```
```

Subalgoritm lucky(x, start, isLucky):

```
Subalgoritm lucky(x, start, isLucky):
    xsquare \leftarrow x * x
    xsquare \leftarrow x * x
    isLucky \leftarrowfalse
    isLucky \leftarrowfalse
    start \leftarrow-1, k \leftarrow 1
    start \leftarrow-1, k \leftarrow 1
    While k \leq xsquare - x and not isLucky do
    While k \leq xsquare - x and not isLucky do
            s}\leftarrow
            s}\leftarrow
            For i & k, k + x - 1 do
            For i & k, k + x - 1 do
                s}\leftarrow\textrm{s}+\textrm{i
                s}\leftarrow\textrm{s}+\textrm{i
            EndFor
            EndFor
            If s = xsquare then
            If s = xsquare then
                isLucky \leftarrow true
                isLucky \leftarrow true
                start \leftarrowk
                start \leftarrowk
            EndIf
            EndIf
            k}\leftarrowk+
            k}\leftarrowk+
        EndWhile
        EndWhile
EndSubalgorithm
```

EndSubalgorithm

```
```

C.
Subalgorithm lucky(x, start, isLucky):
If x MOD 2 = 0 then
isLucky \leftarrowfalse
start \leftarrow-1
else
isLucky \leftarrow true
start \leftarrow (x + 1) DIV 2
EndIf
EndSubalgorithm
D.

```
```

Subalgorithm lucky(x, start, isLucky):

```
Subalgorithm lucky(x, start, isLucky):
    If x MOD 2 = 0 then
    If x MOD 2 = 0 then
            isLucky }\leftarrow\mathrm{ false
            isLucky }\leftarrow\mathrm{ false
            start \leftarrow-1
            start \leftarrow-1
    else
    else
            isLucky }\leftarrow tru
            isLucky }\leftarrow tru
            start \leftarrowx DIV 2
            start \leftarrowx DIV 2
    EndIf
    EndIf
EndSubalgorithm
```

EndSubalgorithm

```
26. Consider the \(\operatorname{alg}(x, b)\) subalgorithm, with input parameters natural numbers \(\boldsymbol{x}\) and \(\boldsymbol{b}(1 \leq \boldsymbol{x} \leq\) \(1000,1<\boldsymbol{b} \leq 10\) ).
```

Subalgorithm alg(x, b):
s}\leftarrow
While x > 0 do
s}\leftarrow\textrm{s}+\textrm{x MOD b
x}\leftarrowx DIV b
EndWhile
return s MOD (b - 1) = 0
EndSubalgorithm

```

What is the effect of the subalgorithm above.
A. checks whether the sum of \(\boldsymbol{x}\) 's digits in base \(\boldsymbol{b}-\boldsymbol{1}\) is divisible with \(\boldsymbol{b}-\boldsymbol{1}\).
B. checks whether natural number \(\boldsymbol{x}\) is divisible with \(\boldsymbol{b}-\boldsymbol{1}\).
C. checks whether the sum of \(\boldsymbol{x}\) 's digits in base \(\boldsymbol{b}\) is divisible with \(\boldsymbol{b}-\boldsymbol{1}\).
D. checks whether the sum of \(\boldsymbol{x}\) 's digits in base \(\boldsymbol{b}\) is divisible with \(\boldsymbol{b}-\boldsymbol{1}\).
27. Consider the series \((1,2,3,2,5,2,3,7,2,4,3,2,5,11, \ldots)\), built as follows: starting from the natural numbers' series, replace each non-prime number with its proper divisors, with each divisor \(d\) considered once per number. Which of the following subalgorithms determines the \(\boldsymbol{n}\)-th element of this series ( \(\boldsymbol{n}\) - natural number, \(1 \leq \boldsymbol{n} \leq 1000\) )?
A.
```

Subalgorithm identification(n):
a}\leftarrow1,\textrm{b}\leftarrow1, c\leftarrow
While c < n do
a}\leftarrowa+1,b\leftarrowa,c\leftarrowc+1,d\leftarrow
f}\leftarrowfals
While c}\leqn\mathrm{ and d}\leqa\mp@code{DIV 2 do
If a MOD d = 0 then

```
```

 c}\leftarrowc+1,b\leftarrowd,f\leftarrowtru
 EndIf
 d}\leftarrowd+
 EndWhile
 If f then
 c}\leftarrowc-
 EndIf
 EndWhile
 return b
 EndSubalgorithm
 Subalgorithm identification(n):
 a}\leftarrow1,b\leftarrow1,c\leftarrow
 While c < n do
 c}\leftarrowc+1,d\leftarrow
 While c \leq n and d \leq a DIV 2 do
 If a MOD d = 0 then
 c}\leftarrowc+1,b\leftarrow
 EndIf
 d}\leftarrowd+
 EndWhile
 a}\leftarrowa+1,b\leftarrow
 EndWhile
 return b
 EndSubalgorithm
 Subalgorithm identification(n):
 a}\leftarrow1,b\leftarrow1,c\leftarrow
 While c < n do
 a}\leftarrowa+1,d\leftarrow
 While c < n and d\leq a do
 If a MOD d = 0 then
 c}\leftarrowc+1,b\leftarrow
 EndIf
 d}\leftarrowd+
 EndWhile
 EndWhile
 return b
 EndSubalgorithm
 Subalgorithm identification(n):
$\mathrm{a} \leftarrow 1, \mathrm{~b} \leftarrow 1, \mathrm{c} \leftarrow 1$
While c < n do
$b \leftarrow a, a \leftarrow a+1, c \leftarrow c+1, d \leftarrow 2$
While $c \leq n$ and $d \leq a$ DIV 2 do
If a MOD $d=0$ then

$$
c \leftarrow c+1, b \leftarrow d
$$

EndIf
$d \leftarrow d+1$
EndWhile
EndWhile
return b
EndSubalgorithm

```
B.
C.
D.
28. A rectangle with sides \(\boldsymbol{m}\) and \(\boldsymbol{n}(\boldsymbol{m}, \boldsymbol{n}\) - natural numbers, \(0<\boldsymbol{m}<101,0<\boldsymbol{n}<101)\) is split in squares of side 1. Consider the rectangle \((m, n)\) subalgorithm:
```

Subalgorithm rectangle(m, n)
$d \leftarrow m$
$c \leftarrow n$
While d $\neq \mathrm{c}$ do
If $d>c$ then
$d \leftarrow d-c$
else
$c \leftarrow c-d$
EndIf
EndWhile
return m + n - d
EndSubalgorithm

```

State the effect of this subalgorithm.
A. The subalgorithm computes and returns the number of squares of side 1 crossed by a diagonal of the rectangle.
B. The subalgorithm computes in \(\boldsymbol{d}\) the greatest common divisor of rectangle sides and returns the difference between the sum of recatangle sides and \(\boldsymbol{d}\).
C. If \(\boldsymbol{m}=8\) and \(\boldsymbol{n}=12\), the subalgorithm returns 16 .
D. If \(\boldsymbol{m}=6\) and \(\boldsymbol{n}=11\), the subalgorithm returns 15 .
29. Let us consider a rectangular board divided into \(\boldsymbol{n} \times \boldsymbol{m}\) cells ( \(\boldsymbol{n}\) is the number of rows, \(\boldsymbol{m}\) is the number of columns, \(\boldsymbol{n}, \boldsymbol{m}\) are natural numbers, \(2 \leq \boldsymbol{n} \leq 100,2 \leq \boldsymbol{m} \leq 100\) ). Two players, A and B perform alternate moves in the following way: in each turn a player colors one single cell which is not colored yet and is diagonally neighboring the cell colored in the previous turn by the other player. The player who cannot color a cell, loses the game. Player A performs the first move, coloring any cell on the board.

a

b

c

d

e

Example of a game board: a) initially \((\mathrm{n}=5\) and \(\mathrm{m}=4), \mathrm{b}\) ) after the first move (player A's move), c ) after the second move (player B's move), d) after the third move (player A's move), e) after the fourth move (player B's move)

Determine the condition under which player A has a secure winning strategy (meaning that (s)he will win the game, no matter what player B does) and what could be the first move made by player A to win the game.
A. condition: the number \(m\) is odd
first move of player A: a cell on the first line of the board (line 1) and a column with odd index.
B. condition: the number \(n\) is odd
first move of player A: a cell on a line with an even index and on the leftmost column of the board (column 1)
C. condition: both \(n\) and \(m\) are even
first move of player A: the cell on the top left corner of the board (on line 1 and column 1)
D. condition: at least one of the numbers \(n\) and \(m\) is odd
first move of player A: the cell on the top left corner of the board (on line 1 and column 1)
30. A matrix has 8 rows, contains only 1 's and 0 's and has the following three properties:
a) there is a single element with value 1 on the first row,
b) row \(\boldsymbol{j}\) contains twice as many non-zero elements as row \(\boldsymbol{j}-1\), for all \(\boldsymbol{j} \in\{2,3, \ldots, 8\}\),
c) on the last row there is a single element with value 0 .

What is the total number of 0 elements in the matrix?
A. 777
B. 769
C. 528
D. there is no such matrix
1. D
11. A, D
21. B
2. B
12. B
3. \(\mathbf{A}\)
13. B
4. B, C
5. C
6. A, C, D
7. B, C
8. A, B, C
9. \(\mathrm{A}, \mathrm{B}, \mathrm{D}\)
10. A, C
14. C, D
15. A
16. B, D
17. A, C
18. A, B
19. A, C
20. A, D
22. A
23. B, C
24. A, D
25. B, C
26. B, C
27. A
28. A, C
29. A, D
30. A```

