ADMISSIONS EXAM 2021 September Session Written test in MATHEMATICS

1. Consider the equation $x^2 + ax + 3 = 0$ with positive solutions x_1 and x_2 such that $x_1^2, x_2, 1$ are in geometric progression (in this order). Then the value of $a \in \mathbb{R}$ can be

A
$$2\sqrt{3};$$
 B $-2\sqrt{3};$ **C** $\sqrt{3};$ **D** $-\sqrt{3}.$

2. Let $(x_n)_{n\geq 1}$ be the sequence defined by $x_n = \frac{1}{4^n} C_{2n}^n$. Indicate which of the following statements are true.

AThe sequence $(x_n)_{n\geq 1}$ is strictly increasing.BThe sequence $(x_n)_{n\geq 1}$ is strictly decreasing.CThe sequence $(x_n)_{n\geq 1}$ is bounded.DThe sequence $(x_n)_{n\geq 1}$ is convergent.

 $\boxed{C} \frac{1}{e^2};$

|D|0.

- **3.** The value of the limit $\lim_{x \to \infty} \left(\frac{x \sqrt{x}}{x + \sqrt{x}}\right)^{\sqrt{x}}$ is
 - $\boxed{A} 1; \qquad \qquad \boxed{B} e^2;$
- 4. The value of the limit $\lim_{x\to 0} \frac{x \sin x}{e^x + e^{-x} 2}$ is
 - A 1;B 2; $C \frac{1}{2};$ D 0.

5. Consider the vectors $\vec{u} = a\vec{i} + 3\vec{j}$ and $\vec{v} = 2\vec{i} + b\vec{j}$, where the unit vectors \vec{i} and \vec{j} are perpendicular. Indicate which of the following statements are true.

- A For a = -1 and b = -6 the vectors \vec{u} and \vec{v} are collinear.
- B Vectors \vec{u} and \vec{v} have the same length only if a = 2 and b = 3.

C There exist infinitely many real numbers a, b for which the vectors \vec{u} and \vec{v} have the same length.

D Vectors \vec{u} and \vec{v} are perpendicular, if 2a = 3b.

6. Let ABCDEF be a regular hexagon. Denote $\overrightarrow{AB} = \overrightarrow{u}$ and $\overrightarrow{AE} = \overrightarrow{v}$. Indicate which of the following statements are true.

$$\boxed{\mathbf{A}} \overrightarrow{AC} = \frac{3}{2} \overrightarrow{u} + \overrightarrow{v}. \qquad \boxed{\mathbf{B}} \overrightarrow{AC} = \frac{3}{2} \overrightarrow{u} + \frac{1}{2} \overrightarrow{v}. \qquad \boxed{\mathbf{C}} \overrightarrow{AC} = \frac{1}{2} \overrightarrow{u} + \frac{3}{2} \overrightarrow{v}. \qquad \boxed{\mathbf{D}} \overrightarrow{AC} = \frac{3}{2} \overrightarrow{u} - \frac{1}{2} \overrightarrow{v}.$$

7. If S is the set of solutions of equation $\frac{2 \lg(x+3)}{\lg(5x+11)} = 1$, then:

AS
$$\subseteq$$
 [-2,0];BS \subseteq [-2,1];CS \subseteq [0,1];DS \subseteq [-2,-1].

8. Consider in \mathbb{R} the equation

$$\sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} = 1.$$

The set of its solutions is:

- A S = [3, 12]; B $S = [1, \infty);$ C S = [5, 10]; D $S = \{4, 11\}.$
- **9.** Let $n \in \mathbb{N}$, $n \geq 3$. In the *xOy* plane consider a set \mathcal{M} consisting of *n* distinct points none of which is *O*. The number of all triangles having two vertices in \mathcal{M} and one in *O* is:
 - A A_n^2 ;B 2^n ;C C_{n+1}^3 ;D at most C_n^2 .

10. Consider the system of equations

$$\begin{cases} (a-1)x + 2y + 3z &= 1\\ x + 2y + 3z &= 1\\ x + 2y + (a+1)z &= 1, \end{cases}$$

where a is a real parameter. Which of the following statements are true?

 $|\mathbf{A}|$ There exist several values of a for which the determinant of the system is 0.

B There exists a single value of a for which the system is compatible.

C There exist several values of a for which the system is compatible.

D If the system is compatible, then it has a unique solution.

11. If
$$\sin x = a$$
 and $x \in \left(\frac{3\pi}{2}, 2\pi\right)$, then:

$$\boxed{A} \sin 2x = 2a;$$

$$\boxed{B} \sin 2x = 2a\sqrt{1-a^2};$$

$$\boxed{D} \cos 2x = 1-2a^2.$$

12. If A(-2,-1), B(2,1) and C(-1,2) are points in a Cartesian coordinate system, then the triangle ABC is:

A obtuse;B isosceles;C right;D equilateral.

13. In a Cartesian coordinate system consider the lines

$$d_1: (m-1)x + (3m-7)y - 5 = 0$$
 and $d_2: (m-2)x + (2m-5)y = 0$,

where m is a real parameter. Indicate which of the following statements are true.

A The lines are parallel for m = 3.

B There exists a value of the parameter m for which the lines coincide.

C The lines are perpendicular for a single value of m.

D The lines are not perpendicular for any value of m.

14. In a Cartesian coordinate system xOy consider the points A(0,1) and H(3,2), where H is the orthocenter of the triangle ABC. The slope of the line BC is equal to:

$$\begin{bmatrix} A \\ 3 \end{bmatrix}; \qquad \begin{bmatrix} B \\ -3 \end{bmatrix}; \qquad \begin{bmatrix} C \\ \frac{1}{3} \end{bmatrix}; \qquad \begin{bmatrix} D \\ -\frac{1}{3} \end{bmatrix}.$$

15. Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be defined by $f(x) = (x+2)e^{1/x}$. The equation of the oblique asymptote to the graph of f at $+\infty$ is:

A
$$y = x;$$
B $y = x + 1;$ C $y = x + 2;$ D $y = x + 1;$ $y = x + 2;$

16. Let $a \in \mathbb{R}$ and let $f: (-1,1) \to \mathbb{R}$ be defined by $f(x) = \frac{x+a}{\sqrt{1-x^2}}$. The value of a for which the tangent to the graph of f at the point with x-coordinate 0 passes through the point (-2,5) is:

A 9;

$$\boxed{\mathbf{C}} -5;$$

D 5.

17. The value of the integral
$$\int_0^{\pi/2} \frac{\sin 2x}{3 - \cos 2x} \, \mathrm{d}x$$
 is:

B 7;

A ln 2;B
$$\frac{1}{4}$$
 ln 2;C $\frac{1}{2}$ ln 2;D $\frac{1}{2}$.

18. The value of the integral
$$\int_{1}^{e^{2}} \frac{\ln x}{\sqrt{x}} dx$$
 is:
A 4; B 4e; C 8e - 4; D 2e + 2.

19. In the field $(\mathbb{Z}_5, +, \cdot)$ the system of equations

$$\begin{cases} x + \widehat{2}y &= \widehat{3}\\ \widehat{2}x + \widehat{4}y &= \widehat{2} \end{cases}$$

A has no solutions;

B has a unique solution;

C has exactly five distinct solutions;

D has exactly ten distinct solutions.

20. Consider the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x - [x] - \frac{1}{2}$, where [x] denotes the integer part of the number x. Which of the following statements are true?

A The graph of the function f intersects the Oy axis in at least 2 points.

B The graph of the function f does not intersect the Ox axis.

C The graph of the function f intersects the Ox axis in infinitely many points.

D The graph of the function f does not intersect the Oy axis.

21. Consider the matrix equation $X^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$ in $\mathcal{M}_2(\mathbb{Z})$. Which of the following statements are true?

A The equation has a unique solution.

B The equation has exactly two solutions.

C The equation has more than two solutions.

D The sum of all solutions of the equation is O_2 .

22. The points A(0,2), B(2,1) are vertices of the parallelogram ABCD and G(2,0) is the gravity center of the triangle ABD. Indicate which of the following statements are true.

A The aria of the triangle ABD is equal to 3.

B The aria of the triangle ABD is equal to 6.

C The aria of the parallelogram ABCD is equal to 6.

D The aria of the parallelogram ABCD is equal to 12.

23. The real numbers a and b satisfy the equality $(\cos a + \cos b)^2 + (\sin a + \sin b)^2 = 2\cos^2 \frac{a-b}{2}$. Indicate which of the following statements are true.

 $\begin{array}{|c|c|} \hline \mathbf{A} & a - b \in \{2k\pi | k \in \mathbb{Z}\}; \\ \hline \mathbf{C} & a - b \in \left\{\frac{\pi}{2} + 2k\pi \middle| k \in \mathbb{Z}\right\}; \\ \hline \mathbf{D} & a - b \in \left\{\frac{\pi}{2} + k\pi \middle| k \in \mathbb{Z}\right\}; \\ \hline \mathbf{D} & a - b \in \left\{\frac{\pi}{2} + k\pi \middle| k \in \mathbb{Z}\right\}. \end{array}$

24. With the usual notations in a triangle *ABC*, let b = 5, c = 7 and $m(\widehat{B}) = 45^{\circ}$. Indicate which of the following statements are true.

A There exists a single triangle ABC with this data.

 \underline{B} There exist two triangles ABC with this data.

$$\begin{array}{c}
\boxed{\mathbf{C}} \sin A \in \left\{ \frac{3}{5}, \frac{4}{5} \right\}. \\
\boxed{\mathbf{D}} a \in \{2\sqrt{2}, 3\sqrt{2}, 4\sqrt{2}\}.
\end{array}$$

25. The set of values of the real parameter *m* for which the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \ln(1 + x^2) - mx$ is increasing on \mathbb{R} is:

$$A$$
 $(0,\infty);$ B $(-\infty,-1];$ C $[-1,1];$ D $[-1,\infty).$

26. For a matrix $X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ denote by $\operatorname{tr}(X) = x + t$, the sum of all elements on the main diagonal

of X. For the matrix $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ the limit $\lim_{n \to \infty} \frac{\operatorname{tr}(A^n)}{\det(A^n)}$ is equal cu:

A 0;B 2;C 1;D
$$+\infty$$
.

27. Let a be a real parameter and consider the composition law

$$x \ast y = xy + ax + ay + 1$$

on \mathbb{R} . Which of the following statements are true?

A If * has an identity element, then a is uniquely determined.

B There exist several values of a for which * has an identity element.

C If e is an identity element for *, then $e = \frac{1}{a}$.

D If e is an identity element for *, then $e = -\frac{1}{a}$.

28. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = e^x + e^{-x} - x^2$. Indicate which of the following statements are true.

A f'(0) = f''(0) = 0.

B 0 is not a point of local extrema for f.

- **C** The function f' is strictly monotone.
- **D** 0 is a point of global extrema for f''.

29. For each $n \in \mathbb{N}^*$ denote $I_n = \int_1^e (\ln x)^n dx$. Indicate which of the following statements are true.

 $\boxed{\mathbf{A}} I_{n+1} + (n+1)I_n = \mathbf{e}, \quad \forall n \in \mathbb{N}^*. \qquad \boxed{\mathbf{B}} \lim_{n \to \infty} I_n = 0. \qquad \boxed{\mathbf{C}} \lim_{n \to \infty} nI_n = \mathbf{e}. \qquad \boxed{\mathbf{D}} \lim_{n \to \infty} nI_n = 1.$

30. The diagonals of a square \mathcal{P}_{α} of side α are on the coordinate axes of a Cartesian coordinate system $(\alpha \in (0, \infty))$. Let N_{α} be the number of points inside the square \mathcal{P}_{α} with integer coordinates. Indicate which of the following statements are true.

- **A** For $\alpha = 3$ we have $N_3 = 5$.
- **B** For $\alpha = 3$ we have $N_3 = 13$.
- **C** There exists α such that $N_{\alpha} = 41$.
- **D** There exists α such that $N_{\alpha} = 67$.

BABEŞ-BOLYAI UNIVERSITY CLUJ-NAPOCA FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Correct Answers

ADMISSIONS EXAM 2021 Written test in MATHEMATICS September Session

