ADMISSIONS EXAM 2021
 September Session
 Written test in MATHEMATICS

1. Consider the equation $x^{2}+a x+3=0$ with positive solutions x_{1} and x_{2} such that $x_{1}^{2}, x_{2}, 1$ are in geometric progression (in this order). Then the value of $a \in \mathbb{R}$ can be
A $2 \sqrt{3}$;
B $-2 \sqrt{3}$;
C $\sqrt{3}$;
D $-\sqrt{3}$.
2. Let $\left(x_{n}\right)_{n \geq 1}$ be the sequence defined by $x_{n}=\frac{1}{4^{n}} C_{2 n}^{n}$. Indicate which of the following statements are true.

A The sequence $\left(x_{n}\right)_{n \geq 1}$ is strictly increasing.
C The sequence $\left(x_{n}\right)_{n \geq 1}$ is bounded.
3. The value of the limit $\lim _{x \rightarrow \infty}\left(\frac{x-\sqrt{x}}{x+\sqrt{x}}\right)^{\sqrt{x}}$ is
A 1 ;
B e^{2};
C $\frac{1}{\mathrm{e}^{2}}$;
D 0 .
4. The value of the limit $\lim _{x \rightarrow 0} \frac{x \sin x}{\mathrm{e}^{x}+\mathrm{e}^{-x}-2}$ is
A 1 ;
B 2;
(C) $\frac{1}{2}$;
D 0 .
5. Consider the vectors $\vec{u}=a \vec{i}+3 \vec{j}$ and $\vec{v}=2 \vec{i}+b \vec{j}$, where the unit vectors \vec{i} and \vec{j} are perpendicular. Indicate which of the following statements are true.

A For $a=-1$ and $b=-6$ the vectors \vec{u} and \vec{v} are colinear.
B Vectors \vec{u} and \vec{v} have the same length only if $a=2$ and $b=3$.
C There exist infinitely many real numbers a, b for which the vectors \vec{u} and \vec{v} have the same length.
D Vectors \vec{u} and \vec{v} are perpendicular, if $2 a=3 b$.
6. Let $A B C D E F$ be a regular hexagon. Denote $\overrightarrow{A B}=\vec{u}$ and $\overrightarrow{A E}=\vec{v}$. Indicate which of the following statements are true.

$$
\text { A } \overrightarrow{A C}=\frac{3}{2} \vec{u}+\vec{v} . \quad \mathrm{B} \overrightarrow{A C}=\frac{3}{2} \vec{u}+\frac{1}{2} \vec{v} . \quad \text { C } \overrightarrow{A C}=\frac{1}{2} \vec{u}+\frac{3}{2} \vec{v} . \quad \mathrm{D} \overrightarrow{A C}=\frac{3}{2} \vec{u}-\frac{1}{2} \vec{v}
$$

7. If S is the set of solutions of equation $\frac{2 \lg (x+3)}{\lg (5 x+11)}=1$, then:
A $S \subseteq[-2,0]$;
B $S \subseteq[-2,1]$;
C $S \subseteq[0,1] ;$
D $S \subseteq[-2,-1]$.
8. Consider in \mathbb{R} the equation

$$
\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1
$$

The set of its solutions is:
A $S=[3,12]$;
B $S=[1, \infty)$;
C $S=[5,10]$;
D $S=\{4,11\}$.
9. Let $n \in \mathbb{N}, n \geq 3$. In the $x O y$ plane consider a set \mathcal{M} consisting of n distinct points none of which is O. The number of all triangles having two vertices in \mathcal{M} and one in O is:

$$
\mathrm{A} A_{n}^{2} ; \quad \mathrm{B} 2^{n} ; \quad \mathrm{C} C_{n+1}^{3} ; \quad \mathrm{D} \text { at } \operatorname{most} C_{n}^{2} .
$$

10. Consider the system of equations

$$
\left\{\begin{aligned}
(a-1) x+2 y+3 z & =1 \\
x+2 y+3 z & =1 \\
x+2 y+(a+1) z & =1
\end{aligned}\right.
$$

where a is a real parameter. Which of the following statements are true?
A There exist several values of a for which the determinant of the system is 0 .
B There exists a single value of a for which the system is compatible.
C There exist several values of a for which the system is compatible.
D If the system is compatible, then it has a unique solution.
11. If $\sin x=a$ and $x \in\left(\frac{3 \pi}{2}, 2 \pi\right)$, then:
A $\sin 2 x=2 a$;
B $\sin 2 x=2 a \sqrt{1-a^{2}}$;
C $\sin 2 x=-2 a \sqrt{1-a^{2}}$;
(D $\cos 2 x=1-2 a^{2}$.
12. If $A(-2,-1), B(2,1)$ and $C(-1,2)$ are points in a Cartesian coordinate system, then the triangle $A B C$ is:

$$
\begin{array}{|l|l|l}
\hline \mathrm{A} \text { obtuse; } & \mathrm{B} \text { isosceles; } & \mathrm{C} \text { right; } \\
\mathrm{D} \text { equilateral. }
\end{array}
$$

13. In a Cartesian coordinate system consider the lines

$$
d_{1}:(m-1) x+(3 m-7) y-5=0 \text { and } d_{2}:(m-2) x+(2 m-5) y=0,
$$

where m is a real parameter. Indicate which of the following statements are true.
A The lines are parallel for $m=3$.
B There exists a value of the parameter m for which the lines coincide.
C The lines are perpendicular for a single value of m.
D The lines are not perpendicular for any value of m.
14. In a Cartesian coordinate system $x O y$ consider the points $A(0,1)$ and $H(3,2)$, where H is the orthocenter of the triangle $A B C$. The slope of the line $B C$ is equal to:
A 3 ;
B -3 ;
C $\frac{1}{3}$;
D $-\frac{1}{3}$.
15. Let $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ be defined by $f(x)=(x+2) \mathrm{e}^{1 / x}$. The equation of the oblique asymptote to the graph of f at $+\infty$ is:
A $y=x$;
B $y=x+1$;
C $y=x+2$;
D $y=x+3$.
16. Let $a \in \mathbb{R}$ and let $f:(-1,1) \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{x+a}{\sqrt{1-x^{2}}}$. The value of a for which the tangent to the graph of f at the point with x-coordinate 0 passes through the point $(-2,5)$ is:
A 9;
B 7;
C -5 ;
D 5 .
17. The value of the integral $\int_{0}^{\pi / 2} \frac{\sin 2 x}{3-\cos 2 x} \mathrm{~d} x$ is:
A $\ln 2$;
B $\frac{1}{4} \ln 2$;
C $\frac{1}{2} \ln 2$;
D $\frac{1}{2}$.
18. The value of the integral $\int_{1}^{\mathrm{e}^{2}} \frac{\ln x}{\sqrt{x}} \mathrm{~d} x$ is:
A 4;
B 4e;
C $8 \mathrm{e}-4$;
D $2 \mathrm{e}+2$.
19. In the field $\left(\mathbb{Z}_{5},+, \cdot\right)$ the system of equations

$$
\left\{\begin{aligned}
x+\widehat{2} y & =\widehat{3} \\
\widehat{2} x+\widehat{4} y & =\widehat{2}
\end{aligned}\right.
$$

A has no solutions;
B has a unique solution;
C has exactly five distinct solutions;
D has exactly ten distinct solutions.
20. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x-[x]-\frac{1}{2}$, where $[x]$ denotes the integer part of the number x. Which of the following statements are true?

A The graph of the function f intersects the $O y$ axis in at least 2 points.
B The graph of the function f does not intersect the $O x$ axis.
C The graph of the function f intersects the $O x$ axis in infinitely many points.
D The graph of the function f does not intersect the $O y$ axis.
21. Consider the matrix equation $X^{2}=\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)$ in $\mathcal{M}_{2}(\mathbb{Z})$. Which of the following statements are true?

A The equation has a unique solution.
B The equation has exactly two solutions.
C The equation has more than two solutions.
D The sum of all solutions of the equation is O_{2}.
22. The points $A(0,2), B(2,1)$ are vertices of the parallelogram $A B C D$ and $G(2,0)$ is the gravity center of the triangle $A B D$. Indicate which of the following statements are true.

A The aria of the triangle $A B D$ is equal to 3 .
B The aria of the triangle $A B D$ is equal to 6 .
C The aria of the parallelogram $A B C D$ is equal to 6 .
D The aria of the parallelogram $A B C D$ is equal to 12 .
23. The real numbers a and b satisfy the equality $(\cos a+\cos b)^{2}+(\sin a+\sin b)^{2}=2 \cos ^{2} \frac{a-b}{2}$. Indicate which of the following statements are true.

$$
\begin{array}{ll}
\text { A } a-b \in\{2 k \pi \mid k \in \mathbb{Z}\} ; & \text { B } a-b \in\{(2 k+1) \pi \mid k \in \mathbb{Z}\} ; \\
\text { C } a-b \in\left\{\left.\frac{\pi}{2}+2 k \pi \right\rvert\, k \in \mathbb{Z}\right\} ; & \text { D } a-b \in\left\{\left.\frac{\pi}{2}+k \pi \right\rvert\, k \in \mathbb{Z}\right\} .
\end{array}
$$

24. With the usual notations in a triangle $A B C$, let $b=5, c=7$ and $m(\widehat{B})=45^{\circ}$. Indicate which of the following statements are true.

A There exists a single triangle $A B C$ with this data.
B There exist two triangles $A B C$ with this data.
$\mathrm{C} \sin A \in\left\{\frac{3}{5}, \frac{4}{5}\right\}$.
D $a \in\{2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}\}$.
25. The set of values of the real parameter m for which the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\ln \left(1+x^{2}\right)-m x$ is increasing on \mathbb{R} is:
A $(0, \infty)$;
B $(-\infty,-1]$;
C $[-1,1]$;
D $[-1, \infty)$.
26. For a matrix $X=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ denote by $\operatorname{tr}(X)=x+t$, the sum of all elements on the main diagonal of X. For the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$ the limit $\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A^{n}\right)}{\operatorname{det}\left(A^{n}\right)}$ is equal cu:

$$
\left.\begin{array}{|lll}
\hline \mathrm{A} & 0 ; & \mathrm{B} \\
\mathrm{~B} & 2 ; & \mathrm{C} 1 ; \\
\mathrm{D} \\
\hline
\end{array}\right) .
$$

27. Let a be a real parameter and consider the composition law

$$
x * y=x y+a x+a y+1
$$

on \mathbb{R}. Which of the following statements are true?
A If $*$ has an identity element, then a is uniquely determined.
B There exist several values of a for which $*$ has an identity element.
C If e is an identity element for $*$, then $e=\frac{1}{a}$.
D If e is an identity element for $*$, then $e=-\frac{1}{a}$.
28. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\mathrm{e}^{x}+\mathrm{e}^{-x}-x^{2}$. Indicate which of the following statements are true.

A $f^{\prime}(0)=f^{\prime \prime}(0)=0$.
B 0 is not a point of local extrema for f.
C The function f^{\prime} is strictly monotone.
D 0 is a point of global extrema for $f^{\prime \prime}$.
29. For each $n \in \mathbb{N}^{*}$ denote $I_{n}=\int_{1}^{\mathrm{e}}(\ln x)^{n} \mathrm{~d} x$. Indicate which of the following statements are true.

$$
\text { A } I_{n+1}+(n+1) I_{n}=\mathrm{e}, \quad \forall n \in \mathbb{N}^{*} . \quad \mathrm{B} \lim _{n \rightarrow \infty} I_{n}=0 . \quad \text { C } \lim _{n \rightarrow \infty} n I_{n}=\mathrm{e} . \quad \mathrm{D} \lim _{n \rightarrow \infty} n I_{n}=1 .
$$

30. The diagonals of a square \mathcal{P}_{α} of side α are on the coordinate axes of a Cartesian coordinate system $(\alpha \in(0, \infty))$. Let N_{α} be the number of points inside the square \mathcal{P}_{α} with integer coordinates. Indicate which of the following statements are true.

A For $\alpha=3$ we have $N_{3}=5$.
B For $\alpha=3$ we have $N_{3}=13$.
C There exists α such that $N_{\alpha}=41$.
D There exists α such that $N_{\alpha}=67$.

Correct Answers

ADMISSIONS EXAM 2021

Written test in MATHEMATICS
September Session

1. B
2. $\mathrm{B}, \mathrm{C}, \mathrm{D}$
3. C
4. A
5. \mathbf{A}, \mathbf{C}
6. B
7. B, C
8. C
9. D
10. C
11. B, D
12. B, C
13. A, D
14. B
15. D
16. B
17. C
18. A
19. A
20. C
21. B, D
22. A, C
23. B
24. $\mathrm{B}, \mathrm{C}, \mathrm{D}$
25. B
26. C
27. B, D
28. A , C, D
29. A , B , C
30. B, C
