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In the preface of the book

[CDT] DY Gao, V Latorre, N Ruan (eds.), Canonical Duality
Theory. Unified Methodology for Multidisciplinary Study. Advances
in Mechanics and Mathematics (DY Gao, T. Ratiu eds.), Vol. 37.
Cham: Springer (2017) [16/18 articles have DY Gao as (co)author]

it is said that

Canonical duality theory is a breakthrough methodological
theory that can be used not only for modeling complex systems
within a unified framework, but also for solving a large class of
challenging problems in multidisciplinary fields of engineering,
mathematics, and sciences. ...
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This theory is composed mainly of

(1) a canonical dual transformation, which can be used to
formulate perfect dual problems without duality gap;

(2) a complementary-dual principle, which solved the open problem
in finite elasticity and provides a unified analytical solution form for
general nonconvex/nonsmooth/discrete problems;

(3) a triality theory, which can be used to identify both global and
local optimality conditions and to develop powerful algorithms for
solving challenging problems in complex systems. ...

The original motivation of this book was a colloquium talk
presented by David Yang Gao at UC Berkeley in 2013. ...

The research projects on the canonical duality theory have been
continuously supported by US National Science Foundation and US
Air Force Office of Scientific Research (AFOSR).
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In the abstract of the first (survey) article from [CDT],

[GRL17] DY Gao, N Ruan, V Latorre: Canonical Duality-Triality
Theory: Bridge Between Nonconvex Analysis/Mechanics and
Global Optimization in Complex System, [CDT], pp. 1–47,

it is mentioned that Breakthrough from recent challenges and
conceptual mistakes by M. Voisei, C. Zalinescu and his coworker
are addressed.

Related to the global optimization problem

min f (x), s.t. hi (x) = 0, gj(x) ≤ 0 ∀i ∈ Im, j ∈ Ip, (1).

it is said : Without detailed information on these arbitrarily given
functions, it is impossible to have a general theory for finding
global extrema of the general nonconvex problem (1). ...

This could be the reason why there was no breakthrough in
nonlinear programming during the past 60 years.
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A reviewer’s opinion for WCGO2019, Metz, about
arXiv:1811.04469 (On constrained optimization problems solved
using CDT):
Notation Grid : 0 - Strong reject
In my opinion the Canonical Duality Theory, as developed either
by the author or by Gao and co-authors is of no practical value.

However, DY Gao had Invited Lectures and Colloquium Talks
at important Institutions on CDT:

Analytical Solutions and Canonical Dual Finite Element Method
for a Class of Challenging/NP-Hard Problems in Nonconvex
Mechanics and Complex Systems, Department of Mechanical
Engineering, University of California, Berkeley, January 24, 2013

4. Canonical Duality and Triality: Unified Understanding and
Analytical Solutions for Nonconvex, Nonsmooth and Discrete
Problems in Complex Systems, Colloquium Lecture at the
Department of Math, University of Melbourne, Sept. 12, 2011.

11. General closed solutions to a class of nonlinear equations,
Department of Mathematics, Harvard University, August 1, 2008.
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12. Canonical duality theory and applications in global
optimization, Dept of Industrial and Systems Engineering,
University of Florida, April 22, 2008

13. Canonical duality theory for solving some challenging problems
in mechanics and global optimization, Dept Mechanical Science
and Engineering, University of Illinois at Urbana-Champaign,
Jan. 29, 2008.

14. Canonical Duality Approaches for Solving a Class of NP-hard
Problems in Global Optimization and Nonconvex Systems,
Department of Electric Engineering and Computer Science, MIT,
May 11, 2007

20. Beauty and Unity in Optimization and System Science:
Canonical Duality Theory, Department of Industrial and System
Engineering, Virginia Tech, Oct. 12, 2007.
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21. Unified Canonical Duality Theory for Solving a Class of
Nonconvex Problems with Applications in Integer Programming,
Department of Mathematics, Simon Fraser University, Nov. 21,
2007.

27. Canonical duality and triality, a potentially powerful method for
solving nonlinear variational/optimization problems, Department of
Mathematics, University of Oakland, Nov. 9, 2006.

29. Canonical duality theory in global optimization and
application, department of electrical engineering, Princeton
University, August 4, 2006.

35. Canonical duality theory and method for solving nonconvex
variational- optimization problems with applications, Institute for
Scientific Computing and Applied Mathematics, Indiana
University, Bloomington, IN. Sep. 21, 2005.
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36. Primal-dual methods and algorithm in large-scale nonconvex
optimization and application, Department of Math, University of
Wisconsin, Milwaukee, September 5, 2005.

37. Duality, triality and unity in arts, science, and religion, Institute
of Information Science, Konan University, Japan, June 8, 2005.

45. Duality and Triality in Mathematics and Scientific
Computations, Department of Mathematics, University of
Auckland, New Zealand, January 22, 2002.

47. Duality and Triality: Unifying Mathematics and Natural
Sciences, Colloquium talk at Department of Math., University of
Glasgow, January 18, 2001
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DY Gao solely or together with some of his collaborators applied
his Canonical duality theory (CDT) for solving a class of
unconstrained optimization problems, getting the so-called
triality theorems.

Unfortunately, the double-min duality from these results
published before 2010 revealed to be false, even if in 2003 DY Gao
announced that certain additional conditions are needed for getting
it.

After 2010 DY Gao together with some of his collaborators
published several papers in which they added additional conditions
for getting double-min and double-max dualities in the triality
theorems.

Our aim is to treat rigorously this kind of problems and to discuss
several results concerning the triality theory obtained up to now.
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Sn denotes the class of symmetric matrices from Mn := Rn×n

qk : Rn → R, qk(x) := 1
2 〈x ,Akx〉 − 〈bk , x〉+ ck

(
k ∈ 0,m

)
with Ak ∈ Sn, bk ∈ Rn (seen as column vectors), ck ∈ R, 〈·, ·〉 the
usual inner product on Rn.

The fact that A ∈ Sn is positive (semi) definite is denoted by
A � 0 (A � 0) and we set

S+
n := {A ∈ Sn | A � 0}, S++

n := {A ∈ Sn | A � 0};
similarly for S−n , S

−−
n . It is well known that S++

n = intS+
n .

For g : Rm → R, dom g := {y ∈ Rm | g(y) <∞}
g is proper when dom g 6= ∅ and g(y) 6= −∞ for y ∈ Rm.

Γ := Γ(Rm) is the class of proper convex lsc functions g : Rm → R.
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The Fenchel conjugate g∗ : Rm → R of the proper function
g : Rm → R is defined by

g∗(σ) := sup{〈y , σ〉−g(y) | y ∈ Rm} = sup{〈y , σ〉−g(y) | y ∈ dom g} (σ ∈ Rm),

while its subdifferential at y ∈ dom g is

∂g(y) :=
{
σ ∈ Rm |

〈
y ′ − y , σ

〉
≤ g(y ′)− g(y) ∀y ′ ∈ Rm

}
,

and ∂g(y) := ∅ if y /∈ dom g ; clearly, for (y , σ) ∈ Rm × Rm

g(y)+g∗(σ) ≥ 〈y , σ〉 ∧ [σ ∈ ∂g(y)⇐⇒ g(y) + g∗(σ) = 〈y , σ〉] .

Γsc := Γsc(Rm) is the class of those g ∈ Γ(Rm) which are
essentially strictly convex and essentially smooth convex functions,
that is the class of proper lsc convex functions of Legendre type as
defined in chapter 26 in Rockafellar’s book Convex Analysis (1970).
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We are concerned by the following unconstrained global
minimization problem

(P) min f (x) s.t. x ∈ Rn

as well as by local minimum or/and maximal points of f ,
where f := q0 + V ◦ q with q(x) := (q1(x), ..., qm(x))T , qi
(i ∈ 0,m) being quadratic functions defined on Rn, and V ∈ Γ.
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To (P) one associates the so called “total complementary
function” in

[GW17] DY Gao, C Wu, Triality theory for general unconstrained
global optimization problems, CDT-book,

or “Gao–Strang complementary function” in

[GRP12] DY Gao, N Ruan, PM Pardalos, Canonical dual solutions
to sum of fourth-order polynomials minimization problems with
applications to sensor network localization, in Sensors: Theory,
Algorithms, and Applications. Springer Optimization and Its
Applications 61, Springer (2012),

or “extended Lagrangian” in

[G00]DY Gao, Duality principles in nonconvex systems: theory,
methods and applications, Kluwer, Dordrecht (2000), and

[G03] DY Gao, Perfect duality theory and complete solutions to a
class of global optimization problems, Optimization 52 (2003).
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This is the function Ξ : Rn × Rm → R defined by

Ξ(x , σ) = q0(x) + 〈q(x), σ〉 − V ∗(σ) = L(x , σ)− V ∗(σ),

where L is the (usual) Lagrangian associated to (qk)k∈0,m, that is

L : Rn × Rm → R, L(x , σ) := q0(x) + 〈q(x), σ〉 .

It follows that

Ξ(x , σ) = 1
2 〈x ,A(σ)x〉 − 〈b(σ), x〉+ c(σ)− V ∗(σ),

where, for σ0 := 1 and σ := (σ1, ..., σm)T ∈ Rm,

A(σ) :=
∑m

k=0
σkAk , b(σ) :=

∑m

k=0
σkbk , c(σ) :=

∑m

k=0
σkck ;

clearly, A(·), b(·), c(·) are affine functions. Hence, Ξ(·, σ) is
quadratic for each σ ∈ domV ∗ and Ξ(x , ·) is concave for each
x ∈ Rn.
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Since V ∗∗ := (V ∗)∗ = V , we obtain that

f (x) = sup
σ∈domV ∗

Ξ(x , σ) = sup
σ∈ri(domV ∗)

Ξ(x , σ) ∀x ∈ Rn,

Moreover,

∇xΞ(x , σ) = A(σ)x − b(σ), ∇2
xxΞ(x , σ) = A(σ),

∂ (−Ξ(x , ·)) (σ) = ∂V ∗(σ)− q(x),

for all (x , σ) ∈ Rn × domV ∗. Hence, for (x , σ) ∈ Rn × domV ∗

one has

∇xΞ(x , σ) = 0⇐⇒ A(σ)x = b(σ),

0 ∈ ∂ (−Ξ(x , ·)) (σ)⇐⇒ q(x) ∈ ∂V ∗(σ)⇐⇒ σ ∈ ∂V ((q(x)) .
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Consider the following sets in which σ is taken from Rm if not
specified otherwise:

Y0 := {σ | detA(σ) 6= 0}, Ycol := {σ | b(σ) ∈ ImA(σ)} (⊃ Y0),

Y + := {σ | A(σ) � 0}, Y− := {σ | A(σ) ≺ 0},
Y +

col := {σ ∈ Ycol | A(σ) � 0}, Y−col := {σ ∈ Ycol | A(σ) � 0},
S0 := Y0 ∩ domV ∗, S+ := Y + ∩ domV ∗, S− := Y− ∩ domV ∗,

Scol := Ycol ∩ domV ∗, S+
col := Y +

col ∩ domV ∗, S−col := Y−col ∩ domV ∗.

In

[Z18a] Z. On quadratic optimization problems and canonical
duality, arXiv:1809.09032,

we considered a dual function associated to the family (qk)k∈0,m,
which is denoted by DL here. More precisely,

DL : Ycol → R, DL(σ) := L(x , σ) with A(σ)x = b(σ).
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In a similar way, we consider the (dual objective) function D
associated to (qk)k∈0,m and V defined by

D : Scol → R, D(σ) := Ξ(x , σ) with A(σ)x = b(σ);

hence
D(σ) = DL(σ)− V ∗(σ) ∀σ ∈ Scol.

Setting
x(σ) := A(σ)−1b(σ) := [A(σ)]−1 · b(σ)

for σ ∈ Y0, we obtain for σ ∈ S0 that

D(σ) = Ξ (x(σ), σ) = −1
2

〈
b(σ),A(σ)−1b(σ)

〉
+ c(σ)− V ∗(σ).

We have that DL is concave and usc on Y +
col, and convex and lsc

on Y−col, and [Z18a, Eq. (9)]holds; moreover DL(σ) is attained at
any x ∈ Rn such that A(σ)x = b(σ) whenever λ ∈ Y +

col ∪ Y−col,
being attained uniquely at x := x(σ) for σ ∈ Y + ∪ Y−.
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It follows that

D(σ) =

{
minx∈Rn Ξ(x , σ) if σ ∈ S+

col,
maxx∈Rn Ξ(x , σ) if σ ∈ S−col,

the value of D(σ) being attained uniquely at x := x(σ) when
σ ∈ S+ ∪ S− (⊂ S0); moreover, we have that D is concave and
usc on S+

col as the sum of two concave and usc functions, while D
is a d.c. function (difference of convex functions) on S−col. In
general, D is neither convex nor concave on (the convex set) S−col.

As in [Z18a] (or by direct calculations), we have that

∂D

∂σi
(σ) = 1

2 〈x(σ),Aix(σ)〉 − 〈bi , x(σ)〉+ ci −
∂V ∗

∂σi
(σ)

= qi (x(σ))− ∂V ∗

∂σi
(σ) (1*)

for those σ ∈ intS0 and i ∈ 1,m for which ∂V ∗

∂σi
(σ) exists.
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When V is sublinear one has that V ∗ = ι∂V (0). So, we get the
following simple result.

Proposition 1

Assume that V ∈ Γ(Rm) is sublinear. Then D|S−col
is convex;

moreover, ∇D(σ) = q(x(σ)) for every σ ∈ S0 ∩ int(domV ∗).

Assume that g ∈ Γsc . Then: g∗ ∈ Γsc , dom ∂g = int(dom g), and
g is differentiable on int(dom g); moreover,
∇g : int(dom g)→ int(dom g∗) is bijective and continuous with
(∇g)−1 = ∇g∗.
In the rest of this section we assume V ∈ Γsc ; hence V ∗ ∈ Γsc .
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We set

X0 := {x ∈ Rn | q(x) ∈ int(domV )} ⊂ dom f .

Because V is differentiable on int(domV ) and V ∗ is differentiable
on int(domV ∗), clearly

∇f (x) = A0x − b0 +
∑m

i=1

∂V

∂yi
(q(x)) · (Aix − bi ) ∀x ∈ X0, (2*)

∇σΞ(x , σ) = q(x)−∇V ∗(σ) ∀(x , σ) ∈ Rn × int(domV ∗). (3*)

It follows that (1*) holds for σ ∈ intS0 [= S0 ∩ int(domV ∗)] and
i ∈ 1,m, whence for σ′ ∈ S0 ∩ int(domV ∗) one has

∇D(σ′) = q(x(σ′))−∇V ∗(σ′) = ∇σΞ(x(σ′), σ′). (4*)
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From (3*) and (1*) we get

∇σΞ(x , σ) = 0⇐⇒
[
σ ∈ intS0 ∧ q(x) = ∇V ∗(σ)

]
⇐⇒

[
x ∈ X0 ∧ σ = ∇V (q(x))

]
. (5*)

From the concavity of Ξ(x , ·) for x ∈ Rn and (4*) we obtain

f (x) = sup
σ∈domV ∗

Ξ(x , σ) = sup
σ∈int(domV ∗)

Ξ(x , σ) = Ξ
(
x ,∇V (q(x))

)
for all x ∈ X0; moreover, using (2*) and (3*) we obtain that

[x ∈ X0 ∧ σ = ∇V (q(x))]⇒ [∇f (x) = ∇xΞ(x , σ) ∧ f (x) = Ξ(x , σ)] .

Furthermore, using the expressions of ∇Ξ, ∇2Ξ and (3*), for
(x , σ) ∈ Rn × int(domV ∗) we have that

∇Ξ(x , σ) = 0⇔ [x ∈ X0 ∧ σ = ∇V (q(x)) ∧ A(σ)x = b(σ)] .
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An auxiliary result
The case σ ∈ S−

The preceding considerations yield directly the next result.

Proposition 2

Let V ∈ Γ(Rm) and (x , σ) ∈ Rn × domV ∗.
(i) Assume that ∇xΞ(x , σ) = 0 and q(x) ∈ ∂V ∗(σ). Then
(x , σ) ∈ dom f × Scol, σ ∈ ∂V (q(x)), and

f (x) = Ξ(x , σ) = D(σ). (PDF)

(ii) Moreover, assume that A(σ) � 0. Then σ ∈ S+
col and

f (x) = inf
x∈dom f

f (x) = Ξ(x , σ) = sup
σ∈S+

col

D(σ) = D(σ); (MMD)

furthermore, if σ ∈ S+, then x is the unique global solution of
problem (P).
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Proposition3

Let V ∈ Γsc and (x , σ) ∈ Rn × int(domV ∗).

(i) Assume that (x , σ) is a critical point of Ξ. Then
(x , σ) ∈ X0 × Scol, x is a critical point of f , and (PDF) holds;
moreover, if σ ∈ S0 then σ is a critical point of D.

(ii) Assume that (x , σ) is a critical point of Ξ such that A(σ) � 0.
Then σ ∈ S+

col and (MMD) holds; moreover, if A(σ) � 0 then x is
the unique global solution of problem (P).

(iii) Assume that σ ∈ S0 and σ is a critical point of D. Then (x , σ)
is a critical point of Ξ, where x := A(σ)−1b(σ); therefore, (i) and
(ii) apply.
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The case σ ∈ S−

In many papers by DY Gao and his collaborators one speaks about
“triality theorems” in which, besides the minimax result
established for the case A(σ) � 0 (see Proposition 2), one obtains
also “bi-duality” results (“double-min duality” and
“double-max duality”) established for A(σ) ≺ 0, that is x and σ
are simultaneously local minimizers (maximizers) for f on dom f
and for D on S−, respectively.

In [GRL17] it is said: “the triality was proposed originally from
post-buckling analysis [42] in “either-or” format since the
double-max duality is always true but the double-min duality was
proved only in one-dimensional nonconvex analysis [49]”.

The next example shows that such triality results are not valid for
general V ∈ Γ(Rm), even for n = m = 1. We concentrate on the
case σ ∈ S− of Proposition 2 (i), that is (x , σ) ∈ Rn × Rm is such
that A(σ)x = b(σ) and σ ∈ S− ∩ ∂V (q(x)), and so
x ∈ q−1(domV ) = dom f .
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The case σ ∈ S−

Example 7

Consider V := ιR− , and q0(x) := −1
2x

2 + x , q(x) =:= 1
2

(
x2 − 1

)
for x ∈ R. Then f := f∅ = q0 + ι[−1,1], A(σ) = σ − 1, b(σ) = −1,

c(σ) = −1
2σ, whence L(x , σ) = 1

2 (σ − 1)x2 + x − 1
2σ,

Ycol = Y0 = R \ {1}, x(σ) = 1/(1− σ), and so
DL(σ) = 1

2

(
1

1−σ − σ
)
, for σ ∈ Y0; moreover, D = DL on

Scol = [0, 1) ∪ (1,∞). For σ = 0 [∈ S−col = S− = [0, 1)] we get
x := x(0) = 1. Clearly, 0 ∈ ∂V (q(1)) = ∂V (0) (= R+). Hence
the pair (1, 0) verifies the hypothesis of Proposition 2 (i), even
more, (1, 0) is a critical point of L. However, by direct verification,
we obtain that x = 1 is the unique global maximizer of f on
dom f = [−1, 1], while applying [Z18a, Prop. 4] we obtain that
σ = 0 is the unique global minimizer of DL on Y−col [= (−∞, 1)],
whence 0 is the unique global minimizer of D on S−. These facts
show that “double-min duality” and “double-max duality” are not
verified in the present case.
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An auxiliary result
The case σ ∈ S−

In DY Gao’s works published after 2011 the “triality theorems” are
established for V a twice differentiable strictly convex function.

Our aim in the sequel is to study the problems of “double-min
duality” and “double-max duality” for the special class Γ2

sc of those
functions V ∈ Γsc which are twice differentiable on int(domV )
with ∇2V (y) � 0 for y ∈ int(domV ) .

First, in the next section, we establish a result on positive
semidefinite operators in Euclidean spaces needed for getting our
“bi-duality”results.
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An auxiliary result
The case σ ∈ S−

An auxiliary result

In order to study the case when σ ∈ S−, we need the following
result which is probably known, but we have not a reference for it.

Proposition 8 (to be continued)

Let X , Y be nontrivial Euclidean spaces and H : Y → X be a
linear operator with H∗ : X → Y its adjoint. Consider
Q := HH∗ := H ◦ H∗, R := H∗H, and

ϕ : X → R, ϕ(x) := ‖H∗x‖2 , ψ : Y → R, ψ(y) := ‖Hy‖2 .

Then the following assertions hold:

(a) Q and R are self-adjoint positive semi-definite operators,
kerQ = kerH∗, ImQ = ImH, kerR = kerH, ImR = ImH∗;
consequently, H = 0 ⇔ Q = 0 ⇔ R = 0.
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An auxiliary result
The case σ ∈ S−

Proposition 8 (continued)

(b) Setting SX := {x ∈ X | ‖x‖ = 1}, one has α = β, where

α := maxx∈SXϕ(x) = max{λ ∈ R | ∃x ∈ X \ {0} : Qx = λx},
β := maxy∈SYψ(y) = max{λ ∈ R | ∃y ∈ Y \ {0} : Ry = λy}.

(c) If H 6= 0, then ImQ 6= {0}, ImR 6= {0}, and γ = δ > 0, where

γ := min
x∈SX∩ImQ

ϕ(x) = min{λ > 0 | ∃x ∈ X \ {0} : Qx = λx},

δ := min
x∈SY∩ImR

ψ(y) = min{λ > 0 | ∃y ∈ Y \ {0} : Ry = λy}.

(d) The following implications hold:

minx∈SXϕ(x) = 0⇔ kerQ 6= {0} ⇔ ImQ 6= X ⇔ ImH 6= X ,

miny∈SYψ(y) = 0⇔ kerR 6= {0} ⇔ ImR 6= Y ⇔ kerH 6= {0}.
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An auxiliary result
The case σ ∈ S−

Throughout this section we assume that V ∈ Γ2
sc . Observe that for

g ∈ Γ2
sc one has g∗ ∈ Γ2

sc and

∇2g∗(σ) =
(
∇2g

(
(∇g)−1(σ)

) )−1 ∀σ ∈ int(dom g∗).

It follows that for x ∈ X0 and u ∈ Rn,〈
u,∇2f (x)u

〉
=
〈
u,
[
A0+

∑m

i=1

∂V

∂yi
(q(x))·Ai

]
u
〉
+
〈
vu,∇2V (q(x))vu

〉
,

where vu := (〈u,A1x − b1〉 , ..., 〈u,Amx − bm〉)T , and

∂2D

∂σi∂σk
(σ) = −

〈
Aix(σ)− bi ,A(σ)−1 (Akx(σ)− bk)

〉
− ∂2V ∗

∂σi∂σk
(σ)

for all σ ∈ intS0 and i , k ∈ 1,m. It follows that

〈v ,∇2D(σ)v〉 = −〈Avx(σ)−bv ,A(σ)−1 (Avx(σ)− bv )〉−
〈
v ,∇2V ∗(σ)v

〉
for all v ∈ Rm and σ ∈ S0, where

Av :=
∑m

i=1
vjAj , bv :=

∑m

j=1
vjbj (v ∈ Rm).
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Assume that (x , σ) ∈ X0 × S− is a critical point of Ξ; then
σ = ∇V (q(x)). Because A(σ) ≺ 0 and ∇2V (q(x)) � 0 there
exist non-singular matrices E ∈Mn and F ∈Mm such that
−A(σ) = E ∗E and ∇2V (q(x)) = F ∗F , where E ∗ and F ∗ are the
transposed matrices of E and F , respectively; hence
A(σ)−1 = −E−1(E−1)∗ and ∇2V ∗ (σ) = F−1(F−1)∗. Let us set

di := (E−1)∗(Aix − bi ) ∈ Rn (i ∈ 1,m).

Because for Av defined above one has

Avx − bv =
∑m

i=1
vi (Aix − bi ) =

∑m

i=1
viE
∗di = E ∗

∑m

i=1
vidi ,

from the expression of
〈
v ,∇2D(σ)v

〉
we obtain that

〈
v ,∇2D(σ)v

〉
=
∥∥∥∑m

i=1
vidi

∥∥∥2
−
∥∥(F−1)∗v

∥∥2 ∀v ∈ Rm.

C. Zălinescu CDT and unconstrained optimization



Aim
Notations and problems

Results

The case σ ∈ S+
col

An auxiliary result
The case σ ∈ S−

Taking into account the expression of
〈
u,∇2f (x)v

〉
, we have that〈

u,∇2f (x)u
〉

= 〈u,A(σ)u〉+
〈
vu,∇2V (q(x)) vu

〉
= ‖Fvu‖2−‖Eu‖2 ,

for all u ∈ Rn, where

vu = (〈u,Aix − bi 〉)i∈1,m = (〈Eu, di 〉)i∈1,m,

Let us set

J : Rm → Rn, Jv :=
∑m

i=1
vidi (v ∈ Rm);

then the adjoint J∗ : Rn → Rm is given by

J∗u = (〈u, d1〉 , ..., 〈u, dm〉)T =:
(
〈u, di 〉

)
i∈1,m

(u ∈ Rn).

Take H : Rm → Rn defined by H := J ◦ F ∗. Then
H∗ = F ◦ J∗ : Rn → Rm.

C. Zălinescu CDT and unconstrained optimization



Aim
Notations and problems

Results

The case σ ∈ S+
col

An auxiliary result
The case σ ∈ S−

Denoting u′ := Eu for u ∈ Rn and v ′ := (F−1)∗v for v ∈ Rm, we
obtain that〈
u,∇2f (x)u

〉
=
∥∥H∗u′∥∥2−

∥∥u′∥∥2
,
〈
v ,∇2D(σ)v

〉
=
∥∥Hv ′∥∥2−

∥∥v ′∥∥2
.

Because E and F are non-singular, for ρ ∈ {>, ≥, <, ≤} and
ρ′ ∈ {�, �, ≺, �} with the natural correspondence, we have

∇2f (x) ρ′ 0⇐⇒
[∥∥H∗u′∥∥2

ρ 1 ∀u′ ∈ Sn
]
⇐⇒ [ϕ(u) ρ 1 ∀u ∈ Sn] ,

∇2D(σ) ρ′ 0⇐⇒
[∥∥Hv ′∥∥2

ρ 1 ∀v ′ ∈ Sm
]
⇐⇒ [ψ(v) ρ 1 ∀v ∈ Sm] ,

where Sp := SRp , and ϕ, ψ are defined in Proposition 8 with

H := J ◦ F ∗ : Rm → Rn, H∗ = F ◦ J∗ : Rn → Rm.

Recall that E ∈Mn and F ∈Mm are such that −A(σ) = E ∗E and
∇2V (q(x)) = F ∗F , di := (E−1)∗(Aix − bi ) (i ∈ 1,m).
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In the next result we shall use Proposition 8 for the operator
H := J ◦ F ∗. Setting dim{0} := 0, the following assertions hold:

dim(ImH) = dim(ImH∗) ≤ min{n,m},
dim(kerH) + dim(ImH) = m, dim(kerH∗) + dim(ImH∗) = n,
dim(kerH∗) [= dim(kerQ)] is equal to the multiplicity of the
eigenvalue 0 of Q := H ◦ H∗, while dim(kerH) is equal to the
multiplicity of the eigenvalue 0 of R := H∗ ◦ H.

Proposition 9 (to be continued)

Let (x , σ) ∈ X0 × S− be a critical point of Ξ.

(i) If x (resp. σ) is a local maximizer of f (resp. D), then
‖Hv‖ ≤ 1 for all v ∈ Sm, or, equivalently, (α =) β ≤ 1.
Conversely, if ‖Hv‖ < 1 for all v ∈ Sm, then x (resp. σ) is a local
strict maximizer of f (resp. D). In particular, if Aix = bi (or
equivalently di = 0) for all i ∈ 1,m, then x and σ are local strict
maximizers of f and D, respectively.
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Proposition 9 (continued)

(ii) If x is a local minimizer of f , then ‖H∗u‖ ≥ 1 for all u ∈ Sn; in
particular H is surjective, m ≥ n, and every positive eigenvalue of
H∗ ◦ H is greater than or equal to 1. Conversely, if ‖H∗u‖ > 1 for
all u ∈ Sn, then x is a local strict minimizer of f ; moreover, if
m > n then σ is not a local extremum for D.

(iii) If σ is a local minimizer of D, then ‖Hv‖ ≥ 1 for all v ∈ Sm;
in particular H is injective, m ≤ n, and every positive eigenvalue of
H ◦ H∗ is greater than or equal to 1. Moreover, if m < n then x is
not a local extremum for f . Conversely, if ‖Hv‖ > 1 for all
v ∈ Sm, then σ is a local strict minimizer of D.

(iv) Assume that m = n and {Aix − bi | i ∈ 1,m} is a basis of Rm.
If ‖Hv‖ > 1 for all v ∈ Sm, then x and σ are local strict
minimizers of f and D, respectively.
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Gao & Wu (in [GW17]) use the assumption
“(A3) The critical points of problem (P) are non-singular, i.e., if
∇Π(x) = 0, then det∇2Π(x) 6= 0”
Under such a condition we have the following result.

Corollary 10

Let (x , σ) ∈ X0 × S− be a critical point of Ξ such that
det∇2f (x) 6= 0 [that is 0 is not an eigenvalue of ∇2f (x)]. The
following assertions hold:

(a) x is a local maximizer of f if and only if ‖Hv‖ < 1 for all
v ∈ Sm, if and only if σ is a local maximizer of D.

(b) Assume that m = n. Then x is a local minimizer of f if and
only if ‖Hv‖ > 1 for all v ∈ Sm, if and only if σ is a local
minimizer of D.
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Relations with previous results

Let us compare first our results with those from the most recently
published paper on this topic for general V , that is Gao and Wu’s
paper [GW17].
Putting together Assumptions (A1) and (A2) of [GW17] (see also
its arxiv (2012) version, say [18]), the function V considered there
is real-valued, strictly convex, and twice continuously differentiable
on Im q. Hence V from [GW17] is more general than being in Γ2

sc

when domV = Rm. Of course, the strict convexity of V implies
∇2V (y) � 0 for y ∈ Rm, but this property does not imply
(∇2V ) (q(x)) � 0, which is used for example in [GW17, Eq. (36)].
In “Theorem 2 (Tri-duality Theorem)” (the case n = m) and
“Theorem 3. (Triality Theorem)” (the case n 6= m), σ ∈ Scol is a
“critical point of the canonical problem (Pd)” and
x := [A(σ)]−1 b(σ), and Assumption (A3) holds, that is
[∇f (x) = 0 ⇒ det∇2f (x) 6= 0].
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Our result in the case A(σ) � 0 is more general than those in
[GW17, Ths. 2, 3] not only because the hypothesis on V in
Proposition 2 is weaker and Assumption (A3) is not present, but
also because the conclusion in [GW17, Ths. 2, 3] is weaker, more
precisely f (x) = infx∈Rn f (x) ⇔ supσ∈S+

col
D(σ) = D(σ).

In what concerns the case A(σ) ≺ 0 and V ∈ Γ2
sc , Corollary 10 is

much more precise than the corresponding results in [GW17,
Ths. 2, 3] because it is mentioned when x and σ are local
minimizers (maximizers). Moreover, our proofs are very different
from those of [GW17], and follow the lines of the proof of Prop. 1
in Voisei-Z. (2013).
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Gao and Wu in (2011a, b and 2012) (which are essentially the
same) prove [GW17, Ths. 2, 3] for V (y) := 1

2

∑m
k=1 βky

2
k with

βk > 0 and bk := 0 (k ∈ 1,m) [under Assumption (A3)], using
similar arguments. Note that σ is taken to be a critical point of D
in “Theorem 4.3 (Refined Triality Theorem)”(the case n 6= m)
instead of being a “critical point of Problem (Pd)”, as in
“Theorem 3.1 (Tri-Duality Theorem)”.

Morales-Silva and Gao (2011) discuss the problem from Gao and
Wu in (2011a) with A0 := 0 and m := 1.

Morales-Silva and Gao (2012, 2015) consider
V (y) :=

∑p
k=1 exp(yk) + 1

2

∑m
k=p+1 βky

2
k for 0 ≤ p ≤ m (setting∑j

k=i γk := 0 when j < i) with βk > 0 for k ∈ p + 1,m; moreover,
bk := 0 and Ak � 0 for k ∈ 1,m are such that there exists
(αk)k∈1,m ⊂ Rm

+ with
∑m

k=1 αkAk � 0. Under Assumption (A3)
and using similar arguments to those in Th. 2 of Gao and Wu in
(2012), they prove [GW17, Ths. 2, 3] for σ “a stationary point of”
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A special place among DY Gao’s papers published after 2010 is
occupied by [GRP12] and [RG14] Ruan and Gao (2014).

In [GRP12] one takes the same V as in Gao and Wu (2012) but
Assumption (A3) is not considered. Putting together Theorems 2
and 3 from Gao and Wu (2012) for “ς a critical point of the
canonical dual function Pd(ς),”with the mention “If n 6= m, the
double-min duality (25) holds conditionally”, one gets “Theorem 2
(Triality Theorem)” of [GRP12] .

A detailed proof is provided in the case ς ∈ S+
a (= S+

col).

C. Zălinescu CDT and unconstrained optimization



Aim
Notations and problems

Results

The case σ ∈ S+
col

An auxiliary result
The case σ ∈ S−

The proof for the case ς ∈ S−a (= S−) is the following:

“If ς ∈ S−a , the matrix G (ς) is a negative definite. In this case, the
Gao–Strang complementary function Ξ(x , ς) is a so-called
super-Lagrangian [14], i.e., it is locally concave in both
x ∈ X0 ⊂ Xa and ς ∈ S0 ⊂ S−a .

By the fact that

maxx∈X0 maxς∈S0 Ξ(x , ς) = maxς∈S0 maxx∈Rn Ξ(x , ς) (26)

holds on the neighborhood X0 × S0 of (x , ς), we have the
double-max duality statement (24). If n = m, we have [33]:

minx∈X0 maxς∈S0 Ξ(x , ς) = minς∈S0 maxx∈Rn Ξ(x , ς) (27)

which leads to the double-min duality statement (25). This proves
the theorem.”

AND SO ON.
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Thank you for your attention!
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