The Proximal Alternating Minimization Algorithm

Gert Wanka ¹ joint work with Sandy Bitterlich ¹, Radu Ioan Boț ² and Ernö Robert Csetnek ²

¹Chemnitz University of Technology

²University of Vienna

Games, Dynamics and Optimization (GDO 2019) Babeș Bolyai University Cluj-Napoca, April 9-11, 2019

Table of contents

Introduction

- Motivation
- Definitions
- 2 AMA-Alternating Minimization Algorithm
- 3 Proximal AMA
- 4 Numerical Experiments
 - Image deblurring and denoising
 - Kernel based machine learning

Introduction AMA-Alternating Minimization Algorithm Proximal AMA

Numerical Experiments

Motivation Definitions

Motivation

Figure: Blurred and noisy image

• For deblurring and denoising of an image we consider the nonsmooth optimization problem:

$$\inf_{x\in\mathbb{R}^n}\left\{\frac{1}{2}\|Ax-b\|^2+\lambda\mathsf{TV}(x)\right\},\$$

where $A \in \mathbb{R}^{n \times n}$ is a blur operator, $b \in \mathbb{R}^n$ is the given blurred and noisy image, $\lambda > 0$ is a regularization parameter and $\mathsf{TV} : \mathbb{R}^n \to \mathbb{R}$ is a discrete total variation functional.

Introduction AMA-Alternating Minimization Algorithm Proximal AMA

Numerical Experiments

Motivation Definitions

Motivation

Figure: Blurred and noisy image

Figure: Solution of the problem

• For deblurring and denoising of an image we consider the nonsmooth optimization problem:

$$\inf_{x\in\mathbb{R}^n}\left\{\frac{1}{2}\|Ax-b\|^2+\lambda\mathsf{TV}(x)\right\},\,$$

where $A \in \mathbb{R}^{n \times n}$ is a blur operator, $b \in \mathbb{R}^n$ is the given blurred and noisy image, $\lambda > 0$ is a regularization parameter and $\mathsf{TV} : \mathbb{R}^n \to \mathbb{R}$ is a discrete total variation functional.

Definitions (1)

 \bullet Let ${\mathcal H}$ be a Hilbert space. Then we define

 $\Gamma(\mathcal{H}) = \{ f : \mathcal{H} \to \overline{\mathbb{R}} : f \text{ is proper, convex and lower semicontinuous} \}.$

Definitions

• Let $f : \mathcal{H} \to \overline{\mathbb{R}}$ and $\gamma > 0$. We call f strongly convex with modulus γ if for all $x, y \in \mathcal{H}$ and $t \in [0, 1]$ holds

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y) - \frac{1}{2}\gamma t(1 - t)||x - y||^2$$

Let f ∈ Γ((H)) and σ > 0. Then the Proximal Point Operator of f is defined as:

$$\operatorname{Prox}_{\sigma f}(x) = \operatorname*{argmin}_{y \in \mathcal{H}} \left\{ \sigma f(y) + \frac{1}{2} \|y - x\|^2 \right\}.$$

Definitions (2)

• We set

 $S_+(\mathcal{H}) = \{M : \mathcal{H} \to \mathcal{H} : M \text{ is linear, continuous, self-adjoint and}$ positive semidefinite}.

Definitions

• For $M \in S_+(\mathcal{H})$ we define the semi-norm $||x||_M^2 = \langle x, Mx \rangle \ \forall x \in \mathcal{H}.$

• We denote for $M_1, M_2 \in \mathcal{S}_+(\mathcal{H})$ the Loewner partial ordering by

$$M_1 \succcurlyeq M_2 \Leftrightarrow \|x\|_{M_1}^2 \ge \|x\|_{M_2}^2 \ \forall x \in \mathcal{H}.$$

 $\bullet\,$ Furthermore, we define for $\alpha>0$

$$\mathcal{P}_{\alpha}(\mathcal{H}) = \{ M \in \mathcal{S}_{+}(\mathcal{H}) : M \succcurlyeq \alpha \mathsf{Id} \}.$$

• Let $A : \mathcal{H} \to \mathcal{G}$ be a linear continuous operator. The operator $A^* : \mathcal{G} \to \mathcal{H}$, fulfilling

$$\langle A^*y, x \rangle = \langle y, Ax \rangle$$

for all $x \in \mathcal{H}$ and $y \in \mathcal{G}$, denotes the adjoint operator of A, while $||A|| := \sup\{||Ax|| : ||x|| \le 1\}$ denotes the norm of A.

AMA-Alternating Minimization Algorithm (1)

• Consider the following convex minimization problem

min f(x) + g(z), s.t. $Ax + Bz = b, x \in \mathbb{R}^n, z \in \mathbb{R}^m$

- where $f \in \Gamma(\mathbb{R}^n)$ is γ -strongly convex and $g \in \Gamma(\mathbb{R}^m)$, $A \in \mathbb{R}^{r \times n}, B \in \mathbb{R}^{r \times m}$ are linear operator and $b \in \mathbb{R}^r$.
- We have the following Lagrangian for this optimization problem

$$L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^r \to \overline{\mathbb{R}}$$

$$L(x, z, p) = f(x) + g(z) + \langle p, b - Ax - Bz \rangle.$$

AMA-Alternating Minimization Algorithm (2)

Algorithm

Choose $p^0 \in \mathbb{R}^r$ and a sequence of stepsizes $(c_k)_{k \ge 0} \subseteq (0, +\infty)$.

$$\forall k \ge 0 \begin{cases} x^k & := \operatorname{argmin}_{x \in \mathbb{R}^n} \{f(x) - \langle p^k, Ax \rangle\}, \\ z^k & \in \operatorname{argmin}_{z \in \mathbb{R}^m} \{g(z) - \langle p^k, Bz \rangle \\ & + \frac{c_k}{2} \|Ax^k + Bz - b\|^2\}, \\ p^{k+1} & := p^k + c_k(b - Ax^k - Bz^k). \end{cases}$$

Convergence

Theorem (Tseng, 1991)

Let $A \neq 0$ and $(x, z) \in ri(dom f) \times ri(dom g)$ be such that Ax + Bz = b. Assume that the sequence of stepsizes $(c_k)_{k\geq 0}$ satisfies

$$\epsilon \leq c_k \leq rac{2\gamma}{\|A\|^2} - \epsilon \ \forall k \geq 0,$$

where $\epsilon \in \left(0, \frac{\gamma}{\|A\|^2}\right)$. Let $(x^k, z^k, p^k)_{k\geq 0}$ be the sequence generated by the algorithm above. Then there exist $x^* \in \mathbb{R}^n$ and an optimal Lagrange multiplier $p^* \in \mathbb{R}^r$ associated with the constraint Ax + Bz = b such that

$$x^k o x^*, Bz^k o b - Ax^*, p^k o p^*(k o +\infty).$$

If the function $z \mapsto g(z) + ||Bz||^2$ has bounded level sets, then $(z^k)_{k\geq 0}$ is bounded and any of its cluster points z^* provides with (x^*, z^*) an optimal solution of the problem above.

Problem Formulation (1)

• Let $\mathcal H,\,\mathcal G$ and $\mathcal K$ be real Hilbert spaces. Consider the following convex minimization problem

$$\min\{f(x) + g(z) + h_1(x) + h_2(z)\}$$

s.t. $Ax + Bz = b$

- where $f \in \Gamma(\mathcal{H})$ γ -strongly convex and $g \in \Gamma(\mathcal{G})$, $h_1 : \mathcal{H} \to \mathbb{R}$ and $h_2 : \mathcal{G} \to \mathbb{R}$ convex and Fréchet differentiable functions with L_1 and L_2 -Lipschitz continuous gradients $(L_1, L_2 \ge 0)$, $A : \mathcal{H} \to \mathcal{K}$ and $B : \mathcal{G} \to \mathcal{K}$ linear continuous operators such that $A \neq 0$ and $b \in \mathcal{K}$.
- There exists $x \in ri(dom(f))$ and $z \in ri(dom(g))$ satisfying Ax + Bz = b.

Problem Formulation (2)

• We have the following Lagrangian for this optimization problem

$$L: \mathcal{H} \times \mathcal{G} \times \mathcal{K} \to \overline{\mathbb{R}}$$

$$L(x, z, p) = f(x) + g(z) + h_1(x) + h_2(z) + \langle p, b - Ax - Bz \rangle.$$

 We say that (x^{*}, z^{*}, p^{*}) ∈ H × G × K is a saddle point of the Lagrangian L, if

$$L(x^*, z^*, p) \leq L(x^*, z^*, p^*) \leq L(x, z, p^*)$$

holds for all $(x, z, p) \in \mathcal{H} \times \mathcal{G} \times \mathcal{K}$.

Proximal AMA

Algorithm

Let
$$(M_1^k)_{k\geq 0} \subseteq S_+(\mathcal{H})$$
 and $(M_2^k)_{k\geq 0} \subseteq S_+(\mathcal{G})$. Choose
 $(x^0, z^0, p^0) \in \mathcal{H} \times \mathcal{G} \times \mathcal{K}$ and a sequence of stepsizes $(c_k)_{k\geq 0} \subseteq (0, +\infty)$.
 $\forall k \geq 1 \begin{cases} x^{k+1} & := \operatorname{argmin}_{x\in\mathcal{H}} \{f(x) - \langle p^k, Ax \rangle + \langle x - x^k, \nabla h_1(x^k) \rangle \\ & + \frac{1}{2} \|x - x^k\|_{M_1^k}^2 \}, \\ z^{k+1} & \in \operatorname{argmin}_{z\in\mathcal{G}} \{g(z) - \langle p^k, Bz \rangle + \frac{c_k}{2} \|Ax^{k+1} + Bz - b\|^2 \\ & + \langle z - z^k, \nabla h_2(z^k) \rangle + \frac{1}{2} \|z - z^k\|_{M_2^k}^2 \}, \\ p^{k+1} & := p^k + c_k(b - Ax^{k+1} - Bz^{k+1}). \end{cases}$

- The sequence $(z^k)_{k\geq 0}$ is uniquely determined if there exists $\alpha_k > 0$ such that $c_k B^* B + M_2^k \in \mathcal{P}_{\alpha_k}(\mathcal{G})$ for all $k \geq 0$.
- For $M_2^k := \frac{1}{\sigma_k} |\mathbf{d} c_k B^* B$ with $\sigma_k > 0$ and $\sigma_k c_k ||B||^2 \le 1$ the update of z^{k+1} is a proximal step.

Convergence

Theorem

Let the set of saddle points of the Lagrangian L be nonempty and $M_1^k - \frac{L_1}{2}Id \in S_+(\mathcal{H}), M_1^k \geq M_1^{k+1}, M_2^k - \frac{L_2}{2}Id \in S_+(\mathcal{G}), M_2^k \geq M_2^{k+1}$ for all $k \geq 0$. Assume that the sequence $(x^k, z^k, p^k)_{k\geq 0}$ is generated by the Algorithm above and $(c_k)_{k\geq 0}$ is monotonically decreasing satisfying:

$$\epsilon \leq c_k \leq rac{2\gamma}{\|A\|^2} - \epsilon, \quad orall k \geq 0,$$

where $\epsilon \in (0, \frac{\gamma}{\|A\|^2})$. If one of the following assumptions hold true:

- there exists $\alpha > 0$ such that $M_2^k \frac{L_2}{2} Id \in \mathcal{P}_{\alpha}(\mathcal{G})$ for all $k \ge 0$;
- there exists $\beta > 0$ such that $B^*B \in \mathcal{P}_{\beta}(\mathcal{G})$;

then $(x^k, z^k, p^k)_{k\geq 0}$ converges weakly to a saddle point of the Lagrangian L.

Image deblurring and denoising Kernel based machine learning

Image deblurring and denoising

• For deblurring and denoising of an image we consider the nonsmooth optimization problem:

$$\inf_{x\in\mathbb{R}^n}\left\{\frac{1}{2}\|Ax-b\|^2+\lambda\mathsf{TV}(x)\right\},\,$$

where $A \in \mathbb{R}^{n \times n}$ is a blur operator, $b \in \mathbb{R}^n$ is the given blurred and noisy image, $\lambda > 0$ is a regularization parameter and $\mathsf{TV} : \mathbb{R}^n \to \mathbb{R}$ is a discrete total variation functional.

• The vector $x \in \mathbb{R}^n$ is the vectorized image $X \in \mathbb{R}^{M \times N}$, where n = MN and $x_{i,j} := X_{i,j}$ stands for the normalized value of the pixel in the *i*-th row and the *j*-th column, $1 \le i \le M, 1 \le j \le N$. For color images we have $X \in \mathbb{R}^{M \times N \times 3}$ and n = 3MN.

Image deblurring and denoising Kernel based machine learning

Discrete total variation (1)

We consider the discrete *isotropic total variation* $\mathsf{TV}_{\mathsf{iso}} : \mathbb{R}^n \to \mathbb{R}$,

$$\begin{aligned} \mathsf{TV}_{iso}(x) &= \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \sqrt{(x_{i+1,j} - x_{i,j})^2 + (x_{i,j+1} - x_{i,j})^2} \\ &+ \sum_{i=1}^{M-1} |x_{i+1,N} - x_{i,N}| + \sum_{j=1}^{N-1} |x_{M,j+1} - x_{M,j}|, \end{aligned}$$

and the discrete anisotropic total variation $\mathsf{TV}_{aniso} : \mathbb{R}^n \to \mathbb{R}$,

$$\begin{aligned} \mathsf{TV}_{\mathsf{aniso}}(x) &= \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} |x_{i+1,j} - x_{i,j}| + |x_{i,j+1} - x_{i,j}| \\ &+ \sum_{i=1}^{M-1} |x_{i+1,N} - x_{i,N}| + \sum_{j=1}^{N-1} |x_{M,j+1} - x_{M,j}|. \end{aligned}$$

Image deblurring and denoising Kernel based machine learning

Discrete total variation (2)

• We define the linear operator

 $L: \mathbb{R}^n \to \mathbb{R}^n imes \mathbb{R}^n, x_{i,j} \mapsto (L_1 x_{i,j}, L_2 x_{i,j})$, where

$$L_{1}x_{i,j} = \begin{cases} x_{i+1,j} - x_{i,j}, & \text{if } i < M \\ 0, & \text{if } i = M \end{cases} \text{ and} \\ L_{2}x_{i,j} = \begin{cases} x_{i,j+1} - x_{i,j}, & \text{if } j < N \\ 0, & \text{if } j = N \end{cases}$$

• The problem above can be written as

$$\inf_{x\in\mathbb{R}^n}\left\{f(Ax)+g(Lx)\right\},\,$$

where $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = \frac{1}{2} ||x - b||^2$ and $g : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, where in the case of the anisotropic total variation $g(y, z) = \lambda ||(y, z)||_1$ and in the case of the isotropic total variation $g(y, z) = \lambda ||(y, z)||_x := \lambda \sum_{i=1}^M \sum_{j=1}^N \sqrt{y_{i,j}^2 + z_{i,j}^2}$.

Image deblurring and denoising Kernel based machine learning

Image deblurring and denoising

• The Fenchel dual problem is given by (strong duality holds):

$$\inf_{p \in \mathbb{R}^n, q \in \mathbb{R}^n \times \mathbb{R}^n} \{ f^*(p) + g^*(q) \}$$

s.t. $A^*p + L^*q = 0.$

- As $f^*(p) = \frac{1}{2} \|p\|^2 + \langle p, b \rangle$ for all $p \in \mathbb{R}^n$, f^* is 1-strongly convex.
- The conjugate of g is the indicator function of the set

$$[-\lambda,\lambda]^n \times [-\lambda,\lambda]^n$$

(in the anisotrpic case) or the indicator function of the set

$$\mathcal{S} := \left\{ (\mathbf{v}, \mathbf{w}) \in \mathbb{R}^n imes \mathbb{R}^n : \max_{1 \leq i \leq n} \sqrt{v_i^2 + w_i^2} \leq \lambda
ight\}$$

(in the isotropic case).

Image deblurring and denoising Kernel based machine learning

Proximal-AMA-Algorithm

We choose $M_1^k = 0$ and $M_2^k = \frac{1}{\sigma_k} I - c_k L L^*$ for every $k \ge 0$ and obtain for Proximal AMA:

Algorithm

Choose $x^0 \in \mathbb{R}^n$ and $(c_k)_{k\geq 0} > 0$. For all $k \geq 0$ generate the sequence $(p^k, q^k, x^k)_{k\geq 0}$ as follows:

$$p^{k+1} = \underset{p \in \mathbb{R}^{n}}{\operatorname{argmin}} \left\{ f^{*}(p) - \langle x^{k}, A^{*}p \rangle \right\} = Ax^{k} - b$$
$$q^{k+1} = \operatorname{Prox}_{\sigma_{k}g^{*}} \left(q^{k} + \sigma_{k}c_{k}L(-A^{*}p^{k+1} - L^{*}q^{k}) + \sigma_{k}L(x^{k}) \right)$$
$$x^{k+1} = x^{k} + c_{k}(-A^{*}p^{k+1} - L^{*}q^{k+1}).$$

The proximal operator of the q^{k+1} -Update is a projection operator.

Image deblurring and denoising Kernel based machine learning

AMA-Algorithm

Algorithm

Choose $x^0 \in \mathbb{R}^n$ and $(c_k)_{k\geq 0} > 0$. For all $k \geq 0$ generate the sequence $(p^k, q^k, x^k)_{k\geq 0}$ as follows:

$$p^{k} = \operatorname*{argmin}_{p \in \mathbb{R}^{n}} \left\{ f^{*}(p) - \langle x^{k}, A^{*}p \rangle \right\} = Ax^{k} - b$$
$$q^{k} = \operatorname*{argmin}_{q \in \mathbb{R}^{m}} \left\{ g^{*}(q) - \langle x^{k}, L^{*}q \rangle + \frac{c_{k}}{2} \|A^{*}p^{k} + L^{*}q\|^{2} \right\}$$
$$x^{k+1} = x^{k} + c_{k}(-A^{*}p^{k} - L^{*}q^{k}).$$

In Proximal AMA a closed formula is available for the computation of q^k , in AMA we solved the resulting optimization subproblem in every iteration $k \ge 0$ by making some steps of the FISTA method.

Image deblurring and denoising Kernel based machine learning

Image

Figure: Original image "office _ 4" Figure: Blurred and noisy image

Figure: Image after 50s cpu-time

Image deblurring and denoising Kernel based machine learning

Comparison Proximal-AMA and AMA

Figure: Objective function values for anisotropic TV with $\lambda = 5 \cdot 10^{-5}$

Figure: ISNR value for anisotropic TV with $\lambda = 5 \cdot 10^{-5}$

Image deblurring and denoising Kernel based machine learning

Kernel based machine learning (1)

• For Kernel based machine learning we have a given training data set

$$\mathcal{Z} = \{(X_1, Y_1), \ldots, (X_n, Y_n)\} \subseteq \mathbb{R}^d \times \{+1, -1\}$$

Figure: A sample of images belonging to the classes +1 and -1.

• The symmetric and finitely positive definite Gaussian kernel function is given by

$$\kappa: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}, \ \kappa(x, y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right).$$

 By K ∈ ℝ^{n×n} we denoted the symmetric and positive definite Gram matrix with entries K_{ij} = κ(X_i, X_j) for i, j = 1,..., n.

Image deblurring and denoising Kernel based machine learning

Kernel based machine learning (2)

• We consider the nonsmooth optimization problem:

$$\inf_{x\in\mathbb{R}^n}\left\{f(x)+g(\mathbf{K}x)\right\}$$

which is equivalent to

$$\inf_{x\in\mathbb{R}^n}\left\{f(x)+g(z)\right\},\quad\text{s.t. }Kx-z=0$$

where $f : \mathbb{R}^n \to \mathbb{R}, f(x) = \frac{1}{2}x^T K x, g : \mathbb{R}^n \to \mathbb{R}$ and $g(z) = C \sum_{i=1}^n \max\{1 - z_i Y_i, 0\}$ for a C > 0.

- So f is $\lambda_{\min}(K)$ -strongly convex and differentiable and $\nabla f(x) = Kx \quad \forall x \in \mathbb{R}^n$.
- For $p \in \mathbb{R}^n$, we have

$$g^*(p) = \begin{cases} \sum_{i=1}^n p_i Y_i, & \text{if } p_i Y_i \in [-C, 0], i = 1, \dots, n \\ +\infty & \text{otherwise.} \end{cases}$$

Image deblurring and denoising Kernel based machine learning

Proximal-AMA-Algorithm

Algorithm

Choose $x^0 \in \mathbb{R}^n$, $z^0 \in \mathbb{R}^n$, $p^0 \in \mathbb{R}^n$, for an $\epsilon > 0$ the sequence $(c_k)_{k \ge 0} \in (\epsilon, \frac{2\lambda_{\min}(K)}{\|K\|^2} - \epsilon)$, $(M_1^k)_{k \ge 1}$ positive semidefinite and $(\sigma_k)_{k \ge 0} > 0$ such that $\sigma_k \le \frac{1}{c_k}$. For all $k \ge 1$ generate the sequence $(p^k, q^k, x^k)_{k \ge 0}$ as follows:

$$x^{k+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \left\{ f(x) - \langle \boldsymbol{p}^k, \boldsymbol{K} x \rangle + \frac{1}{2} \| x - x^k \|_{M_1^k}^2 \right\}$$

$$= (K + M_1^{\kappa})^{-1} (K p^{\kappa} + M_1^{\kappa} x^{\kappa})$$
(1)

$$z^{k+1} = \operatorname{Prox}_{\sigma_k g} \left((1 - c_k \sigma_k) z^k + \sigma_k (c_k K x^{k+1} - p^k) \right)$$
(2)

$$p^{k+1} = p^k + c_k (-K x^{k+1} + z^{k+1}).$$
(3)

Image deblurring and denoising Kernel based machine learning

Comparison Proximal-AMA and AMA (1)

- For $M_1^k = 0$ and $\sigma_k = \frac{1}{c_k}$ the algorithm above is the AMA-Algorithm which performs for the update of z^k the proximal-step: $z^{k+1} = \Pr_{\substack{\frac{1}{c_k}g}}(Kx^{k+1} \frac{1}{c^k}p^k) = (Kx^{k+1} \frac{1}{c^k}p^k) \frac{1}{c_k}\Pr_{c_kg^*}(c^kKx^{k+1} p^k)$ by means of the Moreau decomposition formula for $\gamma > 0$ $\Pr_{\alpha_f}(x) + \gamma \Pr_{\alpha_{1/\gamma}f^*}(\gamma^{-1}x) = x, \quad \forall x \in \mathcal{H} \ (= \mathbb{R}^n \ here).$
- In the numerical experiments $\sigma_k = \frac{1}{c_k}$ was the best choice for the Proximal AMA algorithm, so the update of z^{k+1} is the same as in the AMA algorithm.
- But the choice of $M_1^k = \tau_k K$ was for some $\tau_k > 0$ better than $M_1^k = 0$. So the update of x^k for Proximal-AMA becomes $x^{k+1} = \frac{1}{1+\tau_k}(p^k + \tau_k x^k)$ instead of $x^{k+1} = p^k$ like in AMA.
- We used for both algorithms a constant sequence of stepsizes $c_k = 2 \cdot \frac{\lambda_{\min}(K)}{||K||^2} 10^{-8}$ for all $k \ge 0$.

Comparison Proximal-AMA and AMA (2)

Algorithm	misclassification rate at 0.7027 %	$RMSE \le 10^{-3}$
Proximal AMA	8.18s (145)	23.44s (416)
AMA	8.65s (153)	26.64s (474)

Table: Performance evaluation for the SVM problem using C = 1, $\sigma = 0.2$ (standard deviation of the gaussian kernel function) and for Proximal AMA $\tau_k = 10$. The entries refer to the CPU times in secondes and the number of iterations.

Algorithm	misclassification rate at 0.7027 %	$RMSE \le 10^{-3}$
Proximal AMA	141.78 s (2448)	629.52 s (10,940)
AMA	147.99 s (2574)	652.61 s (11,368)

Table: Performance evaluation for the SVM problem using C = 1, $\sigma = 0.25$ and for Proximal AMA $\tau_k = 102$. The entries refer to the CPU times in secondes and the number of iterations.

Image deblurring and denoising Kernel based machine learning

Literature (1)

Banert, Sebastian; Boţ, Radu Ioan; Csetnek, Ernö Robert: *Fixing and extending some recent results on the ADMM algorithm*. Preprint. arXiv:1612.05057, 2017.

Bitterlich, Sandy; Boţ, Radu Ioan; Csetnek, Ernö Robert; Wanka, Gert: *The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints*. Journal of Optimization Theory and Applications. https://doi.org/10.1007/s10957-018-01454-y (to appear).

Boţ, Radu Ioan; Csetnek, Ernö Robert; Heinrich, Andre; Hendrich, Christopher: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Mathematical Programming 150(2), 251-279, 2015.

Hendrich, Christopher: *Proximal Splitting Methods in Nonsmooth Convex Optimization*. Dissertation, TU-Chemnitz, Fakultät für Mathematik, 2014.

Numerical Ex

Literature (2)

Image deblurring and denoising Kernel based machine learning

Rudin,Leonid I.; Osher, Stanley and Fatemi, Emad: *Nonlinear total-variation-based noise removal algorithms*. Physica D: Nonlinear Phenom. 60 (1-4), 259–268, 1992.

Tseng, Paul: Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational Inequalities. SIAM J. Control Optimization 29(1), 119–138, 1991.