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A Dynamical Systems approach to Optimization

A general Problem: Let E : X → R,

find minimizers u∗ of E(·)

Several continuous dynamical systems have been studied in
connection to minimization:

I Gradient Flows
du

dt
= −∇E(u),

I Second order Gradient Systems
d2u

dt2
+
du

dt
= −∇E(u) or

I Sistems with vanishing damping
d2u

dt2
+
γ

t

du

dt
= −∇E(u).

AIM: discuss second order dynamical systems associated to a
nonconvex, noncoercive functional E on an infinite dimensional
space X.
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A nonconvex functional in image processing

Samson et. al.1 (cf. also Aubert and Kornprobst2) have
proposed a Mumford-Shah-type nonconvex, noncoercive
functional that can achieve both image classification and
restoration simultaneously

Eε (u) =

∫
Ω

(u− u0)2 dx+ ε

∫
Ω
ϕ (|∇u|) dx+

1

ε

∫
Ω
W (u) dx

where u0 is the image to be restored and classified, ε > 0 is a
small parameter and ϕ : R→ R, ϕ (w) = w2

w2+1
while W is the

double-well potential W : R→ R, W (u) = 1
4

(
u2 − 1

)2
.

Why not ‖ux‖2? Not edge-preserving (too much smoothing).

1C. Samson, L. Blanc-Féraud, G. Aubert, J. Zerubia, A variational
model for image classification and restoration, IEEE Trans. Pattern Anal.
Mach. Intell. 22 (2000), no. 5, 460-472.

2G. Aubert, B. Kornprobst, Mathematical Problems in Image
Processing: Partial Differential Equations and the Calculus of Variations
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Semilinear wave equations utt + ut = uxx + f(u):
classical results of Haraux & Jendoubi3

If f analytic then it satisfies the Lojasiewicz inequality.
Solutions satisfy the energy balance equation (with F ′ = f)

d

dt

(
1

2
‖v‖2 +

1

2
‖ux‖2 +

∫
Ω

F (u)dx

)
= −‖v‖2.

Theorem (Haraux-Jendoubi, ’01)
Assume that f : R→ R is analytic, with f ′′ is bounded on (−β, β)∀β > 0
and let u be a solution such that⋃

t≥1

[u(t), v(t)] rel. compact in H2(Ω)×H1(Ω)

then there exits a stationary point u∗ T > 0 large enough such that for all
t ≥ T

‖u(t)− u∗‖H1 ≤ Ctθ/(1−2θ) if 0 < θ <
1

2

‖u(t)− u∗‖H1 ≤ Ce−ωt if θ =
1

2
.

3A. Haraux, M. Jendoubi, Decay estimates for some evolution equations
with an analytic nonlinrearity, Asympt. Anal. 26(2001), 21-36.



A semiliner wave equation for the image processing
functional

The semilinear equation associated to

E(u) =

∫
Ω
ϕ (ux) dx+

∫
Ω
W (u) dx

is
utt + ut = ϕ′′(ux)uxx + u− u3,

with the energy-dissipation equation

d

dt

(
1

2
‖v‖2 +

∫
Ω

u2
x

1 + u2
x

dx+

∫
Ω
W (u)dx

)
= −‖v‖2 .

Can we repeat the analysis of Haraux and Jendoubi?
NO... even well-posedness fails. Discontinuities develop in finite
time.
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Possible remedies/Alternative approaches

I weakening the solution concept (?!?)

I modifying the energy functional by adding some higher
order regularization (???)

I changing the damping (more/stronger damping)

I both changing the damping and adding a higher order
regularization to the functional
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Approach I: stronger damping + h.o. regularization

We consider

E(u)ε =
ε

2
‖uxx‖2 +

∫
Ω
ϕ (ux) dx+

∫
Ω
W (u) dx

and the higher order, damped wave equation

utt = utxx−uxxxx + ϕ′′(ux)uxx + u− u3.

Energy balance now reads

d

dt

(
1

2
‖v‖2 +

ε

2
‖uxx‖2 +

∫
Ω

u2
x

1 + u2
x

dx+

∫
Ω
W (u)dx

)
= −‖vx‖2.



Approach I (continued): rigorous results based on
semigroup methods

This approach has a series of advantages:

I the linear part of the equation generates an analytic, immediately
compact semigroup (see Engel & Nagel)

I global solutions exist in H2
0 (Ω)× L2(Ω)

I with improved regularity (u(t), v(t)) ∈ H4(Ω) ∩H2
0 (Ω)×H2

0 (Ω) for all
t > 0

I all trajectories are relatively compact (by a result of Pazy)

I all trajectories converge to equilibrium (by LaSalle’s Invariance
Principle)
and furthermore

I the model admits an ε-independent ‖uxx‖-estimate, on bounded time
intervals [0, T ], such that solutions converge (as ε→ 0) to weak
solutions of the ε = 0-model (by Aubin’s Lemma)

but also one drawback

I the t→∞ and ε→ 0 limits do not commute.
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Approach II: strong damping

We consider te unperturbed energy

E(u) =

∫
Ω
ϕ (ux) dx+

∫
Ω
W (u) dx

and the damped wave equation with a strong damping

utt = utxx + ϕ′′(ux)uxx + u− u3.

Energy balance now reads

d

dt

(
1

2
‖v‖2 +

∫
Ω

u2
x

1 + u2
x

dx+

∫
Ω
W (u)dx

)
= −‖vx‖2.



Approach II (continued): rigorous results

Thes analysis of this model is much more involved than what we had
previously:

I local solutions exist in H2
0 (Ω)× L2(Ω) (by semigroup methods or by

the fixed point theorem of Krasnoselskii for the sum of two operators4)

I global existence in H2
0 (Ω)× L2(Ω) follows from a new ‖uxx‖-estimate

however

I no improved regularity or compactness is present

I one can not apply LaSalle’s Ivariance Principle.

Work in progress: energy decay estimates along bounded trajectories.

4G. Andrews, On the existence of solutions to the equation
utt = utxx + σ(ux)x, J. Diff. Eq. 35 (1980), 200-231.
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Returning to the classical semilinear wave equation:
Metastability and the role of small coefficients

Let us return to the classical semilinear wave equation, but with
a small coefficient ε� 1

utt = −ut + ε2uxx + u− u3.

There exists a manifoldM of initial data, in the state space, for
which theorem of Haraux and Jendoubi still holds but with a
very large T

Actually

T = Tε ≥
C√
ε
e1/ε.

This phenomenon is called Metastability5

5R. Folino, C. Lttanzio, C. Mascia, Metastable dynamics for hyperbolic
variations of the Allen-Cahn equation, preprint.
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