A Dual Moving Balls Algorithm for a Class of Nonsmooth Convex Constrained Minimization

Marc Teboulle

School of Mathematical Sciences

Tel Aviv University

Joint work with

Ron Shefi

GDO 2019 – Games, Dynamics and Optimization April 9 – 11, 2019, Babes-Bolyai University, Cluj-Napoca, Romania

Marc Teboulle (Tel Aviv University)

A Dual First-Order Method

A First Order Method for Solving the Constrained NSO

(P)
$$\varphi_* = \min\{\varphi(x) : g(x) \le 0, x \in \mathbb{R}^n\},\$$

- $\varphi : \mathbb{R}^n \to \mathbb{R}$ is a convex nonsmooth function
- $g : \mathbb{R}^n \to \mathbb{R}$ is convex $C_{L_g}^{1,1}$, i.e, L_g -Lipschitz continuous gradient on \mathbb{R}^n
- $\mathcal{F} := \{x \in \mathbb{R}^n : g(x) \le 0\} \neq \emptyset$ the feasible set of (P).

Like in all FOM we assume that φ is "simple", that is *prox friendly*.

A First Order Method for Solving the Constrained NSO

(P)
$$\varphi_* = \min\{\varphi(x) : g(x) \le 0, x \in \mathbb{R}^n\},\$$

- $\varphi : \mathbb{R}^n \to \mathbb{R}$ is a convex nonsmooth function
- $g : \mathbb{R}^n \to \mathbb{R}$ is convex $C_{L_q}^{1,1}$, i.e, L_g -Lipschitz continuous gradient on \mathbb{R}^n
- $\mathcal{F} := \{x \in \mathbb{R}^n : g(x) \le 0\} \neq \emptyset$ the feasible set of (P).

Like in all FOM we assume that φ is "simple", that is *prox friendly*.

Example: Typical in various linear inverse problems: sparse recovery/ machine learning

$$\min\{\varphi(x) \equiv \operatorname{norm}(x) : \|Ax - b\|^2 \le \delta, \ x \in \mathbb{E}\}.$$

Derive a simple $O(1/\varepsilon)$ first order algorithm to find an ε -optimal solution:

$$(P) \qquad \varphi_* = \min\{\varphi(x) : x \in \mathcal{F} \equiv \{x \in \mathbb{R}^n : g(x) \le 0\}\}.$$

Using only data info and is Parameters Free.

Derive a simple $O(1/\varepsilon)$ first order algorithm to find an ε -optimal solution:

$$(P) \qquad \varphi_* = \min\{\varphi(x) : x \in \mathcal{F} \equiv \{x \in \mathbb{R}^n : g(x) \le 0\}\}.$$

Using only data info and is Parameters Free.

- Underlying Idea of The New Method.
- Approach/Main Tools and Global Convergence Results.
- Numerical Example on Large Scale Sparse Recovery.

$$(P) \qquad \varphi_* = \min\{\varphi(x) : g(x) \le 0, x \in \mathbb{R}^n\},\$$

Fact: Best known rate with a first order method for (P): $O(1/\varepsilon)$.

$$(P) \qquad \varphi_* = \min\{\varphi(x) : g(x) \le 0, x \in \mathbb{R}^n\},\$$

Fact: Best known rate with a first order method for (P): $O(1/\varepsilon)$.

ANSWER: Apparently, we don't!....

.....Without recourse to extra/unknowns parameters/heuristics...ect......

$$(P) \qquad \varphi_* = \min\{\varphi(x) : g(x) \le 0, x \in \mathbb{R}^n\},\$$

Fact: Best known rate with a first order method for (P): $O(1/\varepsilon)$.

ANSWER: Apparently, we don't!....

.....Without recourse to extra/unknowns parameters/heuristics...ect......

- Subgradient Projection/ Mirror Descent Type Methods Slow convergent rate O(1/ε²)...+ Need easy projection on nonlinear constraint. Bundle, same.
- Fast Proximal-Gradient Methods Great! Optimal rate O(1/√ε)! But...to apply it one first must penalize the problem!...And we don't know the penalty parameter!
- Smoothing Methods Can tackle special forms of (P) with O(1/ε) rate... But depends on smoothing and other parameters!
- Lagrangian/ADM Methods Even when they can... Need an unknown penalty parameter!... The complexity rate is O(1/ε)...But the constant depends on it ...! Large parameter ⇒ very slow method!

 $(P) \qquad \varphi_* = \min\{\varphi(x) : g(x) \le 0, \ x \in \mathbb{R}^n\}, \ [\varphi \text{ nonsmooth } g \in C_{L_q}^{1,1}].$

Blanket Assumption A

- A1 There exists an optimal solution for problem (P).
- A2 Slater's condition holds: $\exists \hat{x} \in \mathbb{R}^n : g(\hat{x}) < 0.$
- A3 For any $x \in \mathcal{F}$, $\mathbf{0} \notin \partial \varphi(x)$.

A1 and A2 are standard in convex programming. Warrant that $x^* \in \mathbb{R}^n$ is an optimal solution of (P) if and only if (KKT) optimality conditions hold, i.e.,

 $[\mathsf{KKT-P}] \quad \exists \ \lambda^* \geq \mathsf{0} \text{ such that } \mathsf{0} \in \partial \varphi(x^*) + \lambda^* \nabla g(x^*); \ \lambda^* g(x^*) = \mathsf{0}, g(x^*) \leq \mathsf{0}.$

A3 eliminates the trivial case: a feasible point as an unconstrained minimizer of $\varphi(\cdot)$.

Starting Idea: Approximate the feasible set by *Moving Balls*.[Auslender-Shefi-Teboulle '10].

Starting Idea: Approximate the feasible set by Moving Balls. [Auslender-Shefi-Teboulle '10].

• Exploit smoothness of g in the constraint. The descent Lemma gives for any $L \ge L_g$:

$$g(x) \leq g(y) + \langle
abla g(y), x - y
angle + rac{L}{2} \|x - y\|^2, \quad orall x, y \in \mathbb{R}^n.$$

Starting Idea: Approximate the feasible set by Moving Balls. [Auslender-Shefi-Teboulle '10].

 Exploit smoothness of *g* in the constraint. The descent Lemma gives for any *L* ≥ *L_g*:

$$g(x) \leq g(y) + \langle
abla g(y), x - y
angle + rac{L}{2} \|x - y\|^2, \quad orall x, y \in \mathbb{R}^n.$$

• Algebra Time...The Descent Lemma Reads:

$$\frac{2}{L}g(x) \le \|x - c(y)\|^2 - \rho^2(y),$$

where

$$c(y) := y - (1/L) \nabla g(y), \rho^2(y) := \frac{1}{L^2} \|\nabla g(y)\|^2 - \frac{2}{L} g(y).$$

Leads to the following approximation of problem (P)...

Fix any $y \in \mathcal{F}$.

Define the ball centered at c(y) with radius $\rho(y)$

$$\mathcal{B}(y) := \{ x \in \mathbb{R}^n : \| x - c(y) \|^2 \le \rho^2(y) \}.$$

The Approximated Convex Problem P(y)

For each $y \in \mathcal{F}$ minimizes the nonsmooth objective over the ball B(y):

 $\begin{array}{ll} (P(y)) & \mbox{min} & \varphi(x) \\ & \mbox{subject to} & x \in B(y). \end{array}$

Problem P(y) is a natural approximation of problem (P).

This is justified by the following properties which also lead to the algorithm.

Fix any $y \in \mathcal{F}$.

Proposition 1 - [Approximation of (P)]

- **(**) B(y) is a nonempty, compact convex set with $B(y) \subseteq \mathcal{F}$.
- Slater's condition holds for problem P(y).

Fix any $y \in \mathcal{F}$.

Proposition 1 - [Approximation of (P)]

- **(**) B(y) is a nonempty, compact convex set with $B(y) \subseteq \mathcal{F}$.
- Slater's condition holds for problem P(y).

Proposition 2- [Fixed Point] Let x(y) be an optimal solution for problem P(y).

If $y \in x(y)$, then y is a solution for problem (P).

Fix any $y \in \mathcal{F}$.

Proposition 1 - [Approximation of (P)]

- **(**) B(y) is a nonempty, compact convex set with $B(y) \subseteq \mathcal{F}$.
- Slater's condition holds for problem P(y).

Proposition 2- [Fixed Point] Let x(y) be an optimal solution for problem P(y).

If $y \in x(y)$, then y is a solution for problem (P).

Basic Scheme Generate a sequence of <u>feasible</u> (interior) pts by minimizing φ over a sequence of moving balls.

$$x^0\in \mathcal{F}, \qquad x^k\in ext{argmin}\left\{arphi(x): \ \|x- extsf{c}(x^{k-1})\|^2\leq
ho^2(x^{k-1})
ight\}, \ k\geq 1.$$

How to implement this?

Fix any $y \in \mathcal{F}$.

Proposition 1 - [Approximation of (P)]

- **(**) B(y) is a nonempty, compact convex set with $B(y) \subseteq \mathcal{F}$.
- Slater's condition holds for problem P(y).

Proposition 2- [Fixed Point] Let x(y) be an optimal solution for problem P(y).

If $y \in x(y)$, then y is a solution for problem (P).

Basic Scheme Generate a sequence of <u>feasible</u> (interior) pts by minimizing φ over a sequence of moving balls.

$$x^0\in \mathcal{F}, \qquad x^k\in ext{argmin}\left\{arphi(x): \ \|x- extsf{c}(x^{k-1})\|^2\leq
ho^2(x^{k-1})
ight\}, \ k\geq 1.$$

How to implement this?

Our approach: Solve P(y) via its dual!

Fix any $y \in \mathcal{F}$

$$P(y) \qquad \min\{\varphi(x): \ \|x-c(y)\|^2 \leq \rho^2(y), \ x \in \mathbb{R}^n\}.$$

A Lagrangian dual for P(y) is one dimensional convex problem in λ

$$D(y) \qquad \sup\{q(\lambda; y): \ \lambda \geq 0\} \equiv \sup\{q(\lambda; y): \ \lambda > 0\}.^{1}$$

with

$$q(\lambda; y) := -\frac{\lambda}{2}\rho(y)^2 + \min_{x \in \mathbb{R}^n} \{\varphi(x) + \frac{\lambda}{2} \|x - c(y)\|^2\}.$$

The dual objective is *one dimensional*...with nice properties..!

¹Last equality can be proven thanks to closedness of *q*.

The Dual Objective is Very Nice!

The dual objective is a *one dimensional* concave function in λ :

$$\lambda \to q(\lambda; y) = \underbrace{\min_{\boldsymbol{\chi} \in \mathbb{R}^n} \{\varphi(\boldsymbol{\chi}) + \frac{\lambda}{2} \| \boldsymbol{\chi} - \boldsymbol{c}(\boldsymbol{y}) \|^2 \}}_{M^{\varphi}_{\lambda}(\boldsymbol{c}(\boldsymbol{y}))} - \frac{\lambda}{2} \rho(\boldsymbol{y})^2$$

The dual variable is nothing else but **the proximal parameter** in the Moreau's envelope of the nonsmooth $\varphi(\cdot)$:

$$q(\lambda; y) \equiv M^{\varphi}_{\lambda}(c(y)) - \frac{\lambda}{2}\rho^{2}(y).$$

The Dual Objective is Very Nice!

The dual objective is a *one dimensional* concave function in λ :

$$\lambda \to q(\lambda; y) = \underbrace{\min_{\boldsymbol{\chi} \in \mathbb{R}^n} \{\varphi(\boldsymbol{\chi}) + \frac{\lambda}{2} \| \boldsymbol{\chi} - \boldsymbol{c}(\boldsymbol{y}) \|^2 \}}_{M^{\varphi}_{\lambda}(\boldsymbol{c}(\boldsymbol{y}))} - \frac{\lambda}{2} \rho(\boldsymbol{y})^2$$

The dual variable is nothing else but **the proximal parameter** in the Moreau's envelope of the nonsmooth $\varphi(\cdot)$:

$$q(\lambda; y) \equiv M^{\varphi}_{\lambda}(c(y)) - \frac{\lambda}{2}\rho^2(y).$$

- Properties of proximal maps and their envelopes are very well known and useful.....
- But here we are interested in the properties of the proximal envelope M^φ_λ(u) as a function of the parameter λ > 0

$$\lambda \to M^{\varphi}_{\lambda}(u),$$
 when $\underline{u \in \mathbb{R}^d}$ is fixed.

Proximal Maps/Envelopes as Function of Proximal Parameter

Let $h : \mathbb{R}^d \to (-\infty, +\infty]$ be a closed proper convex function. For any $u \in \mathbb{R}^d$ and any t > 0, the *proximal map* of *h* and its *proximal envelope* are defined respectively by:

$$\operatorname{prox}_{t}^{h}(u) = \operatorname{argmin}_{z \in \mathbb{R}^{d}} \left\{ h(z) + \frac{t}{2} \|z - u\|^{2} \right\}$$
$$M_{t}^{h}(u) = \min_{z \in \mathbb{R}^{d}} \left\{ h(z) + \frac{t}{2} \|z - u\|^{2} \right\}$$

Proximal Maps/Envelopes as Function of Proximal Parameter

Let $h : \mathbb{R}^d \to (-\infty, +\infty]$ be a closed proper convex function. For any $u \in \mathbb{R}^d$ and any t > 0, the *proximal map* of *h* and its *proximal envelope* are defined respectively by:

$$\operatorname{prox}_{t}^{h}(u) = \operatorname{argmin}_{z \in \mathbb{R}^{d}} \left\{ h(z) + \frac{t}{2} ||z - u||^{2} \right\}$$
$$M_{t}^{h}(u) = \min_{z \in \mathbb{R}^{d}} \left\{ h(z) + \frac{t}{2} ||z - u||^{2} \right\}$$

Proposition For any $u \in \mathbb{R}^d$, the following properties hold for $t \to M_t^h(u)$: The function $t \to M_t^h(u)$ is concave and $C^1(0,\infty)$ with derivative

$$\frac{d}{dt}M_t^h(u) = \frac{1}{2}\|\operatorname{prox}_t^h(u) - u\|^2.$$

For any u ∈ dom h, lim_{t→∞} M^h_t(u) = h(u) and lim_{t→∞} prox^h_t(u) = u.
lim_{t→0+} M^h_t(u) = -h^{*}(0).
lim_{t→0+} prox^h_t(u) = argmin{h(u) : u ∈ ℝ^d} = ∂h^{*}(0)

Thanks to this, we can derive useful properties for the dual function $q(\lambda; y)$.

Marc Teboulle (Tel Aviv University)

Fix any $y \in \mathcal{F}$, and let $\psi : (0, \infty) \to \mathbb{R}$

$$\psi(\lambda) := q(\lambda; y) = M^{\varphi}_{\lambda}(c(y)) - \frac{\lambda}{2}\rho^{2}(y).$$

Apply previous proposition to get the following

Properties of the dual function $\psi(\lambda)$. • ψ is a concave, $C^1(0, \infty)$, with derivative $\psi'(\lambda) = \frac{1}{2} \left\{ \| \operatorname{prox}_{\lambda}^{\varphi}(c(y)) - c(y) \|^2 - \rho^2(y) \right\}.$ • An optimal solution of the dual problem $\overline{\lambda} > 0$ solves the scalar equation $\psi'(\lambda) = 0.$

Using these, we are ready to define the primal-dual algorithm for solving P(y).

DUMBA

Let $x^0 \in \mathcal{F}$, and for k = 1, 2, ..., generate $x^k \in \mathcal{F}$ and $\lambda_k \in (0, \infty)$ via the iterations:

Step 1. Compute

 $c(x^{k-1}) = x^{k-1} - (1/L)\nabla g(x^{k-1}), \qquad \rho(x^{k-1})^2 = (1/L^2) \|\nabla g(x^{k-1})\|^2 - (2/L)g(x^{k-1}).$

Step 2. Find a positive root λ for the scalar equation

$$||x(\lambda) - c(x^{k-1})||^2 = \rho^2(x^{k-1}),$$

where $x(\lambda) := \operatorname{prox}_{\lambda}^{\varphi} (c(x^{k-1}))$, and set $\lambda_k = \lambda$.

Step 3. Update

$$x^k = \operatorname{prox}_{\lambda_k}^{\varphi} \left(c(x^{k-1}) \right).$$

DUMBA

Let $x^0 \in \mathcal{F}$, and for k = 1, 2, ..., generate $x^k \in \mathcal{F}$ and $\lambda_k \in (0, \infty)$ via the iterations:

Step 1. Compute

 $c(x^{k-1}) = x^{k-1} - (1/L)\nabla g(x^{k-1}), \qquad \rho(x^{k-1})^2 = (1/L^2) \|\nabla g(x^{k-1})\|^2 - (2/L)g(x^{k-1}).$

Step 2. Find a positive root λ for the scalar equation

$$||x(\lambda) - c(x^{k-1})||^2 = \rho^2(x^{k-1}),$$

where $x(\lambda) := \operatorname{prox}_{\lambda}^{\varphi} (c(x^{k-1}))$, and set $\lambda_k = \lambda$.

Step 3. Update

$$x^k = \operatorname{prox}_{\lambda_k}^{\varphi} \left(c(x^{k-1}) \right).$$

The main computational step in DUMBA consists of:

- computing the proximal map of φ at a given *c* (like in all prox-gradient methods).
- Solving a scalar equation. Price to pay to handle nonlinear constraint!

Theorem 1 [Pointwise Convergence]

Let $\{x^k\}$ be the sequence generated by DUMBA. Then,

- **(**) the sequence of function values $\{\varphi(x^k)\}$ is monotonically decreasing,
- the sequence {x^k} is bounded and converges to an optimal solution of problem (P).

Theorem 2 (Global Rate in Function Values)

Let $\{x^k\} \in \mathcal{F}$ and $\lambda_k \in (0, \infty)$ be the primal-dual sequences generated by DUMBA, and let x^* be an optimal solution of (*P*). Then, for all $k \ge 1$,

• there exists a positive constant *C* such $\lambda_k \leq C$,

we have

$$arphi(x^k) - arphi(x^*) \leq rac{C \|x^0 - x^*\|^2}{k}$$

Note: The positive constant *C* depends on the problem's data.

Theorem 2 (Global Rate in Function Values)

Let $\{x^k\} \in \mathcal{F}$ and $\lambda_k \in (0, \infty)$ be the primal-dual sequences generated by DUMBA, and let x^* be an optimal solution of (*P*). Then, for all $k \ge 1$,

• there exists a positive constant *C* such $\lambda_k \leq C$,

we have

$$arphi(x^k) - arphi(x^*) \leq rac{C \|x^0 - x^*\|^2}{k}$$

Note: The positive constant *C* depends on the problem's data.

Open Question: Can we determine C explicitly?

 $\min\{\varphi(\mathbf{x}): \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \leq \delta, \ \mathbf{x} \in \mathbb{E}\}.$

- The objective φ is assumed Lipschitz continuous with known constant L_{φ} .
- $AA^{T} = I$ (i.e., a restricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

 $\min\{\varphi(\mathbf{x}): \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \leq \delta, \ \mathbf{x} \in \mathbb{E}\}.$

- The objective φ is assumed Lipschitz continuous with known constant L_{φ} .
- $AA^{T} = I$ (i.e., a restricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

$$C=rac{L_{arphi}}{\delta}.$$

 $\min\{\varphi(\mathbf{x}): \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \leq \delta, \ \mathbf{x} \in \mathbb{E}\}.$

- The objective φ is assumed Lipschitz continuous with known constant L_{φ} .
- $AA^{T} = I$ (i.e., a restricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

$$C = \frac{L_{\varphi}}{\delta}$$

- DUMBA can be very slow whenever δ is too small...Not a surprise!
- Obviously not designed to solve equality constrained problems!

 $\min\{\varphi(\mathbf{x}): \|\mathbf{A}\mathbf{x}-\mathbf{b}\| \leq \delta, \ \mathbf{x} \in \mathbb{E}\}.$

- The objective φ is assumed Lipschitz continuous with known constant L_{φ} .
- $AA^{T} = I$ (i.e., a restricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

$$C = \frac{L_{\varphi}}{\delta}$$

- DUMBA can be very slow whenever δ is too small...Not a surprise!
- Obviously not designed to solve equality constrained problems!
- The positive side: becomes fast and useful for a large perturbation δ !
- Numerical experiments confirm the theory.

• We illustrate the main step of DUMBA on several well known convex models arising in various applications: machine learning, signal processing, etc..

find
$$\lambda > 0$$
 that solves $\|\operatorname{prox}_{\lambda}^{\varphi}(c) - c\|^2 = \rho^2$.

• In all the examples below the objective function φ will be a norm on an appropriate Euclidean space.

In that case, A3 eliminates the trivial optimal solution $x^* = 0$ in problem (P), and translates to

$$g(\mathbf{0}) > \mathbf{0} \implies \|\boldsymbol{c}\| > \rho,$$

which is exactly what is needed to warrant solution of the scalar equation.

Compute $\operatorname{prox}_{\lambda}^{\varphi}(c)$ and find $\lambda > 0$ that solves $\|\operatorname{prox}_{\lambda}^{\varphi}(c) - c\|^2 = \rho^2$.

All cases below are with φ 'prox friendly", i.e., explicit formula.

- $$\begin{split} \varphi(x) &= \|x\|_{2} \quad \quad \text{Euclidean norm} \\ \varphi(x) &= \|x\|_{1} \quad \quad l_{1} \text{norm} \\ \varphi(x) &= \sum_{g \in \mathcal{G}} \|x_{g}\|_{2} \quad \quad \text{Group lasso mixed norm } l_{1}/l_{2}, \ \mathcal{G} \text{ partition } \{1, \dots, g\} \\ \varphi(x) &= \|X\|_{*} \quad \quad \text{Trace norm } X \in \mathbb{R}^{n \times n}. \end{split}$$
- First example admits a closed formula for $\lambda = 1/\rho$.
- Remaining examples λ solves a scalar equation of similar type, e.g., for l₁:

$$\sum_{i=1}^{n} \min\left\{\left|\mathbf{C}_{i}\right|^{2}, \frac{1}{\lambda^{2}}\right\} = \rho^{2}.$$

Efficient procedures in O(n) [Bruker, 1984].

• We tested DUMBA on the BPDN, a central model for sparse recovery.

(BPDN)	minimize	$ x _{1}$
	subject to	$\ Ax - b\ _2^2 \le \delta^2, x \in \mathbb{R}^n,$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, δ^2 is the noise power estimates.

• We tested DUMBA on the BPDN, a central model for sparse recovery.

(BPDN)	minimize	$ x _1$
	subject to	$\ \mathbf{A}\mathbf{x}-\mathbf{b}\ _{2}^{2}\leq\delta^{2},\ \mathbf{x}\in\mathbb{R}^{n},$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, δ^2 is the noise power estimates.

• Comparison vs **NESTA** [Becker et al. 2010] \equiv Smoothing + Optimal Gradient. Complexity $O(1/k^2)$.. But for the "smoothed" objective φ_{μ} .

• Already includes sets of extensive experiments and comparison with other state-of-the-art methods for solving this class of problems.

• We tested DUMBA on the BPDN, a central model for sparse recovery.

(BPDN)	minimize	$ x _1$
	subject to	$\ Ax - b\ _2^2 \le \delta^2, x \in \mathbb{R}^n,$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, δ^2 is the noise power estimates.

• Comparison vs **NESTA** [Becker et al. 2010] \equiv Smoothing + Optimal Gradient. Complexity $O(1/k^2)$.. But for the "smoothed" objective φ_{μ} .

• Already includes sets of extensive experiments and comparison with other state-of-the-art methods for solving this class of problems.

- The strength of DUMBA-L1 [specialized to this problem's model]
 - Complexity of O(1/k) .. But for the "original" objective φ .
 - Parameters free No smoothing or other parameters to guess or tune.
 - Allows in fact dedicated to!– for efficiently handling a large error δ .

Tested on random problems with n = 262, 144; m = n/8; s = m/5.

Experimental Setup from NESTA: Low and High Dynamic Ranges

Dynamic range *d*: is a measure of the ratio between the largest and smallest magnitudes of the non-zero coefficients of the unknown signal.

- High dynamic range: useful in applications requiring detection and recovery of signals with small amplitudes obscures by large ones.
- Low dynamic range: useful for problems with large errors δ .

Tested on random problems with n = 262, 144; m = n/8; s = m/5.

Experimental Setup from NESTA: Low and High Dynamic Ranges

Dynamic range *d*: is a measure of the ratio between the largest and smallest magnitudes of the non-zero coefficients of the unknown signal.

- High dynamic range: useful in applications requiring detection and recovery of signals with small amplitudes obscures by large ones.
- Low dynamic range: useful for problems with large errors δ .

As expected from the theory, DUMBA-L1:

- is effective in obtaining good accuracy of approximate solution with sparse signals at **low dynamic range** \iff **large bounding error**.
- is less efficient in reaching an extremely high accuracy when in the high dynamic range setting. [..Like any other methods..!].
- Yet, remains of comparable quality and speed vs available state of the art schemes.

(BPDN) minimize $\{ \|x\|_1 : \|Ax - b\|_2^2 \le \delta^2, x \in \mathbb{R}^n \}$ (1)

- $x_s \in \mathbb{R}^n$ is *s*-sparse signal.
- $A \in \mathbb{R}^{m \times n}$ is a randomly subsampled discrete cosine transform, $AA^T = I$.
- n = 262, 144, m = n/8, and s = m/5.
- $b = Ax_s + e$ with $e \sim N(0, \sigma)$. Noise level $\sigma = 0.1$.

•
$$\delta = \sqrt{m + 2\sqrt{2m}\sigma},$$

Following the experiment setup of NESTA,

$$\mathbf{x}[i] = \mathbb{I}(i \in \Lambda)\eta_1[i] \mathbf{10}^{\alpha \eta_2[i]}, \tag{2}$$

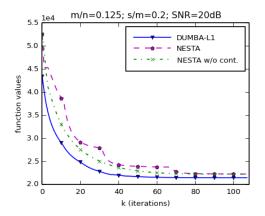
 Λ - choosing *s* indices from the set [*n*].

 $\eta_1[i], i \in \Lambda$ - iid Bernoulli random variables.

 $\eta_2[i], i \in \Lambda$ - iid Uniformly distributed random variables in [0, 1].

The signal x_s created in this manner have a dynamic range d dB, where $\alpha = d/20$.

low dynamic range d = 20 dBhigh dynamic range d = 40, 60, 80, 100 dB Figure: DUMBA-L1 and NESTA with and without continuation SNR=20dB. Function values vs # iterations



- NETSA Needs: $T = 5, \mu_f = 0.02, \text{tol} = 10^{-5}.$
- DUMBA-L1: Only stopping tolerance parameter tol= 10^{-5} .

Figure: DUMBA-L1 and NESTA with/without continuation Relative error and residual error vs # iterations

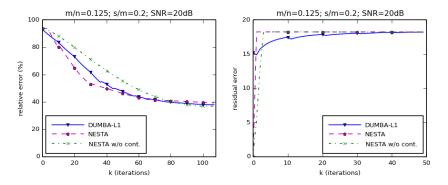


Table: Comparison of accuracy: DUMBA-L1 with continuation and NESTA - N_A = number of calls to A, A^T

dB	Method	N _A	$\frac{\ x - x_s\ _2}{\ x_s\ _2}$	$ x _{1}$	$\ Ax - b\ _2$
40	NESTA	458	0.06610	137,745.0546	18.2425
	DUMBA-L1	410	0.06601	136,952.0288	18.2421
60	NESTA	581	0.00979	940,690.6773	18.2419
	DUMBA-L1	602	0.00979	939,900.5124	18.2419
80	NESTA	575	0.00163	7,047,085.3632	18.2409
	DUMBA-L1	614	0.00162	7,046,316.2648	18.2349
100	NESTA	604	0.00035	56,155,527.2231	18.2400
	DUMBA-L1	720	0.00032	56,154,276.5952	18.2376

The stopping criteria used was

$$\|\hat{x}^k\|_1 \le \|x_{\text{NESTA}}\|_1$$
 and $\|\hat{x}^k - x_s\|_2 / \|x_s\| \le \|x_{\text{NESTA}} - x_s\|_2 / \|x_s\|$ and $\|A\hat{x}^k - b\|_2 \le \delta.$

• **NESTA**: tol_{NESTA} = 10^{-6}

• **DUMBA-L1**: $tol_f = 10^{-6}$ and T = 7 continuation steps.

Thank you for your attention!