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The Problem

A First Order Method for Solving the Constrained NSO

(P) ϕ∗ = min{ϕ(x) : g(x) ≤ 0, x ∈ Rn},

ϕ : Rn → R is a convex nonsmooth function

g : Rn → R is convex C1,1
Lg

, i.e, Lg-Lipschitz continuous gradient on Rn

F := {x ∈ Rn : g(x) ≤ 0} 6= ∅ the feasible set of (P).

Like in all FOM we assume that ϕ is “simple", that is prox friendly.

Example:
Typical in various linear inverse problems: sparse recovery/ machine learning

min{ϕ(x) ≡ norm(x) : ‖Ax − b‖2 ≤ δ, x ∈ E}.
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Goal and Outline

Derive a simple O(1/ε) first order algorithm to find an ε-optimal solution:

(P) ϕ∗ = min{ϕ(x) : x ∈ F ≡ {x ∈ Rn : g(x) ≤ 0}}.

Using only data info and is Parameters Free.

Underlying Idea of The New Method.

Approach/Main Tools and Global Convergence Results.

Numerical Example on Large Scale Sparse Recovery.
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Don’t We Have Other O(1/ε) FOM for a Constrained NSO?

(P) ϕ∗ = min{ϕ(x) : g(x) ≤ 0, x ∈ Rn},

Fact: Best known rate with a first order method for (P): O(1/ε).

ANSWER: Apparently, we don’t ....!....

.....Without recourse to extra/unknowns parameters/heuristics...ect............
Subgradient Projection/ Mirror Descent Type Methods Slow convergent rate
O(1/ε2)...+ Need easy projection on nonlinear constraint. Bundle, same.

Fast Proximal-Gradient Methods Great! Optimal rate O(1/
√
ε)! But...to apply it

one first must penalize the problem!...And we don’t know the penalty parameter!

Smoothing Methods Can tackle special forms of (P) with O(1/ε) rate... But
depends on smoothing and other parameters!

Lagrangian/ADM Methods Even when they can... Need an unknown penalty
parameter!... The complexity rate is O(1/ε)...But the constant depends on it ...!
Large parameter⇒ very slow method!
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Blanket Assumption on Convex NSO (P)

(P) ϕ∗ = min{ϕ(x) : g(x) ≤ 0, x ∈ Rn}, [ϕ nonsmooth g ∈ C1,1
Lg

].

Blanket Assumption A
A1 There exists an optimal solution for problem (P).

A2 Slater’s condition holds: ∃x̂ ∈ Rn : g(x̂) < 0.

A3 For any x ∈ F , 0 6∈ ∂ϕ(x).

A1 and A2 are standard in convex programming. Warrant that x∗ ∈ Rn is an optimal
solution of (P) if and only if (KKT) optimality conditions hold, i.e.,

[KKT-P] ∃ λ∗ ≥ 0 such that 0 ∈ ∂ϕ(x∗) + λ∗∇g(x∗); λ∗g(x∗) = 0, g(x∗) ≤ 0.

A3 eliminates the trivial case: a feasible point as an unconstrained minimizer of ϕ(·).
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The Approximation Model – Main Idea

Starting Idea: Approximate the feasible set by Moving Balls.[Auslender-Shefi-Teboulle ’10].

Exploit smoothness of g in the constraint. The descent Lemma gives for any
L ≥ Lg :

g(x) ≤ g(y) + 〈∇g(y), x − y〉+
L
2
‖x − y‖2, ∀x , y ∈ Rn.

Algebra Time...The Descent Lemma Reads:

2
L

g(x) ≤ ‖x − c(y)‖2 − ρ2(y),

where

c(y) := y − (1/L)∇g(y),

ρ2(y) :=
1
L2 ‖∇g(y)‖2 − 2

L
g(y).

Leads to the following approximation of problem (P)...
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The Approximate Convex Model

Fix any y ∈ F .

Define the ball centered at c(y) with radius ρ(y)

B(y) := {x ∈ Rn : ‖x − c(y)‖2 ≤ ρ2(y)}.

The Approximated Convex Problem P(y)

For each y ∈ F minimizes the nonsmooth objective over the ball B(y):

(P(y)) min ϕ(x)
subject to x ∈ B(y).

Problem P(y) is a natural approximation of problem (P).
This is justified by the following properties which also lead to the algorithm.
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Basic Properties of P(y) : min{ϕ(x) : x ∈ B(y)}

Fix any y ∈ F .

Proposition 1 - [Approximation of (P)]
(i) B(y) is a nonempty, compact convex set with B(y) ⊆ F .
(ii) Slater’s condition holds for problem P(y).

Proposition 2- [Fixed Point] Let x(y) be an optimal solution for problem P(y).

If y ∈ x(y), then y is a solution for problem (P).

Basic Scheme Generate a sequence of feasible (interior) pts by minimizing ϕ over a
sequence of moving balls.

x0 ∈ F , xk ∈ argmin
{
ϕ(x) : ‖x − c(xk−1)‖2 ≤ ρ2(xk−1)

}
, k ≥ 1.

How to implement this?

Our approach: Solve P(y) via its dual!
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A Dual Problem for P(y)

Fix any y ∈ F

P(y) min{ϕ(x) : ‖x − c(y)‖2 ≤ ρ2(y), x ∈ Rn}.

A Lagrangian dual for P(y) is one dimensional convex problem in λ

D(y) sup{q(λ; y) : λ ≥ 0} ≡ sup{q(λ; y) : λ > 0}.1

with
q(λ; y) := −λ

2
ρ(y)2 + min

x∈Rn
{ϕ(x) +

λ

2
‖x − c(y)‖2}.

The dual objective is one dimensional...with nice properties..!

1Last equality can be proven thanks to closedness of q.
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The Dual Objective is Very Nice!

The dual objective is a one dimensional concave function in λ:

λ→ q(λ; y) = min
x∈Rn
{ϕ(x) +

λ

2
‖x − c(y)‖2}︸ ︷︷ ︸

Mϕ
λ
(c(y))

−λ
2
ρ(y)2

The dual variable is nothing else but the proximal parameter in the Moreau’s
envelope of the nonsmooth ϕ(·) :

q(λ; y) ≡ Mϕ
λ (c(y))− λ

2
ρ2(y).

Properties of proximal maps and their envelopes are very well known and
useful.....

But here we are interested in the properties of the proximal envelope Mϕ
λ (u) as a

function of the parameter λ > 0

λ→ Mϕ
λ (u), when u ∈ Rd is fixed.
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Proximal Maps/Envelopes as Function of Proximal Parameter

Let h : Rd → (−∞,+∞] be a closed proper convex function. For any u ∈ Rd and any
t > 0, the proximal map of h and its proximal envelope are defined respectively by:

proxh
t (u) = argminz∈Rd

{
h (z) +

t
2
‖z − u‖2

}
Mh

t (u) = min
z∈Rd

{
h(z) +

t
2
‖z − u‖2

}

Proposition For any u ∈ Rd , the following properties hold for t → Mh
t (u):

(i) The function t → Mh
t (u) is concave and C1(0,∞) with derivative

d
dt

Mh
t (u) =

1
2
‖proxh

t (u)− u‖2.

(ii) For any u ∈ dom h, limt→∞Mh
t (u) = h(u) and limt→∞ proxh

t (u) = u.
(iii) limt→0+ Mh

t (u) = −h∗(0).

(iv) limt→0+ proxh
t (u) = argmin{h(u) : u ∈ Rd} = ∂h∗(0)

Thanks to this, we can derive useful properties for the dual function q(λ; y).
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Properties of The Dual Objective of P(y)

Fix any y ∈ F ,and let ψ : (0,∞)→ R

ψ(λ) := q(λ; y) = Mϕ
λ (c(y))− λ

2
ρ2(y).

Apply previous proposition to get the following

Properties of the dual function ψ(λ).
(i) ψ is a concave, C1(0,∞), with derivative

ψ′(λ) =
1
2

{
‖proxϕλ(c(y))− c(y)‖2 − ρ2(y)

}
.

(ii) An optimal solution of the dual problem λ̄ > 0 solves the scalar equation

ψ′(λ) = 0.

Using these, we are ready to define the primal-dual algorithm for solving P(y).
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The Algorithm: DUal Moving Ball Algorithm (DUMBA)

DUMBA
Let x0 ∈ F , and for k = 1, 2, . . ., generate xk ∈ F and λk ∈ (0,∞) via the iterations:

Step 1. Compute

c(xk−1) = xk−1 − (1/L)∇g(xk−1), ρ(xk−1)2 = (1/L2)‖∇g(xk−1)‖2 − (2/L)g(xk−1).

Step 2. Find a positive root λ for the scalar equation

‖x(λ)− c(xk−1)‖2 = ρ2(xk−1),

where x(λ) := proxϕλ
(
c(xk−1)

)
, and set λk = λ.

Step 3. Update
xk = proxϕλk

(
c(xk−1)

)
.

The main computational step in DUMBA consists of:
1 computing the proximal map of ϕ at a given c (like in all prox-gradient methods).
2 Solving a scalar equation. Price to pay to handle nonlinear constraint!
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Convergence Result I – Point Convergence

Theorem 1 [Pointwise Convergence]
Let {xk} be the sequence generated by DUMBA. Then,

(i) the sequence of function values {ϕ(xk )} is monotonically decreasing,

(ii) the sequence {xk} is bounded and converges to an optimal solution of
problem (P).
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Convergence Result II – Complexity

Theorem 2 (Global Rate in Function Values)
Let {xk} ∈ F and λk ∈ (0,∞) be the primal-dual sequences generated by
DUMBA, and let x∗ be an optimal solution of (P). Then, for all k ≥ 1,

there exists a positive constant C such λk ≤ C,

we have

ϕ(xk )− ϕ(x∗) ≤ C‖x0 − x∗‖2

k
.

Note: The positive constant C depends on the problem’s data.

Open Question: Can we determine C explicitly?
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One Answer: for a Special, but Important Class of Problems

min{ϕ(x) : ‖Ax − b‖ ≤ δ, x ∈ E}.

The objective ϕ is assumed Lipschitz continuous with known constant Lϕ.

AAT = I (i.e., a restricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

C =
Lϕ
δ
.

DUMBA can be very slow whenever δ is too small...Not a surprise!

Obviously not designed to solve equality constrained problems!

The positive side: becomes fast and useful for a large perturbation δ!
Numerical experiments confirm the theory.

Marc Teboulle (Tel Aviv University) A Dual First-Order Method



One Answer: for a Special, but Important Class of Problems

min{ϕ(x) : ‖Ax − b‖ ≤ δ, x ∈ E}.

The objective ϕ is assumed Lipschitz continuous with known constant Lϕ.

AAT = I (i.e., a restricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

C =
Lϕ
δ
.

DUMBA can be very slow whenever δ is too small...Not a surprise!

Obviously not designed to solve equality constrained problems!

The positive side: becomes fast and useful for a large perturbation δ!
Numerical experiments confirm the theory.

Marc Teboulle (Tel Aviv University) A Dual First-Order Method



One Answer: for a Special, but Important Class of Problems

min{ϕ(x) : ‖Ax − b‖ ≤ δ, x ∈ E}.

The objective ϕ is assumed Lipschitz continuous with known constant Lϕ.

AAT = I (i.e., a restricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

C =
Lϕ
δ
.

DUMBA can be very slow whenever δ is too small...Not a surprise!

Obviously not designed to solve equality constrained problems!

The positive side: becomes fast and useful for a large perturbation δ!
Numerical experiments confirm the theory.

Marc Teboulle (Tel Aviv University) A Dual First-Order Method



One Answer: for a Special, but Important Class of Problems

min{ϕ(x) : ‖Ax − b‖ ≤ δ, x ∈ E}.

The objective ϕ is assumed Lipschitz continuous with known constant Lϕ.

AAT = I (i.e., a restricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

C =
Lϕ
δ
.

DUMBA can be very slow whenever δ is too small...Not a surprise!

Obviously not designed to solve equality constrained problems!

The positive side: becomes fast and useful for a large perturbation δ!
Numerical experiments confirm the theory.

Marc Teboulle (Tel Aviv University) A Dual First-Order Method



Examples

We illustrate the main step of DUMBA on several well known convex models
arising in various applications: machine learning, signal processing, etc..

find λ > 0 that solves ‖proxϕλ(c)− c‖2 = ρ2.

In all the examples below the objective function ϕ will be a norm on an appropriate
Euclidean space.

In that case, A3 eliminates the trivial optimal solution x∗ = 0 in problem (P), and
translates to

g(0) > 0 =⇒ ‖c‖ > ρ,

which is exactly what is needed to warrant solution of the scalar equation.
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Typical Examples in Sparse Recovery

Compute proxϕλ(c) and find λ > 0 that solves ‖proxϕλ(c)− c‖2 = ρ2.

All cases below are with ϕ ‘prox friendly", i.e., explicit formula.

ϕ(x) = ‖x‖2 − Euclidean norm
ϕ(x) = ‖x‖1 − l1 − norm

ϕ(x) =
∑
g∈G

‖xg‖2 − Group lasso mixed norm l1/l2, G partition {1, . . . , g}

ϕ(x) = ‖X‖∗ − Trace norm X ∈ Rn×n.

First example admits a closed formula for λ = 1/ρ.

Remaining examples λ solves a scalar equation of similar type, e.g., for l1:

n∑
i=1

min

{
|ci |2,

1
λ2

}
= ρ2.

Efficient procedures in O(n) [Bruker, 1984].
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Numerical Examples

We tested DUMBA on the BPDN, a central model for sparse recovery.

(BPDN) minimize ‖x‖1

subject to ‖Ax − b‖2
2 ≤ δ2, x ∈ Rn,

where A ∈ Rm×n, b ∈ Rm, δ2 is the noise power estimates.

Comparison vs NESTA [Becker et al. 2010] ≡ Smoothing + Optimal Gradient.

Complexity O(1/k2) .. But for the “smoothed" objective ϕµ.

• Already includes sets of extensive experiments and comparison with other
state-of-the-art methods for solving this class of problems.

The strength of DUMBA-L1 [specialized to this problem’s model]

• Complexity of O(1/k) .. But for the “original" objective ϕ.

• Parameters free – No smoothing or other parameters to guess or tune.

• Allows – in fact dedicated to!– for efficiently handling a large error δ.
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Numerical Examples
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The DUMBA -L1 Algorithm Versus NESTA

Tested on random problems with n = 262, 144; m = n/8; s = m/5.

Experimental Setup from NESTA: Low and High Dynamic Ranges

Dynamic range d: is a measure of the ratio between the largest and smallest
magnitudes of the non-zero coefficients of the unknown signal.

High dynamic range: useful in applications requiring detection and recovery of
signals with small amplitudes obscures by large ones.

Low dynamic range: useful for problems with large errors δ.

As expected from the theory, DUMBA-L1:

is effective in obtaining good accuracy of approximate solution with sparse signals
at low dynamic range⇐⇒ large bounding error.
is less efficient in reaching an extremely high accuracy when in the high dynamic
range setting. [..Like any other methods..!].

Yet, remains of comparable quality and speed vs available state of the art
schemes.
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Numerical Experiments Setup

(BPDN) minimize {‖x‖1 : ‖Ax − b‖2
2 ≤ δ2, x ∈ Rn} (1)

xs ∈ Rn is s-sparse signal.

A ∈ Rm×n is a randomly subsampled discrete cosine transform, AAT = I.

n = 262, 144, m = n/8, and s = m/5.

b = Axs + e with e ∼ N(0, σ). Noise level σ = 0.1.

δ =
√

m + 2
√

2mσ,

Following the experiment setup of NESTA,

x [i] = I(i ∈ Λ)η1[i]10αη2[i], (2)

Λ - choosing s indices from the set [n].
η1[i], i ∈ Λ - iid Bernoulli random variables.
η2[i], i ∈ Λ - iid Uniformly distributed random variables in [0, 1].

The signal xs created in this manner have a dynamic range d dB, where α = d/20.

low dynamic range d = 20dB
high dynamic range d = 40, 60, 80, 100dB
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Comparison with NESTA: Low Dynamic d = 20dB

Figure: DUMBA-L1 and NESTA with and without continuation SNR=20dB. Function values vs # iterations

NETSA Needs: T = 5, µf = 0.02,tol = 10−5.

DUMBA-L1: Only stopping tolerance parameter tol=10−5.
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Comparison with NESTA: Low Dynamic d = 20dB

Figure: DUMBA-L1 and NESTA with/without continuation Relative error and residual error vs # iterations
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Comparison with NESTA: Varying High Dynamic Range

Table: Comparison of accuracy: DUMBA-L1 with continuation and NESTA - NA= number of calls
to A,AT

dB Method NA
‖x−xs‖2
‖xs‖2

‖x‖1 ‖Ax − b‖2

40 NESTA 458 0.06610 137,745.0546 18.2425
DUMBA-L1 410 0.06601 136,952.0288 18.2421

60 NESTA 581 0.00979 940,690.6773 18.2419
DUMBA-L1 602 0.00979 939,900.5124 18.2419

80 NESTA 575 0.00163 7,047,085.3632 18.2409
DUMBA-L1 614 0.00162 7,046,316.2648 18.2349

100 NESTA 604 0.00035 56,155,527.2231 18.2400
DUMBA-L1 720 0.00032 56,154,276.5952 18.2376

The stopping criteria used was

‖x̂k‖1 ≤ ‖xNESTA‖1 and ‖x̂k − xs‖2/‖xs‖ ≤ ‖xNESTA − xs‖2/‖xs‖ and

‖Ax̂k − b‖2 ≤ δ.

NESTA: tolNESTA = 10−6

DUMBA-L1: tolf = 10−6 and T = 7 continuation steps.

Marc Teboulle (Tel Aviv University) A Dual First-Order Method



Thank you for your attention!
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