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The Problem

A First Order Method for Solving the Constrained NSO

(P) ¢« =min{p(x):g(x) <0, x eR"},

@ ¢ :R" — R is a convex nonsmooth function
® g:R" - Risconvex C', i.e, Lg-Lipschitz continuous gradient on R”
o F:={xeR": g(x) <0} # 0 the feasible set of (P).

Like in all FOM we assume that ¢ is “simple”, that is prox friendly.
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The Problem

A First Order Method for Solving the Constrained NSO

(P) ¢« =min{p(x):g(x) <0, x eR"},

@ ¢ :R" — R is a convex nonsmooth function
® g:R" - Risconvex C', i.e, Lg-Lipschitz continuous gradient on R”
o F:={xeR": g(x) <0} # 0 the feasible set of (P).

Like in all FOM we assume that ¢ is “simple”, that is prox friendly.

Example:
Typical in various linear inverse problems: sparse recovery/ machine learning

min{p(x) = norm(x) : ||[Ax — b||* < 6, x € E}.
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Goal and Outline

Derive a simple O(1/¢) first order algorithm to find an e-optimal solution:

(P) 0« =min{p(x) : x € F={xeR":g(x) <0}}.
Using only data info and is Parameters Free.
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Goal and Outline

Derive a simple O(1/¢) first order algorithm to find an e-optimal solution:

(P) 0« =min{p(x) : x € F={xeR":g(x) <0}}.
Using only data info and is Parameters Free.

@ Underlying Idea of The New Method.
@ Approach/Main Tools and Global Convergence Results.

@ Numerical Example on Large Scale Sparse Recovery.
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Don’t We Have Other O(1/¢) FOM for a Constrained NSO?

(P)  ¢.=min{p(x) : g(x) <0, xR},
Fact: Best known rate with a first order method for (P): O(1/¢).
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Don’t We Have Other O(1/¢) FOM for a Constrained NSO?

(P)  ¢.=min{p(x) : g(x) <0, xR},
Fact: Best known rate with a first order method for (P): O(1/¢).

ANSWER: Apparently, we don’t .........

..... Without recourse to extra/unknowns parameters/heuristics...ect............
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Don’t We Have Other O(1/¢) FOM for a Constrained NSO?

(P)  ¢.=min{p(x) : g(x) <0, xR},
Fact: Best known rate with a first order method for (P): O(1/¢).

@ Subgradient Projection/ Mirror Descent Type Methods Slow convergent rate
O(1/€?)...+ Need easy projection on nonlinear constraint. Bundle, same.

@ Fast Proximal-Gradient Methods Great! Optimal rate O(1/+/¢)! But...to apply it
one first must penalize the problem!...And we don’t know the penalty parameter!

@ Smoothing Methods Can tackle special forms of (P) with O(1/¢) rate... But
depends on smoothing and other parameters!

@ Lagrangian/ADM Methods Even when they can... Need an unknown penalty
parameter!... The complexity rate is O(1/¢)...But the constant depends on it ...!
Large parameter = very slow method!
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Blanket Assumption on Convex NSO (P)

(P)  @.=min{p(x):g(x) <0, x € R"}, [¢ nonsmooth g e C"].
Lg

Blanket Assumption A

A1 There exists an optimal solution for problem (P).
A2 Slater’s condition holds: 3% € R" : g(k) < 0.

A3 Forany x € F, 0 & d¢p(x).

A1 and A2 are standard in convex programming. Warrant that x* € R” is an optimal
solution of (P) if and only if (KKT) optimality conditions hold, i.e.,

[KKT-P] 3 A" > 0suchthat0 € dp(x*) + A*Vg(x*); A*g(x") =0,9(x*) <0.

A3 eliminates the trivial case: a feasible point as an unconstrained minimizer of ¢(-).
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The Approximation Model — Main Idea

Starting Idea: Approximate the feasible set by Moving Balls.[Auslender-Shefi-Teboulle *10].
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The Approximation Model — Main Idea

Starting Idea: Approximate the feasible set by Moving Balls.[Auslender-Shefi-Teboulle *10].

@ Exploit smoothness of g in the constraint. The descent Lemma gives for any
L>Lg:

L n
9(x) < 9(y) + (Vg). x —y) + 5llx ¥l Wx.y €R".
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The Approximation Model — Main Idea

Starting Idea: Approximate the feasible set by Moving Balls.[Auslender-Shefi-Teboulle *10].

@ Exploit smoothness of g in the constraint. The descent Lemma gives for any
L>Lg:

L n
9(x) < 9(y) + (Vg). x —y) + 5llx ¥l Wx.y €R".

@ Algebra Time...The Descent Lemma Reads:

2900 < lIx — cy)IF - (),
where

cy) = y-(0/0Vay),

) = LIVIIE - 2.

Leads to the following approximation of problem (P)...
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The Approximate Convex Model

Fixany y € F.
Define the ball centered at c(y) with radius p(y)

B(y) == {x € R": [lx —c(y)I* < p*(V)}-

The Approximated Convex Problem P(y)

For each y € F minimizes the nonsmooth objective over the ball B(y):

(P(y))  min p(x)
subjectto  x € B(y).

Problem P(y) is a natural approximation of problem (P).
This is justified by the following properties which also lead to the algorithm.
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Basic Properties of P(y) :  min{p(x): x € B(y)}

Fix any y € F.

Proposition 1 - [Approximation of (P)]

@ B(y) is a nonempty, compact convex set with B(y) C F.
@ Slater’s condition holds for problem P(y).
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Basic Properties of P(y) :

min{p(x) : x € B(y)}

Fix any y € F.

Proposition 1 - [Approximation of (P)]

@ B(y) is a nonempty, compact convex set with B(y) C F.
@ Slater’s condition holds for problem P(y).

Proposition 2- [Fixed Point] Let x(y) be an optimal solution for problem P(y).
If y € x(y), then y is a solution for problem (P).
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Basic Properties of P(y) :  min{p(x): x € B(y)}

Fix any y € F. J

Proposition 1 - [Approximation of (P)]

@ B(y) is a nonempty, compact convex set with B(y) C F.
@ Slater’s condition holds for problem P(y).

Proposition 2- [Fixed Point] Let x(y) be an optimal solution for problem P(y).
If y € x(y), then y is a solution for problem (P).

Basic Scheme Generate a sequence of feasible (interior) pts by minimizing  over a
sequence of moving balls.

X eF,  xcargmin {go(x) Ll — e(x* P < pz(xk*‘)}, k> 1.

How to implement this?
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Basic Properties of P(y) :  min{p(x): x € B(y)}

Fix any y € F. J

Proposition 1 - [Approximation of (P)]

@ B(y) is a nonempty, compact convex set with B(y) C F.
@ Slater’s condition holds for problem P(y).

Proposition 2- [Fixed Point] Let x(y) be an optimal solution for problem P(y).
If y € x(y), then y is a solution for problem (P).

Basic Scheme Generate a sequence of feasible (interior) pts by minimizing  over a
sequence of moving balls.

X eF,  xcargmin {go(x) Ll — e(x* P < pz(xk*‘)}, k> 1.

How to implement this?

Our approach: Solve P(y) via its dual!
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A Dual Problem for P(y)

Fixanyy € F

Ply)  min{p(x): x —c)I* < p*(y), x €R"}.

A Lagrangian dual for P(y) is one dimensional convex problem in A

D(y)  sup{q(\;y): A >0} =sup{g(\;y): A> 0}
with N N
qx;y) = = 5p(y)? + min{e(x) + 5 x — eI}

The dual objective is one dimensional...with nice properties..!

"Last equality can be proven thanks to closedness of g.
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The Dual Objective is Very Nice!

The dual objective is a one dimensional concave function in \:

A= GOy) = min{e(x) + 3 lx — cIFE o)

M (c(y))

The dual variable is nothing else but the proximal parameter in the Moreau’s
envelope of the nonsmooth ¢(-) :

4N y) = ME(O)) ~ 5770,
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The Dual Objective is Very Nice!

The dual objective is a one dimensional concave function in \:

A= GOy) = min{e(x) + 3 lx — cIFE o)

M (c(y))

The dual variable is nothing else but the proximal parameter in the Moreau’s
envelope of the nonsmooth ¢(-) :

4N y) = ME(O)) ~ 5770,

@ Properties of proximal maps and their envelopes are very well known and
useful.....

@ But here we are interested in the properties of the proximal envelope My (u) as a
function of the parameter \ > 0

A — M¢(u),  when u e RYis fixed.
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Proximal Maps/Envelopes as Function of Proximal Parameter

Let h: RY — (—o0, +00] be a closed proper convex function. For any u € RY and any
t > 0, the proximal map of h and its proximal envelope are defined respectively by:

. t
prox}! (u) = argmin, pd {h(z) + > Iz — u||2}

MP(u) = min {h(z) + i||z - u||2}
zeRrRd 2
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Proximal Maps/Envelopes as Function of Proximal Parameter

Let h: RY — (—o0, +00] be a closed proper convex function. For any u € RY and any
t > 0, the proximal map of h and its proximal envelope are defined respectively by:

. t
prox}! (u) = argmin, pd {h(z) + > Iz — u||2}

MP(u) = min {h(z) + iHz - u||2}
zeRrRd 2

Proposition For any u € R, the following properties hold for t — M{(u):

@ The function t — M/ (u) is concave and C'(0, o) with derivative
dohey 1 h 2

gpVe () = 5 llprox¢ (u) — ull”.

@ Forany u e dom h, limi oo M(u) = h(u) and lim¢ prox’(u) = u.

@ lim; o+ M(u) = —h*(0).

@ lim; o+ prox’(u) = argmin{h(u) : u € R} = dh*(0)

Thanks to this, we can derive useful properties for the dual function g(X; y).
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Properties of The Dual Objective of P(y)

Fixany y € F,and let ¢ : (0,00) = R
A
w(N) = q(xy) = M{(e(y)) = 57°(¥).
Apply previous proposition to get the following

Properties of the dual function ().

@ v is aconcave, C'(0, cc), with derivative

p 1
¥ = 5 {IProxge) — eI = (1) } -
@ An optimal solution of the dual problem X > 0 solves the scalar equation

¥'(A) = 0.

Using these, we are ready to define the primal-dual algorithm for solving P(y).
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The Algorithm: DUal Moving Ball Algorithm (DUMBA)

DUMBA

Let X0 € F,and for k = 1,2, ..., generate xX € F and )\, € (0, ) via the iterations:

Step 1. Compute
() =X — (/L) Ve, p( T = (1/L5)[Va(x* TP — (2/L)g(x* ).
Step 2. Find a positive root \ for the scalar equation
IX(A) = e(xX*= )2 = pP(x* ),
where x()) := prox{ (c(xk~1)), and set A, = A.

Step 3. Update
X = prox§, (c(xk_1)) .

Marc Teboulle (Tel Aviv University) A Dual First-Order Method



The Algorithm: DUal Moving Ball Algorithm (DUMBA)

DUMBA

Let X0 € F,and for k = 1,2, ..., generate xX € F and )\, € (0, ) via the iterations:

Step 1. Compute
(1) =X — (/D) V), (KT = (1/L)][V (KT IP — (2/L)g(xK ).

Step 2. Find a positive root \ for the scalar equation
IX(A) = e(x*= )12 = P (X,
where x()) := prox{ (c(xk~1)), and set A, = A.
Step 3. Update
X = prox§, (c(xk_1)) .

The main computational step in DUMBA consists of:
@ computing the proximal map of ¢ at a given ¢ (like in all prox-gradient methods).
@ Solving a scalar equation. Price to pay to handle nonlinear constraint!

Marc Teboulle (Tel Aviv University) A Dual First-Order Method



Convergence Result | — Point Convergence

Theorem 1 [Pointwise Convergence]
Let {x"} be the sequence generated by DUMBA. Then,

@ the sequence of function values {,(x¥)} is monotonically decreasing,

@ the sequence {x*} is bounded and converges to an optimal solution of
problem (P).
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Convergence Result Il — Complexity

Theorem 2 (Global Rate in Function Values)
Let {x*} € F and M\ € (0,00) be the primal-dual sequences generated by
DUMBA, and let x* be an optimal solution of (P). Then, for all kK > 1,

@ there exists a positive constant C such A < C,

@ we have
ClIx° — x*|I?

p(X) = p(x") <

Note: The positive constant C depends on the problem’s data.
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Convergence Result Il — Complexity

Theorem 2 (Global Rate in Function Values)
Let {x*} € F and M\ € (0,00) be the primal-dual sequences generated by
DUMBA, and let x* be an optimal solution of (P). Then, for all kK > 1,

@ there exists a positive constant C such A < C,

@ we have
ClIx° — x*|I?

p(X) = p(x") <

Note: The positive constant C depends on the problem’s data.

Open Question: Can we determine C explicitly?
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One Answer: for a Special, but Important Class of Problems

min{y(x) : [|Ax — b|| < §, x € E}.

@ The objective ¢ is assumed Lipschitz continuous with known constant L.

o AAT = | (i.e., arestricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.
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One Answer: for a Special, but Important Class of Problems

min{y(x) : [|Ax — b|| < §, x € E}.

@ The objective ¢ is assumed Lipschitz continuous with known constant L,,.

o AAT = | (i.e., arestricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

L

C:T.
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One Answer: for a Special, but Important Class of Problems

min{y(x) : [|Ax — b|| < §, x € E}.

@ The objective ¢ is assumed Lipschitz continuous with known constant L,,.

o AAT = | (i.e., arestricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

L

CZT'

@ DUMBA can be very slow whenever ¢ is too small...Not a surprise!
@ Obviously not designed to solve equality constrained problems!
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One Answer: for a Special, but Important Class of Problems

min{y(x) : [|Ax — b|| < §, x € E}.

@ The objective ¢ is assumed Lipschitz continuous with known constant L,,.

o AAT = | (i.e., arestricted isometry).

Covers usual regularization of linear inverse problems with any norm in the objective.

Answer for that class. The complexity constant is explicitly given by:

L

CZT'

@ DUMBA can be very slow whenever ¢ is too small...Not a surprise!

@ Obviously not designed to solve equality constrained problems!

@ The positive side: becomes fast and useful for a large perturbation 4!
@ Numerical experiments confirm the theory.
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@ We illustrate the main step of DUMBA on several well known convex models
arising in various applications: machine learning, signal processing, etc..

find A > 0 that solves [|prox{(c) — ¢||® = p°. J

@ In all the examples below the objective function ¢ will be a norm on an appropriate
Euclidean space.

In that case, A3 eliminates the trivial optimal solution x* = 0 in problem (P), and
translates to
9(0) >0 = [icl| > p,

which is exactly what is needed to warrant solution of the scalar equation.
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Typical Examples in Sparse Recovery

Compute prox{(c) and find X > 0 that solves ||prox{(c) — ¢||® = p°. J

All cases below are with ¢ ‘prox friendly", i.e., explicit formula.

o(x)=|x|]2 - Euclidean norm
o(x)=|xi - k—norm
©(x)=> |xll2 — Group lasso mixed norm /b, G partition {1,..., g}
geg
o(x)=|X|. — Tracenorm X € R"*"

@ First example admits a closed formula for A = 1/p.
@ Remaining examples X solves a scalar equation of similar type, e.g., for /;:

§ 1
Z min {|C,'|27 F} =/
i=1

Efficient procedures in O(n) [Bruker, 1984].
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Numerical Examples

@ We tested DUMBA on the BPDN, a central model for sparse recovery.

(BPDN) minimize || x||1
subjectto  ||Ax — b|j2 < 62, x € R”,

where A € R™" b e R™, 62 is the noise power estimates.
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Numerical Examples

@ We tested DUMBA on the BPDN, a central model for sparse recovery.

(BPDN) minimize || x||1
subjectto  ||Ax — b|j2 < 62, x € R”,

where A € R™" b e R™, 62 is the noise power estimates.

@ Comparison vs NESTA [Becker et al. 2010] = Smoothing + Optimal Gradient.
Complexity O(1/k?) .. But for the “smoothed" objective ¢,,.

e Already includes sets of extensive experiments and comparison with other
state-of-the-art methods for solving this class of problems.
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Numerical Examples

@ We tested DUMBA on the BPDN, a central model for sparse recovery.

(BPDN) minimize || x||1
subjectto  ||Ax — b|j2 < 62, x € R”,

where A € R™" b e R™, 62 is the noise power estimates.

@ Comparison vs NESTA [Becker et al. 2010] = Smoothing + Optimal Gradient.
Complexity O(1/k?) .. But for the “smoothed" objective ¢,,.

e Already includes sets of extensive experiments and comparison with other
state-of-the-art methods for solving this class of problems.

@ The strength of DUMBA-L1 [specialized to this problem’s model]
e Complexity of O(1/k) .. But for the “original” objective .
e Parameters free — No smoothing or other parameters to guess or tune.

e Allows — in fact dedicated to!- for efficiently handling a large error 6.
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The DUMBA -L; Algorithm Versus NESTA

Tested on random problems with n = 262,144; m=n/8; s = m/5.

Experimental Setup from NESTA: Low and High Dynamic Ranges

Dynamic range d: is a measure of the ratio between the largest and smallest
magnitudes of the non-zero coefficients of the unknown signal.

@ High dynamic range: useful in applications requiring detection and recovery of

signals with small amplitudes obscures by large ones.
@ Low dynamic range: useful for problems with large errors .
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The DUMBA -L; Algorithm Versus NESTA

Tested on random problems with n = 262,144; m=n/8; s = m/5.

Experimental Setup from NESTA: Low and High Dynamic Ranges

Dynamic range d: is a measure of the ratio between the largest and smallest
magnitudes of the non-zero coefficients of the unknown signal.

@ High dynamic range: useful in applications requiring detection and recovery of
signals with small amplitudes obscures by large ones.

@ Low dynamic range: useful for problems with large errors .
As expected from the theory, DUMBA-L1:

@ is effective in obtaining good accuracy of approximate solution with sparse signals
at low dynamic range < large bounding error.

@ is less efficient in reaching an extremely high accuracy when in the high dynamic
range setting. [..Like any other methods..!].

@ Yet, remains of comparable quality and speed vs available state of the art
schemes.
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Numerical Experiments Setup

(BPDN)  minimize {||x||s : [[Ax — b|j3 < 6%, x € R"} (1)

@ xs € R" is s-sparse signal.

@ Ac R™"is arandomly subsampled discrete cosine transform, AA™ = /.
@ n=262,144, m=n/8, and s = m/5.

@ b = Axs + e with e ~ N(0, o). Noise level o = 0.1.

@5=VvVm+2v2mo,

Following the experiment setup of NESTA,
X[ =1(i € A)ns[i]10°71, )

A - choosing s indices from the set [n].
ni[i], i € A -iid Bernoulli random variables.
ne2[i], i € A -iid Uniformly distributed random variables in [0, 1].

The signal xs created in this manner have a dynamic range d dB, where o = d/20.

low dynamic range d = 20dB
high dynamic range d = 40, 60,80, 100dB
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Comparison with NESTA: Low Dynamic d = 20dB

Figure: DUMBA-L1 and NESTA with and without continuation SNR=20dB. Function values vs # iterations

lea M/N=0.125; s/m=0.2; SNR=20dB
T T I

55 : .
———— DUMBA-L1
50F — —e— - NESTA 1
, - - =% - - NESTA w/o cont.

function values

k (iterations)

@ NETSA Needs: T =5, us = 0.02,tol = 1072,
@ DUMBA-L1: Only stopping tolerance parameter t01=10"5.
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Comparison with NESTA: Low Dynamic d = 20dB

Figure: DUMBA-L1 and NESTA with/without continuation Relative error and residual error vs # iterations

m/n=0.125; s/m=0.2; SNR=20dB m/n=0.125; s/m=0.2; SNR=20dB
100 T T T T 20 T T T T
——— e —
2 N
_ g
2 a
T w i
2 3
= ]
< 2
20}] —— pumea-1 | 5y ——v—— DUMBA-L1 I
— —#— - NESTA ' — —#— - NESTA
=+ =¥ = NESTA wjo cont. =+ =¥ = NESTA w/jo cont.
0 T T T L L 0 L T T
o 20 40 60 80 100 o 10 20 30 40 50
k (iterations) k (iterations)
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Comparison with NESTA: Varying High Dynamic Range

Table: Comparison of accuracy: DUMBA-L1 with continuation and NESTA - Na= number of calls

to A AT

dB Method Ny Pz Il lAx — bll2

40 NESTA 458 0.06610 137,745.0546 18.2425
DUMBA-LT 410 0.06601 136,952.0288 18.2421

60 NESTA 581 0.00979 940,690.6773 18.2419
DUMBA-L1 602 0.00979 939,900.5124 18.2419

80 NESTA 575 0.00163 7,047,085.3632 18.2409
DUMBA-L1 614 0.00162 7,046,316.2648 18.2349

100 NESTA 604 0.00035 56,155,527.2231 18.2400
DUMBA-LT 720 0.00032 56,154,276.5952 18.2376

@ The stopping criteria used was

8511 < lIxxestalli - and (|85 — Xsll2/[|Xs]| < [IXNesta — Xsll2/[lxs|| and

@ NESTA: tolngsta = 1076
@ DUMBA-L1: tol; = 1078 and T = 7 continuation steps.
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Thank you for your attention!
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