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Some simplified models for data:

» Compressed Sensing: miny s_sparse || APx — y||
Relies on knowledge of data being well represented by ®x
For x € R" need A to have m ~ slog(n/m) rows
unless more structure is imposed.

» Matrix Completion: minx ani(x)=r [ A(X) = Y|
Relies on matrices of interest being approximately low rank
For X € R™*" need A(X) to mapto p~r(m+n—r)
Representation of X via singular vec. which vary continuously.

> Super-resolution (grid free CS): min, isupp(x)j=k |9 * x — y/|
Uses knowledge of ¢(s, t) and relies on x(t) = Zf-(:l aiy,
Similar to CS, but locations of t; vary continuously.
Discretizing t gives CS with A convolutional, highly coherent.
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Super-resolution model:

Objects of interest essentially point sources as compared to the
width of the measurement point-spread response function, ¢(s, t).
Have access to data of the form:

k

y(s)=> aig(s.t)
i=1
where t; denotes locations of point source with magnitude a;.

Motivated by microscopy let ¢(s, t;) = exp (—'5;7;"2) then:

Seek to recover t; and a; for i = 1,..., k from samples of y(s).
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Seek to recover t; and a; for i = 1,..., k from samples of y(s).
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Fluorescence image [Barsic, Grover, Piestun; Sci. Rep.

Three-dimensional super-resolution and localization of dense
clusters of single molecules. Used Gaussian blurring model.

b)

—0.7um

" A standard fluorescence image is shown in (a). The 3D
super-resolution image (b) of labeled tubulin in PtK1 cells
demonstrates that the method can be applied to localization-based
super-resolution imaging with a wide field of view.”

The Nobel Prize in Chemistry 2014 was awarded jointly to Eric
Betzig, Stefan W. Hell and William E. Moerner " for the
development of super-resolved fluorescence microscopy” .
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Error metric: locality different from normal comp. sensing:

Consider discrete measure x(t) = Zf'(:l ajdt, > 0,
y(s) = ¢(s, t) * x(t) + e(s), and general measure X > 0.

» Distance between measures via Wasserstein distance:

dw(x,X) = inf/ |71 — 2| - y(dT1, dT2)
T JiIxi

where X(t) = [, y(d11,72)
and x(t) = f, (71, dm2)

> Energy conservation depends on source sample locations,
requires minimum separation for signed discrete measures:

m k
z:y(sj)2 > Const. Za,g
j=1 i=1

for universal Const. requires A = minj; [t; — t| lower
bounded and for local ¢(s, t) requires s; sufficiently near t;.
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Super-resolution without separation: TV-minimization

Theorem (Schiebinger, Robeva, Recht 2018)

Suppose x(t) = Sk, a;8;, with: a; > 0 and t; € [0,1] for
i=1,...,k and ¢(s,t) is a Tchebysheff system (e.g.
o(s,t) =exp ( le=t® t' )) and given y(s;) = ¢(sj, t) * x for
j=1,....m form>2k and for z(t) > 0 let

X = argmin, / dz(t) subject to y(s;) = ¢(sj, t) * dz(t),

then X = x.

Main innovation: no need for minimum separation
A = min;; |t; — t;j| which must be bounded for x signed; typically
m ~ A~ which is analogous to uniform sampling near sources.
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Super-resolution without separation: uniqueness

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)
Suppose x(t) = Zf—‘zl aj0y, with: a; > 0 and t; € [0,1] for
i=1,...,k and ¢(s,t) is a Tchebysheff system (e.g.

o(s,t) = exp (—%)) and given y(s;) = ¢(sj, t) * x(t) for
j=1,...,m with m> 2k and for X > 0 let
y(sj) = ¢(sj, t) x dx(2),

then there is a unique k-sparse solution, e.g. X = x.
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Super-resolution without separation: uniqueness

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)
Suppose x(t) = Zf—‘zl aj0y, with: a; > 0 and t; € [0,1] for
i=1,...,k and ¢(s,t) is a Tchebysheff system (e.g.

o(s,t) = exp (—%)) and given y(s;) = ¢(sj, t) * x(t) for
j=1,...,m with m> 2k and for X > 0 let

y(sj) = o(sj, t) * d&(t),
then there is a unique k-sparse solution, e.g. X = x.

Result by Schiebinger, Robeva, and Recht is true for all
non-negative measures matching the measurements; no need for
TV. Essentially a corollary by Karlin from the 60s.
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Super-resolution without separation: uniqueness

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Suppose x(t) = Sk, a;8;, with: a; > 0 and t; € [0,1] for
i=1,...,k and ¢(s,t) is a Tchebysheff system (e.g.

o(s,t) = exp (—%)) and given y(s;) = ¢(sj, t) * x(t) for
j=1,...,m with m> 2k and for X > 0 let

y(sp) = o(sj; t) * dX(2),
then there is a unique k-sparse solution, e.g. X = x.
Result by Schiebinger, Robeva, and Recht is true for all
non-negative measures matching the measurements; no need for
TV. Essentially a corollary by Karlin from the 60s.
Similar result from compressed sensing of vectors [Donoho, Tanner
2010], roughly y = Ax for x > 0 and s-sparse, then x unique if
y € R™ for m the same as if one solved ¢! minimization, e.g. for
m > 2slog(n/m) for m/n < 1.
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Sketch of the proof: dual polynomial 1

Lemma

Let x be a nonnegative k-sparse atomic measure supported on
T ={t;}%, €1, and y(s) = ¢(s,t) x x, then, x is the unique

solution to y(s) = ¢(s, t) *x z over z > 0 (including non-atomic
measures) if

> the k x m matrix [¢(sj, t;)]:Zy =" is full rank (Tchebysheff

systems satisfy this for all sample and source sequences), and
> there exist real coefficients {bj}j”’:1 and dual polynomial

q(t) = > bjo(s;, t) such that q is nonnegative on | and

vanishes only on the set of sources T = {t;}*_,.
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Sketch of the proof: dual polynomial 2

Proof:
Let x > 0 be a nonnegative k-sparse atomic measure supported on
T = {t;}*_, € I and both x and £ > 0 satisfy
y(s) = ¢(s, t) * x(t) = ¢(s, t) x X(t) for s € {5;}7L;. Let
q(t) = >, bio(sj, t) >0 satisfy q(t;) =0 for tj € T, then let
h(t) = %(t) — x(t) and note [, h(t)¢(sj,t) =0 for j=1,-m.

» supp(X) = supp(x): Consider

0=3 b [ tante) = [atance) = | atenan) =

as q(t)h(t) > 0 for t € I/T requires h(t) =0tot € //T.

» X = x: given h(t) =) :_; ¢id, the m measurements
equalities can be expressed as a linear system ®c = 0 where
®; ; = ¢(si, tj), if invertible has only the trivial solution ¢ = 0.

Existence of q(t) for ¢(s, t) Chebyshev System; e.g. Gaussian.
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Non-negative super-resolution stability: Gaussian, local

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Let | = [0, 1] and consider a k-sparse nonnegative measure x
supported on T C int(l). Consider also an arbitrary increasing
sequence {sj}j’ll C R and any X > 0 satisfy

2 2
PRy ’yj — [, exp (—%) Q(dt)’ < 2. If technical conditions

L . . 2
are satisfied (stated in a few slides) and € = %0 then:

ti+e
/ %(dt) — a
ti—e

%] v
0—2

* € F2

< [(C1+F1)-5—|-C2
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Non-negative super-resolution stability: Gaussian, local

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Let | = [0, 1] and consider a k-sparse nonnegative measure x
supported on T C int(l). Consider also an arbitrary increasing
sequence {sj}j’ll C R and any X > 0 satisfy

¢ 2
PRy ’yj — [, exp (—%) Q(dt)’ < 2. If technical conditions

L . . 2
are satisfied (stated in a few slides) and € = %0 then:

ti+e
/ %(dt) — a
ti—e

where, for precise formulae are available for F1(k,A(T),o,€) and
F2(A(T),0,)), and in some settings the overall bound can be
simplified to be proportional to §/9.

%] v
0—2

* € F2

< [(C1+F1)-5—|-C2
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Non-negative super-resolution stability: Wasserstein

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Let | = [0, 1] and consider a k-sparse nonnegative measure x
supported on T C int(l). Consider also an arbitrary increasing
sequence {sj}j";l C R and any X > 0 satisfy

lsi —t> .
yj— /Iexp <— 102 R(dt)

If technical conditions are satisfied and e < A /2, then

m

>

j=t

2 < 62 (1)

dew(x, %) < F(k,A,0) -6+ ||x||7v - €

where dgyy is the generalized Wasserstein distance. If o < 3-1/2
and A > o/1og(5/02) then dow (x,R) < F3(k, A, o) - 67,
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Sketch of the proof: dual polynomial with § > 0

Lemma

Let X be a solution of Program (1) and set h = X — x to be the
error. Consider a bounded function f : R — R4 such that f(0) =0
and also a positive scalar f. Suppose that there exist a positive

e < minjj|ti — ¢ ie = [ti — €, ti + €], real coefficients
{bj}L1, and a polynomial q(t) = > 1" bjd(s;, t) such that

f(t—t;), forie[k]lwithte T,
o) > F(8) ::{_( ) [4] ,

f, elsewhere on |,

where the equality holds on T. Then we have that

/Tc dt)—i—Z/ (t — t;) h(dt) < 2||b|29,

where b € R™ is the vector formed by the coefficients {b;}T" ;.
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Sketch of the proof: dual polynomial with § > 0

Quality of bound on h = X — x determined by dual polynomial,
controlling size of f, how quickly f(t) grows away from 0, and || b||2
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Those technical conditions in the theorems:

|s—¢[2

When the window function is a Gaussian ¢(s,t) = e <2 , we
require its width o, the source locations and sampling locations to
satisfy the following conditions:

1. Boundary samples: s; =0 and s, = 1,

2. Samples near sources: for every i € [k] and = O(0?), there
exists a pair of samples s,s’ C S with s’ — s = 1 such that
|s — ti| < n and for n small enough (quantified in the paper),

3. Sources away from the boundary:

oy/log(1/n) < ti,sj < 1 —oy/log(1/n) for every i € [k] and

je[2:m—1],
4. Minimum separation of sources: o < V2 and
A>o4/log(3+ %).

Roughly this translates to m ~ A™! and o can't be to large.
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Stability implied for windows that are T *-systems

Definition of T x-systems
For an even integer m, real-valued functions {¢;}", form a
T*-system on | = [0, 1] if the following holds for every
T ={t, to,...,tx} C I when p > 0 is sufficiently small. For any
increasing sequence 7 = {7}/, C / such that
> 7_0 = 01 Tm - ]-1
> except exactly three points, namely 79, 7, and say 7; € int(/),
the other points belong to T, = Uf‘zl[t; —p, ti + p,
» every T;, = [ti — p, tj + p] contains an even number of points,
we have that
1. the determinant of the (m+ 1) x (m + 1) matrix
M, = [#j()]];—o is positive, and
2. the magnitudes of all minors of M, along the row containing
7, approach zero at the same rate when p — 0.
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Some extensions:

> The stability results can be trivially generalized to x > 0 which
is not atomic, but can be well approximated by a k-atomic
measure with a prescribed separation between the atoms.

» The can be adapted to the setting where there are some
unresolvable sources so that the sample complexity can be
relaxed; results show the average of any consistent solution is
close to the sum of the unresolved sources.

» The results can be extended to higher dimensional settings for
samples on a cartesian grid by appropriately combining the
one dimensional dual polynomials, but requires the number of
measurements to be quadratic in the number of
measurements (not as trivial as it sounds).

> In limited settings we have extended some results to the
setting of continuous paths in higher dimensions; preliminary.
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Conclusions:

» Non-negative super-resolution is robust to model misfit and
additive noise

» All solutions whose measurements are within ¢ in ¢2 are within
6 of noise free case in Wasserstein distance.

» Robust even for sources within §, or high noise regime; let 7~',-,6
be the set of overlapping T;, then

P

/ )A((dt) — Z di(r)| ~ 57

Tie r=1

> When considering algorithms for non-negative
super-resolution, seek fast methods for feasibility
problem, not necessarily TV; justifies use of conditional
gradient and non-linear heuristics.
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