Non-Negative Super-Resolution: Simplified and Stabilized

Jared Tanner

joint with Eftekhari, Thompson, Toader, and Tyagi

GDO 2019, Cluj, 10th April 2019

University of Oxford & Alan Turing Institute¹

¹Supported by: EPSRC, the National Physical Laboratory, and The Turing Institute

Armin Eftekhari EPFL Andrew Thompson NPL Bogdan Toader Oxford Hemant Tyagi Inria Lille

・ロト ・回ト ・ヨト

E

Some simplified models for data:

- Compressed Sensing: min_{x,s-sparse} ||AΦx y|| Relies on knowledge of data being well represented by Φx
 For x ∈ ℝⁿ need A to have m ~ s log(n/m) rows unless more structure is imposed.
- Matrix Completion: min_{X,rank(X)=r} ||A(X) − Y|| Relies on matrices of interest being approximately low rank For X ∈ ℝ^{m×n} need A(X) to map to p ~ r(m + n − r) Representation of X via singular vec. which vary continuously.
- Super-resolution (grid free CS): min_{x,|supp(x)|=k} ||φ * x − y|| Uses knowledge of φ(s, t) and relies on x(t) = ∑_{i=1}^k a_iδ_{t_i} Similar to CS, but locations of t_i vary continuously. Discretizing t gives CS with A convolutional, highly coherent.

Super-resolution model:

Objects of interest essentially point sources as compared to the width of the measurement point-spread response function, $\phi(s, t)$. Have access to data of the form:

$$y(s) = \sum_{i=1}^{k} a_i \phi(s, t_i)$$

where t_i denotes locations of point source with magnitude a_i . Motivated by microscopy let $\phi(s, t_i) = \exp\left(-\frac{|s-t_i|^2}{\sigma^2}\right)$, then:

Seek to recover t_i and a_i for i = 1, ..., k from samples of y(s).

Super-resolution model:

Objects of interest essentially point sources as compared to the width of the measurement point-spread response function, $\phi(s, t)$. Have access to data of the form:

$$y(s) = \sum_{i=1}^{k} a_i \phi(s, t_i)$$

where t_i denotes locations of point source with magnitude a_i . Motivated by microscopy let $\phi(s, t_i) = \exp\left(-\frac{|s-t_i|^2}{\sigma^2}\right)$, then:

Seek to recover t_i and a_i for i = 1, ..., k from samples of y(s).

Fluorescence image [Barsic, Grover, Piestun; Sci. Rep. 14']

Three-dimensional super-resolution and localization of dense clusters of single molecules. Used Gaussian blurring model.

"A standard fluorescence image is shown in (a). The 3D super-resolution image (b) of labeled tubulin in PtK1 cells demonstrates that the method can be applied to localization-based super-resolution imaging with a wide field of view."

The Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hell and William E. Moerner "for the development of super-resolved fluorescence microscopy" and the set of the set of

Error metric: locality different from normal comp. sensing:

Consider discrete measure $x(t) = \sum_{i=1}^{k} a_i \delta_{t_i} \ge 0$, $y(s) = \phi(s, t) * x(t) + e(s)$, and general measure $\hat{x} \ge 0$.

Distance between measures via Wasserstein distance:

$$d_W(x,\hat{x}) = \inf_{\gamma} \int_{I \times I} |\tau_1 - \tau_2| \cdot \gamma(d\tau_1, d\tau_2)$$

where $\hat{x}(t) = \int_{I} \gamma(d\tau_1, \tau_2)$ and $x(t) = \int_{I} \gamma(\tau_1, d\tau_2)$

Energy conservation depends on source sample locations, requires minimum separation for signed discrete measures:

$$\sum_{j=1}^m y(s_j)^2 \geq {\it Const.} \ \sum_{i=1}^k a_i^2$$

for universal *Const*. requires $\Delta = \min_{i \neq l} |t_i - t_l|$ lower bounded and for local $\phi(s, t)$ requires s_j sufficiently near t_i .

Super-resolution without separation: TV-minimization

Theorem (Schiebinger, Robeva, Recht 2018) Suppose $x(t) = \sum_{i=1}^{k} a_i \delta_{t_i}$ with: $a_i > 0$ and $t_i \in [0, 1]$ for i = 1, ..., k and $\phi(s, t)$ is a Tchebysheff system (e.g. $\phi(s, t) = \exp\left(-\frac{|s-t|^2}{\sigma^2}\right)$) and given $y(s_j) = \phi(s_j, t) * x$ for j = 1, ..., m for m > 2k and for $z(t) \ge 0$ let

$$\hat{x} = \operatorname{argmin}_{z} \int dz(t)$$
 subject to $y(s_{j}) = \phi(s_{j}, t) * dz(t)$,

then $\hat{x} = x$.

Main innovation: no need for minimum separation $\Delta = \min_{i \neq j} |t_i - t_j| \text{ which must be bounded for } x \text{ signed; typically}$ $m \sim \Delta^{-1} \text{ which is analogous to uniform sampling near sources.}$

Super-resolution without separation: uniqueness

Theorem (Eft. Tan. Tho. Toa. Tya. 2018) Suppose $x(t) = \sum_{i=1}^{k} a_i \delta_{t_i}$ with: $a_i > 0$ and $t_i \in [0, 1]$ for i = 1, ..., k and $\phi(s, t)$ is a Tchebysheff system (e.g. $\phi(s, t) = \exp\left(-\frac{|s-t|^2}{\sigma^2}\right)$) and given $y(s_j) = \phi(s_j, t) * x(t)$ for j = 1, ..., m with m > 2k and for $\hat{x} \ge 0$ let

$$y(s_j) = \phi(s_j, t) * d\hat{x}(t),$$

then there is a unique k-sparse solution, e.g. $\hat{x} = x$.

Super-resolution without separation: uniqueness

Theorem (Eft. Tan. Tho. Toa. Tya. 2018) Suppose $x(t) = \sum_{i=1}^{k} a_i \delta_{t_i}$ with: $a_i > 0$ and $t_i \in [0, 1]$ for i = 1, ..., k and $\phi(s, t)$ is a Tchebysheff system (e.g. $\phi(s, t) = \exp\left(-\frac{|s-t|^2}{\sigma^2}\right)$) and given $y(s_j) = \phi(s_j, t) * x(t)$ for j = 1, ..., m with m > 2k and for $\hat{x} \ge 0$ let

$$y(s_j) = \phi(s_j, t) * d\hat{x}(t),$$

then there is a unique k-sparse solution, e.g. $\hat{x} = x$.

Result by Schiebinger, Robeva, and Recht is true for all non-negative measures matching the measurements; no need for TV. Essentially a corollary by Karlin from the 60s.

Super-resolution without separation: uniqueness

Theorem (Eft. Tan. Tho. Toa. Tya. 2018) Suppose $x(t) = \sum_{i=1}^{k} a_i \delta_{t_i}$ with: $a_i > 0$ and $t_i \in [0, 1]$ for i = 1, ..., k and $\phi(s, t)$ is a Tchebysheff system (e.g. $\phi(s, t) = \exp\left(-\frac{|s-t|^2}{\sigma^2}\right)$) and given $y(s_j) = \phi(s_j, t) * x(t)$ for j = 1, ..., m with m > 2k and for $\hat{x} \ge 0$ let

$$y(s_j) = \phi(s_j, t) * d\hat{x}(t),$$

then there is a unique k-sparse solution, e.g. $\hat{x} = x$.

Result by Schiebinger, Robeva, and Recht is true for all non-negative measures matching the measurements; no need for TV. Essentially a corollary by Karlin from the 60s.

Similar result from compressed sensing of vectors [Donoho, Tanner 2010], roughly y = Ax for $x \ge 0$ and *s*-sparse, then *x* unique if $y \in \mathbb{R}^m$ for *m* the same as if one solved ℓ^1 minimization, e.g. for $m \ge 2s \log(n/m)$ for $m/n \ll 1$.

Lemma

Let x be a nonnegative k-sparse atomic measure supported on $T = \{t_i\}_{i=1}^k \in I$, and $y(s) = \phi(s, t) * x$, then, x is the unique solution to $y(s) = \phi(s, t) * z$ over $z \ge 0$ (including non-atomic measures) if

- ► the k × m matrix [φ(s_j, t_i)]^{i=k,j=m}_{i=1,j=1} is full rank (Tchebysheff systems satisfy this for all sample and source sequences), and
- there exist real coefficients {b_j}^m_{j=1} and dual polynomial q(t) = ∑^m_{j=1} b_jφ(s_j, t) such that q is nonnegative on I and vanishes only on the set of sources T = {t_i}^k_{j=1}.

Sketch of the proof: dual polynomial 2

Proof:

Let $x \ge 0$ be a nonnegative k-sparse atomic measure supported on $T = \{t_i\}_{i=1}^k \in I$ and both x and $\hat{x} \ge 0$ satisfy $y(s) = \phi(s, t) * x(t) = \phi(s, t) * \hat{x}(t)$ for $s \in \{s_j\}_{j=1}^m$. Let $q(t) = \sum_{j=1}^m b_j \phi(s_j, t) \ge 0$ satisfy $q(t_i) = 0$ for $t_i \in T$; then let $h(t) = \hat{x}(t) - x(t)$ and note $\int_I h(t)\phi(s_j, t) = 0$ for $j = 1, \cdot m$. \blacktriangleright supp $(\hat{x}) =$ supp(x): Consider

$$0=\sum_{j=1}^m b_j \int_I \phi(s_j,t) dh(t) = \int_I q(t) dh(t) = \int_{I/T} q(t) dh(t) \ge 0,$$

as q(t)h(t) > 0 for t ∈ I/T requires h(t) = 0 to t ∈ I/T.
x̂ = x: given h(t) = ∑_{i=1}^k c_iδ_{t_i} the m measurements equalities can be expressed as a linear system Φc = 0 where Φ_{i,j} = φ(s_i, t_j), if invertible has only the trivial solution c = 0.
Existence of q(t) for φ(s, t) Chebyshev System; e.g. Gaussian.

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Let I = [0, 1] and consider a k-sparse nonnegative measure xsupported on $T \subset int(I)$. Consider also an arbitrary increasing sequence $\{s_j\}_{j=1}^m \subset \mathbb{R}$ and any $\hat{x} \ge 0$ satisfy $\sum_{j=1}^m \left| y_j - \int_I \exp\left(-\frac{|s_j - t|^2}{\sigma^2}\right) \hat{x}(dt) \right|^2 \le \delta^2$. If technical conditions are satisfied (stated in a few slides) and $\epsilon = \frac{\sigma^2}{2}\delta$ then:

$$\left|\int_{t_i-\epsilon}^{t_i+\epsilon} \hat{x}(dt) - a_i\right| \leq \left[(c_1 + F_1) \cdot \delta + c_2 \frac{\|\hat{x}\|_{TV}}{\sigma^2} \cdot \epsilon \right] F_2$$

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Let I = [0, 1] and consider a k-sparse nonnegative measure xsupported on $T \subset int(I)$. Consider also an arbitrary increasing sequence $\{s_j\}_{j=1}^m \subset \mathbb{R}$ and any $\hat{x} \ge 0$ satisfy $\sum_{j=1}^m \left| y_j - \int_I \exp\left(-\frac{|s_j-t|^2}{\sigma^2}\right) \hat{x}(dt) \right|^2 \le \delta^2$. If technical conditions are satisfied (stated in a few slides) and $\epsilon = \frac{\sigma^2}{2}\delta$ then:

$$\left|\int_{t_i-\epsilon}^{t_i+\epsilon} \hat{x}(dt) - a_i\right| \leq \left[(c_1 + F_1) \cdot \delta + c_2 \frac{\|\hat{x}\|_{TV}}{\sigma^2} \cdot \epsilon \right] F_2$$

where, for precise formulae are available for $F_1(k, \Delta(T), \sigma, \epsilon)$ and $F_2(\Delta(T), \sigma, \lambda)$, and in some settings the overall bound can be simplified to be proportional to $\delta^{1/6}$.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Let I = [0, 1] and consider a k-sparse nonnegative measure x supported on $T \subset int(I)$. Consider also an arbitrary increasing sequence $\{s_j\}_{j=1}^m \subset \mathbb{R}$ and any $\hat{x} \ge 0$ satisfy

$$\sum_{j=1}^{m} \left| y_j - \int_I \exp\left(-\frac{|s_j - t|^2}{\sigma^2}\right) \hat{x}(dt) \right|^2 \le \delta^2.$$
 (1)

If technical conditions are satisfied and $\epsilon \leq \Delta/2$, then

$$d_{GW}(x, \hat{x}) \leq F(k, \Delta, \sigma) \cdot \delta + \|x\|_{TV} \cdot \epsilon,$$

where d_{GW} is the generalized Wasserstein distance. If $\sigma < 3^{-1/2}$ and $\Delta > \sigma \sqrt{\log(5/\sigma^2)}$ then $d_{GW}(x, \hat{x}) \leq F_3(k, \Delta, \sigma) \cdot \delta^{1/7}$.

Lemma

Let \hat{x} be a solution of Program (1) and set $h = \hat{x} - x$ to be the error. Consider a bounded function $f : \mathbb{R} \to \mathbb{R}_+$ such that f(0) = 0 and also a positive scalar \bar{f} . Suppose that there exist a positive $\epsilon \le \min_{i,j} |t_i - t_j|$, let $T_{i,\epsilon} = [t_i - \epsilon, t_i + \epsilon]$, real coefficients $\{b_j\}_{j=1}^m$, and a polynomial $q(t) = \sum_{j=1}^m b_j \phi(s_j, t)$ such that

$$q(t) \geq F(t) := egin{cases} f(t-t_i), & ext{for } i \in [k] ext{ with } t \in T_{i,\epsilon}, \ ar{f}, & ext{elsewhere on } I, \end{cases}$$

where the equality holds on T. Then we have that

$$ar{f}\int_{\mathcal{T}_{\epsilon}^{C}}h(dt)+\sum_{i=1}^{k}\int_{\mathcal{T}_{i,\epsilon}}f\left(t-t_{i}
ight)h(dt)\leq 2\|b\|_{2}\delta_{2}$$

where $b \in \mathbb{R}^m$ is the vector formed by the coefficients $\{b_j\}_{j=1}^m$.

Sketch of the proof: dual polynomial with $\delta > 0$

Quality of bound on $h = \hat{x} - x$ determined by dual polynomial, controlling size of \bar{f} , how quickly f(t) grows away from 0, and $||b||_2$

Jared Tanner Non-Negative Super-Resolution: Simplified and Stabilized

When the window function is a Gaussian $\phi(s, t) = e^{-\frac{|s-t|^2}{\sigma^2}}$, we require its width σ , the source locations and sampling locations to satisfy the following conditions:

- 1. Boundary samples: $s_1 = 0$ and $s_m = 1$,
- 2. Samples near sources: for every $i \in [k]$ and $\eta = O(\sigma^2)$, there exists a pair of samples $s, s' \subset S$ with $s' s = \eta$ such that $|s t_i| \leq \eta$ and for η small enough (quantified in the paper),
- 3. Sources away from the boundary: $\sigma \sqrt{\log(1/\eta)} \ll t_i, s_j \ll 1 - \sigma \sqrt{\log(1/\eta)}$ for every $i \in [k]$ and $j \in [2: m-1]$,

伺 ト イヨト イヨト

4. Minimum separation of sources: $\sigma \le \sqrt{2}$ and $\Delta > \sigma \sqrt{\log (3 + \frac{4}{\sigma^2})}$.

Roughly this translates to $m\sim\Delta^{-1}$ and σ can't be to large.

Definition of T*-systems

For an even integer *m*, real-valued functions $\{\phi_j\}_{j=0}^m$ form a T*-system on I = [0, 1] if the following holds for every $T = \{t_1, t_2, \ldots, t_k\} \subset I$ when $\rho > 0$ is sufficiently small. For any increasing sequence $\tau = \{\tau_I\}_{I=0}^m \subset I$ such that

▶
$$\tau_0 = 0$$
, $\tau_m = 1$,

- except exactly three points, namely τ₀, τ_m, and say τ_l ∈ int(I), the other points belong to T_ρ = ∪^k_{i=1}[t_i − ρ, t_i + ρ],
- every $T_{i,\rho} = [t_i \rho, t_i + \rho]$ contains an even number of points, we have that
 - 1. the determinant of the $(m + 1) \times (m + 1)$ matrix $M_{
 ho} := [\phi_j(\tau_l)]_{l,j=0}^m$ is positive, and
 - 2. the magnitudes of all minors of M_{ρ} along the row containing τ_l approach zero at the same rate when $\rho \rightarrow 0$.

・ロト ・回ト ・ヨト ・ヨト

- ► The stability results can be trivially generalized to x ≥ 0 which is not atomic, but can be well approximated by a k-atomic measure with a prescribed separation between the atoms.
- The can be adapted to the setting where there are some unresolvable sources so that the sample complexity can be relaxed; results show the average of any consistent solution is close to the sum of the unresolved sources.
- The results can be extended to higher dimensional settings for samples on a cartesian grid by appropriately combining the one dimensional dual polynomials, but requires the number of measurements to be quadratic in the number of measurements (not as trivial as it sounds).
- In limited settings we have extended some results to the setting of continuous paths in higher dimensions; preliminary.

Conclusions:

- Non-negative super-resolution is robust to model misfit and additive noise
- ► All solutions whose measurements are within δ in ℓ^2 are within δ of noise free case in Wasserstein distance.
- Robust even for sources within δ, or high noise regime; let T
 {i,ε}, be the set of overlapping T{i,ε}, then

$$\left|\int_{\widetilde{T}_{i,\epsilon}}\hat{x}(dt)-\sum_{r=1}^{p}\mathsf{a}_{i(r)}
ight|\sim\delta^{1/7}$$

・ 同 ト イ ヨ ト イ ヨ ト

When considering algorithms for non-negative super-resolution, seek fast methods for feasibility problem, not necessarily TV; justifies use of conditional gradient and non-linear heuristics.

Literature: very incomplete

- Towards a mathematical theory of super-resolution, by Candes and Fernandez-Granda; Communications on Pure and Applied Mathematics (2014)
- Support Recovery for Sparse Deconvolution of Positive Measures, by Denoyelle, Duval, and Peyre; J. of Fourier Analysis and Applications (2017).
- Super-resolution without separation, by Schiebinger, Robeva, and Recht; Information and Inference (2018).
- Demixing sines and spikes: robust spectral super-resolution in the presence of outliers, by Fernandez-Granda, Tang, Wang, and Zheng; Information and Inference (2018)
- Non-negative super-resolution: simplified and stabilized, by Eftekhari, Tanner, Thompson, Toader, and Tyagi; preprint (2018).

向下 イヨト イヨト