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Some simplified models for data:

I Compressed Sensing: minx ,s−sparse ‖AΦx − y‖
Relies on knowledge of data being well represented by Φx
For x ∈ Rn need A to have m ∼ s log(n/m) rows
unless more structure is imposed.

I Matrix Completion: minX ,rank(X )=r ‖A(X )− Y ‖
Relies on matrices of interest being approximately low rank
For X ∈ Rm×n need A(X ) to map to p ∼ r(m + n − r)
Representation of X via singular vec. which vary continuously.

I Super-resolution (grid free CS): minx ,|supp(x)|=k ‖φ ∗ x − y‖
Uses knowledge of φ(s, t) and relies on x(t) =

∑k
i=1 aiδti

Similar to CS, but locations of ti vary continuously.
Discretizing t gives CS with A convolutional, highly coherent.
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Super-resolution model:

Objects of interest essentially point sources as compared to the
width of the measurement point-spread response function, φ(s, t).
Have access to data of the form:

y(s) =
k∑

i=1

aiφ(s, ti )

where ti denotes locations of point source with magnitude ai .

Motivated by microscopy let φ(s, ti ) = exp
(
− |s−ti |
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

y

t

S

Seek to recover ti and ai for i = 1, . . . , k from samples of y(s).
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Fluorescence image [Barsic, Grover, Piestun; Sci. Rep. 14’]

Three-dimensional super-resolution and localization of dense
clusters of single molecules. Used Gaussian blurring model.

”A standard fluorescence image is shown in (a). The 3D
super-resolution image (b) of labeled tubulin in PtK1 cells
demonstrates that the method can be applied to localization-based
super-resolution imaging with a wide field of view.”

The Nobel Prize in Chemistry 2014 was awarded jointly to Eric
Betzig, Stefan W. Hell and William E. Moerner ”for the
development of super-resolved fluorescence microscopy”.
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Error metric: locality different from normal comp. sensing:

Consider discrete measure x(t) =
∑k

i=1 aiδti ≥ 0,
y(s) = φ(s, t) ∗ x(t) + e(s), and general measure x̂ ≥ 0.

I Distance between measures via Wasserstein distance:

dW (x , x̂) = inf
γ

∫
I×I
|τ1 − τ2| · γ(dτ1, dτ2)

where x̂(t) =
∫
I γ(dτ1, τ2)

and x(t) =
∫
I γ(τ1, dτ2)

I Energy conservation depends on source sample locations,
requires minimum separation for signed discrete measures:

m∑
j=1

y(sj)
2 ≥ Const.

k∑
i=1

a2i

for universal Const. requires ∆ = mini 6=l |ti − tl | lower
bounded and for local φ(s, t) requires sj sufficiently near ti .
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Super-resolution without separation: TV-minimization

Theorem (Schiebinger, Robeva, Recht 2018)

Suppose x(t) =
∑k

i=1 aiδti with: ai > 0 and ti ∈ [0, 1] for
i = 1, . . . , k and φ(s, t) is a Tchebysheff system (e.g.

φ(s, t) = exp
(
− |s−t|

2

σ2

)
) and given y(sj) = φ(sj , t) ∗ x for

j = 1, . . . ,m for m > 2k and for z(t) ≥ 0 let

x̂ = argminz

∫
dz(t) subject to y(sj) = φ(sj , t) ∗ dz(t),

then x̂ = x .

Main innovation: no need for minimum separation
∆ = mini 6=j |ti − tj | which must be bounded for x signed; typically
m ∼ ∆−1 which is analogous to uniform sampling near sources.
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Super-resolution without separation: uniqueness

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Suppose x(t) =
∑k

i=1 aiδti with: ai > 0 and ti ∈ [0, 1] for
i = 1, . . . , k and φ(s, t) is a Tchebysheff system (e.g.

φ(s, t) = exp
(
− |s−t|

2

σ2

)
) and given y(sj) = φ(sj , t) ∗ x(t) for

j = 1, . . . ,m with m > 2k and for x̂ ≥ 0 let

y(sj) = φ(sj , t) ∗ dx̂(t),

then there is a unique k-sparse solution, e.g. x̂ = x .

Result by Schiebinger, Robeva, and Recht is true for all
non-negative measures matching the measurements; no need for
TV. Essentially a corollary by Karlin from the 60s.

Similar result from compressed sensing of vectors [Donoho, Tanner
2010], roughly y = Ax for x ≥ 0 and s-sparse, then x unique if
y ∈ Rm for m the same as if one solved `1 minimization, e.g. for
m ≥ 2s log(n/m) for m/n� 1.
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Sketch of the proof: dual polynomial 1

Lemma
Let x be a nonnegative k-sparse atomic measure supported on
T = {ti}ki=1 ∈ I , and y(s) = φ(s, t) ∗ x , then, x is the unique
solution to y(s) = φ(s, t) ∗ z over z ≥ 0 (including non-atomic
measures) if

I the k ×m matrix [φ(sj , ti )]i=k,j=m
i=1,j=1 is full rank (Tchebysheff

systems satisfy this for all sample and source sequences), and

I there exist real coefficients {bj}mj=1 and dual polynomial
q(t) =

∑m
j=1 bjφ(sj , t) such that q is nonnegative on I and

vanishes only on the set of sources T = {ti}ki=1.
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Sketch of the proof: dual polynomial 2

Proof:
Let x ≥ 0 be a nonnegative k-sparse atomic measure supported on
T = {ti}ki=1 ∈ I and both x and x̂ ≥ 0 satisfy
y(s) = φ(s, t) ∗ x(t) = φ(s, t) ∗ x̂(t) for s ∈ {sj}mj=1. Let
q(t) =

∑m
j=1 bjφ(sj , t) ≥ 0 satisfy q(ti ) = 0 for ti ∈ T ; then let

h(t) = x̂(t)− x(t) and note
∫
I h(t)φ(sj , t) = 0 for j = 1, ·m.

I supp(x̂) = supp(x): Consider

0 =
m∑
j=1

bj

∫
I
φ(sj , t)dh(t) =

∫
I
q(t)dh(t) =

∫
I/T

q(t)dh(t) ≥ 0,

as q(t)h(t) > 0 for t ∈ I/T requires h(t) = 0 to t ∈ I/T .
I x̂ = x : given h(t) =

∑k
i=1 ciδti the m measurements

equalities can be expressed as a linear system Φc = 0 where
Φi ,j = φ(si , tj), if invertible has only the trivial solution c = 0.

Existence of q(t) for φ(s, t) Chebyshev System; e.g. Gaussian.
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Non-negative super-resolution stability: Gaussian, local

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Let I = [0, 1] and consider a k-sparse nonnegative measure x
supported on T ⊂ int(I ). Consider also an arbitrary increasing
sequence {sj}mj=1 ⊂ R and any x̂ ≥ 0 satisfy∑m

j=1

∣∣∣yj − ∫I exp
(
− |sj−t|

2

σ2

)
x̂(dt)

∣∣∣2 ≤ δ2. If technical conditions

are satisfied (stated in a few slides) and ε = σ2

2 δ then:∣∣∣∣∫ ti+ε

ti−ε
x̂(dt)− ai

∣∣∣∣ ≤ [(c1 + F1) · δ + c2
‖x̂‖TV
σ2

· ε
]
F2

where, for precise formulae are available for F1(k,∆(T ), σ, ε) and
F2(∆(T ), σ, λ), and in some settings the overall bound can be
simplified to be proportional to δ1/6.
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Non-negative super-resolution stability: Wasserstein

Theorem (Eft. Tan. Tho. Toa. Tya. 2018)

Let I = [0, 1] and consider a k-sparse nonnegative measure x
supported on T ⊂ int(I ). Consider also an arbitrary increasing
sequence {sj}mj=1 ⊂ R and any x̂ ≥ 0 satisfy

m∑
j=1

∣∣∣∣yj − ∫
I

exp

(
−
|sj − t|2

σ2

)
x̂(dt)

∣∣∣∣2 ≤ δ2. (1)

If technical conditions are satisfied and ε ≤ ∆/2, then

dGW (x , x̂) ≤ F (k ,∆, σ) · δ + ‖x‖TV · ε,

where dGW is the generalized Wasserstein distance. If σ < 3−1/2

and ∆ > σ
√

log(5/σ2) then dGW (x , x̂) ≤ F3(k,∆, σ) · δ1/7.
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Sketch of the proof: dual polynomial with δ > 0

Lemma
Let x̂ be a solution of Program (1) and set h = x̂ − x to be the
error. Consider a bounded function f : R→ R+ such that f (0) = 0
and also a positive scalar f̄ . Suppose that there exist a positive
ε ≤ mini ,j |ti − tj |, let Ti ,ε = [ti − ε, ti + ε], real coefficients
{bj}mj=1, and a polynomial q(t) =

∑m
j=1 bjφ(sj , t) such that

q(t) ≥ F (t) :=

{
f (t − ti ) , for i ∈ [k] with t ∈ Ti ,ε,

f̄ , elsewhere on I ,

where the equality holds on T . Then we have that

f̄

∫
TC
ε

h(dt) +
k∑

i=1

∫
Ti,ε

f (t − ti ) h(dt) ≤ 2‖b‖2δ,

where b ∈ Rm is the vector formed by the coefficients {bj}mj=1.
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Sketch of the proof: dual polynomial with δ > 0

Quality of bound on h = x̂ − x determined by dual polynomial,
controlling size of f̄ , how quickly f (t) grows away from 0, and ‖b‖2
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Those technical conditions in the theorems:

When the window function is a Gaussian φ(s, t) = e−
|s−t|2

σ2 , we
require its width σ, the source locations and sampling locations to
satisfy the following conditions:

1. Boundary samples: s1 = 0 and sm = 1,

2. Samples near sources: for every i ∈ [k] and η = O(σ2), there
exists a pair of samples s, s ′ ⊂ S with s ′ − s = η such that
|s − ti | ≤ η and for η small enough (quantified in the paper),

3. Sources away from the boundary:
σ
√

log(1/η)� ti , sj � 1− σ
√

log(1/η) for every i ∈ [k] and
j ∈ [2 : m − 1],

4. Minimum separation of sources: σ ≤
√

2 and

∆ > σ
√

log (3 + 4
σ2 ).

Roughly this translates to m ∼ ∆−1 and σ can’t be to large.
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Stability implied for windows that are T ∗-systems

Definition of T∗-systems
For an even integer m, real-valued functions {φj}mj=0 form a
T*-system on I = [0, 1] if the following holds for every
T = {t1, t2, . . . , tk} ⊂ I when ρ > 0 is sufficiently small. For any
increasing sequence τ = {τl}ml=0 ⊂ I such that

I τ0 = 0, τm = 1,

I except exactly three points, namely τ0, τm, and say τl ∈ int(I ),
the other points belong to Tρ = ∪ki=1[ti − ρ, ti + ρ],

I every Ti ,ρ = [ti − ρ, ti + ρ] contains an even number of points,

we have that

1. the determinant of the (m + 1)× (m + 1) matrix
Mρ := [φj(τl)]ml ,j=0 is positive, and

2. the magnitudes of all minors of Mρ along the row containing
τl approach zero at the same rate when ρ→ 0.
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Some extensions:

I The stability results can be trivially generalized to x ≥ 0 which
is not atomic, but can be well approximated by a k-atomic
measure with a prescribed separation between the atoms.

I The can be adapted to the setting where there are some
unresolvable sources so that the sample complexity can be
relaxed; results show the average of any consistent solution is
close to the sum of the unresolved sources.

I The results can be extended to higher dimensional settings for
samples on a cartesian grid by appropriately combining the
one dimensional dual polynomials, but requires the number of
measurements to be quadratic in the number of
measurements (not as trivial as it sounds).

I In limited settings we have extended some results to the
setting of continuous paths in higher dimensions; preliminary.
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Conclusions:

I Non-negative super-resolution is robust to model misfit and
additive noise

I All solutions whose measurements are within δ in `2 are within
δ of noise free case in Wasserstein distance.

I Robust even for sources within δ, or high noise regime; let T̃i ,ε

be the set of overlapping Ti ,ε, then∣∣∣∣∣
∫
T̃i,ε

x̂(dt)−
p∑

r=1

ai(r)

∣∣∣∣∣ ∼ δ1/7
I When considering algorithms for non-negative

super-resolution, seek fast methods for feasibility
problem, not necessarily TV; justifies use of conditional
gradient and non-linear heuristics.
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