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Introdu
tion

Let H and G be real Hilbert spa
es and 
onsider the optimization

problem

inf
x∈H

(f (x) + h(x) + g(Ax)), (1)

where, f : H −→ R, g : G −→ R are proper, 
onvex and lower

semi
ontinuous fun
tions, h : H −→ R is a 
onvex and Frè
het

di�erentiable fun
tion with Lh Lips
hitz 
ontinuous gradient, i.e.

there exists Lh ≥ 0 su
h that ‖∇h(x)−∇h(y)‖ ≤ Lh‖x − y‖ for

all x , y ∈ H, and A : H −→ G is a 
ontinuous linear map.

If Lh = 0 obviously h is 
onstant and will not 
ontribute to problem

(1), therefore we will assume in this 
ase that h ≡ 0.
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Note, that problem (1) 
an be rewritten as

inf
(x,z)∈H×G

Ax−z=0

(f (x) + h(x) + g(z)), (2)

hen
e x∗ ∈ H is an optimal solution of (1), if and only if

(x∗, z∗) ∈ H × G is an optimal solution of (2), and Ax∗ = z∗.
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Note, that problem (1) 
an be rewritten as

inf
(x,z)∈H×G

Ax−z=0

(f (x) + h(x) + g(z)), (2)

hen
e x∗ ∈ H is an optimal solution of (1), if and only if

(x∗, z∗) ∈ H × G is an optimal solution of (2), and Ax∗ = z∗.

The usefulness of the above formulation 
onsists in the fa
t that

the Lagrangian,

l : H× G × G −→ R, l(x , z , y) = f (x) + h(x) + g(z) + 〈y ,Ax − z〉,


an be introdu
ed.
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We emphasize that (x∗, z∗, y∗) ∈ H× G × G is a saddle point of l ,

that is

l(x∗, z∗, y) ≤ l(x∗, z∗, y∗) ≤ l(x , z , y∗), ∀(x , z , y) ∈ H × G × G,

if and only if z∗ = Ax∗, x∗ is an optimal solution of (1), hen
e,

(x∗, z∗) is an optimal solution of (2), and y∗ is an optimal solution

of the Fen
hel dual to problem (1), i.e.

sup
y∈G

(−(f ∗�h∗)(−A∗y)− g∗(y)) (3)

and the optimal values of (1) and (3) 
oin
ide.
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We emphasize that (x∗, z∗, y∗) ∈ H× G × G is a saddle point of l ,

that is

l(x∗, z∗, y) ≤ l(x∗, z∗, y∗) ≤ l(x , z , y∗), ∀(x , z , y) ∈ H × G × G,

if and only if z∗ = Ax∗, x∗ is an optimal solution of (1), hen
e,

(x∗, z∗) is an optimal solution of (2), and y∗ is an optimal solution

of the Fen
hel dual to problem (1), i.e.

sup
y∈G

(−(f ∗�h∗)(−A∗y)− g∗(y)) (3)

and the optimal values of (1) and (3) 
oin
ide.

The existen
e of a saddle point is guaranteed whenever the

Attou
h-Brézis regularity 
ondition

0 ∈ sqri(dom g − A(dom f ))

holds, where sqri denotes the strong quasi-relative interior of a set.
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Let us denote by S+(H) the family of 
ontinuous linear operators

U : H −→ H whi
h are self-adjoint and positive semide�nite and

for U ∈ S+(H) we introdu
e the following seminorm:

‖x‖2U = 〈x ,Ux〉,∀x ∈ H.

In S+(H) 
an be introdu
ed a partial ordering as follows: for

U
1

,U
2

∈ S+(H)

U
1

< U
2

⇔ ‖x‖2U
1

≥ ‖x‖2U
2

∀x ∈ H.

For α > 0 we denote

Pα(H) = {U ∈ S+(H) : U < αI}.

Here I : H −→ H, I (x) = x denotes the identity operator.

Consider the mappings M
1

: [0,+∞) −→ S+(H) and

M
2

: [0,+∞) −→ S+(G) and the parameters c > 0, γ ≥ 0.
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We de�ne the fun
tions F : [0,+∞)×H −→ R

F (t, x) = f (x) +
c

2

(‖Ax‖2 − ‖x‖2) + 1

2

‖x‖2M
1

(t)

and G : [0,+∞)× G −→ R

G (t, x) = g(x) +
1

2

‖x‖2M
2

(t).

The dynami
al system related to the problems (1)-(3) is



























































ẋ(t) + x(t) ∈ argminx∈H

(

F (t, x) + c
2

∥

∥

∥
x −

(

M
1

(t)
c

x(t) + A∗z(t)− A∗

c
y(t)− 1

c
∇h(x(t))

)∥

∥

∥

2

)

ż(t) + z(t) = argminx∈G

(

G (t, x) + c
2

∥

∥

∥
x −

(

M
2

(t)
c

z(t) + A(γẋ(t) + x(t)) + 1

c
y(t)

)∥

∥

∥

2

)

ẏ(t) = cA(x(t) + ẋ(t))− c(z(t) + ż(t))

t ∈ [0,+∞), x(0) = x
0

∈ H, y(0) = y
0

∈ G, z(0) = z
0

∈ G, c > 0, γ ∈ [0, 1].

(4)
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Remark

Meanwhile, for every t ∈ [0,+∞) the 
onvexity of the fun
tion

G (t, ·) is obvious, hen
e the equality in the se
ond equation of (4)

is assured by the strong 
onvexity of the fun
tion

x → G (t, x) + c
2

‖x − u‖2 for all u ∈ G, observe that the positive

semide�niteness of the operator

M
1

(t) + c(A∗A− I ) for all t ∈ [0,+∞), ensures the 
onvexity of

the fun
tion F (t, ·) and impli
itly the equality in the �rst equation

of (4).

In this 
ase the dynami
al system (4) be
omes
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

























































ẋ(t) = prox
1

c
F (t,·)

(

M
1

(t)
c

x(t) + A∗z(t)− A∗

c
y(t)− 1

c
∇h(x(t))

)

− x(t)

ż(t) = prox
1

c
G(t,·)

(

M
2

(t)
c

z(t) + A(γẋ(t) + x(t)) + 1

c
y(t)

)

− z(t)

ẏ(t) = cA(x(t) + ẋ(t))− c(z(t) + ż(t))

x(0) = x
0

∈ H, y(0) = y
0

∈ G, z(0) = z
0

∈ G, c > 0, γ ∈ [0, 1].

(5)

Here

proxλf : H → H, proxλf (x) = argminy∈H
{

f (y) + 1

2λ
‖y − x‖2

}

,

denotes the proximal point operator of the 
onvex fun
tion λf .
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Remark

Nevertheless, the strong 
onvexity of the fun
tion

x → F (t, x) + c
2

‖x − u‖2 for all u ∈ H is also assured if one of the

following assumptions holds:

(C1) for every t ∈ [0,+∞) there exists α
1

(t) > 0 su
h that

M
1

(t) ∈ Pα
1

(t)(H),

(C2) there exists α > 0 su
h that A∗A ∈ Pα(H),

(C3) for every t ∈ [0,+∞) there exists α(t) > 0 su
h that

cA∗A+M
1

(t) ∈ Pα(t)(H).
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Indeed, one has

∂x

(

F (t, x) +
c

2

‖x − u‖2
)

= ∂f (x) + cA∗Ax +M
1

(t)x − cu, (6)

whi
h is obviously α
1

(t)−strongly monotone, cα−strongly

monotone or α(t)−strongly monotone, if (C1), (C2) or (C3) holds.

Moreover, taking into a

ount that A∗A ∈ S+(H) and

M
1

(t) ∈ S+(H) for all t ∈ [0,+∞) we 
on
lude that

(C1) ⇒ (C3)

and

(C2) ⇒ (C3).
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Remark

Let S = {x ∈ H : ‖x‖ = 1} the unit sphere of H.

(A1) Observe that for every t ≥ 0 we have

α
1

(t) ≤ inf
x∈S

〈x ,M
1

(t)x〉 = inf
x∈S

‖x‖2M
1

(t).

Consequently (C1) holds, if and only if

inf
x∈S

‖x‖2M
1

(t) > 0, ∀t ∈ [0,+∞) and in this 
ase one 
an take

α
1

(t) = inf
x∈S

‖x‖2M
1

(t).

Note that inft∈[0,+∞) α1

(t) > 0, if and only if, there exists α > 0

su
h that M
1

(t) ∈ Pα(H) for all t ∈ [0,+∞).
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(A2) Similarly, (C2) holds, if and only if

inf
x∈S

‖Ax‖ > 0, and in this 
ase one 
an take α = ( inf
x∈S

‖Ax‖)2.

(A3) Finally, (C3) holds, if and only if for all t ∈ [0,+∞) one has

inf
x∈S

(c‖Ax‖2 + ‖x‖2M
1

(t)) > 0, and in this 
ase one 
an take

α(t) = inf
x∈S

(c‖Ax‖2 + ‖x‖2M
1

(t))

that is

α(t) = inf
x∈S

‖x‖2cA∗A+M
1

(t).

Note that inft∈[0,+∞) α(t) > 0, if and only if, there exists α > 0

su
h that cA∗A+M
1

(t) ∈ Pα(H) for all t ∈ [0,+∞).
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Let us show that time dis
retization of the dynami
al system (4)

leads to the proximal ADMM algorithm from the literature, see M.

Fazel, T.K. Pong, D. Sun, P. Tseng

1

, R. She�, M. Teboulle

2

, S.

Banert, R.I. Boµ, E.R. Csetnek

3

.

1

Hankel matrix rank minimization with appli
ations in system identi�
ation

and realization, SIAM Journal on Matrix Analysis and Appli
ations 34,

946-977, 2013

2

Rate of 
onvergen
e analysis of de
omposition methods based on the

proximal method of multipliers for 
onvex optimization, Siam Journal on

Optimization 24(1), 269-297, 2014,

3

Fixing and extending some re
ent results on the ADMM algorithm,

arXiv:1612.05057, 2016
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Indeed, the �rst equation of (4) 
an be written as

0 ∈ ∂f (ẋ(t) + x(t)) + cA∗A(ẋ(t) + x(t)) +M
1

(t)ẋ(t)− (cA∗z(t)− A∗y(t)−∇h(x(t))).

Consequently, by the expli
it dis
retization of the above in
lusion

with respe
t to the time variable t, 
onstant step size hk ≡ 1 and

initial points x0 = x
0

, y0 = y
0

, z0 = z
0

yields the iterative s
heme

0 ∈ 1

c
∂f (xk+1) + A∗Axk+1 +

Mk
1

c
(xk+1 − xk)− A∗zk + A∗

c
yk + 1

c
∇h(xk).

Hen
e,

0 ∈ ∂

(

f (x) + 〈x − xk ,∇h(xk)〉+ c
2

∥

∥

∥
Ax − zk + yk

c

∥

∥

∥

2

+ 1

2

‖x − xk‖2
Mk

1

)
∣

∣

∣

∣

x=xk+1

in other words

xk+1 ∈ argminx∈H

(

f (x) + 〈x − xk ,∇h(xk)〉+ c
2

∥

∥

∥
Ax − zk + yk

c

∥

∥

∥

2

+ 1

2

‖x − xk‖2
Mk

1

)

.

(7)
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Similarly, the se
ond equation (4) leads to

zk+1 =
(

I + 1

c
∂xG (tk , ·)

)−1

(

Mk
2

c
zk + A(γxk+1 + (1− γ)xk) + 1

c
yk

)

,

hen
e,

0 = ∂

(

g(z) + c
2

∥

∥

∥
A(γxk+1 + (1− γ)xk)− z + yk

c

∥

∥

∥

2

+ 1

2

‖z − zk‖2
Mk

2

)
∣

∣

∣

∣

z=zk+1
.

Consequently,

zk+1 = argminz∈G

(

g(z) + c
2

∥

∥

∥
A(γxk+1 + (1− γ)xk)− z + yk

c

∥

∥

∥

2

+ 1

2

‖z − zk‖2
Mk

2

)

.

(8)

Taking into a

ount the equations (7) and (8), our dynami
al

system (4) leads through expli
it dis
retization to
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





























































xk+1 ∈ argminx∈H

(

f (x) + 〈x − xk ,∇h(xk)〉+ c
2

∥

∥

∥
Ax − zk + yk

c

∥

∥

∥

2

+ 1

2

‖x − xk‖2
Mk

1

)

zk+1 = argminz∈G

(

g(z) + c
2

∥

∥

∥
A(γxk+1 + (1− γ)xk)− z + yk

c

∥

∥

∥

2

+ 1

2

‖z − zk‖2
Mk

2

)

yk+1 = yk + c(Axk+1 − zk+1)

x0 ∈ H, y0, z0 ∈ G.
(9)

Let us noti
e that in 
ase γ = 1, h = 0 and M
1

and M
2

are


onstant in ea
h iteration, this is nothing else than the proximal

ADMM method from the literature.
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Furthermore, the situation γ = 0 leads to an extension of the

linearized proximal method of multipliers of Chen-Teboulle.

4

Let us 
onsider now the parti
ular 
ase

M
1

(t) =
1

τ(t)
I − cA∗A, M

2

(t) = 0, ∀t ∈ [0,+∞),

where τ(t) > 0 for all t ≥ 0 and cτ(t)‖A‖2 ≤ 1.

In this parti
ular 
ase (4) be
omes



























ẋ(t) + x(t) = proxτ(t)f ((I − cτ(t)A∗A)x(t) + cτ(t)A∗z(t)− τ(t)A∗y(t)− τ(t)∇h(x(t)))

ẏ(t) + y(t) + c(γ − 1)Aẋ(t) = proxcg∗(cA(γẋ(t) + x(t)) + y(t))

ẏ(t) = cA(x(t) + ẋ(t))− c(z(t) + ż(t))

t ∈ [0,+∞), x(0) = x
0

∈ H, y(0) = y
0

∈ G, z(0) = z
0

∈ G, c > 0, γ ∈ [0, 1].

(10)

4

A proximal-based de
omposition method for 
onvex minimization problems,

Mathemati
al Programming 64, 81-101, 1994
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The dis
retization of (10) in 
ase h ≡ 0 and γ = 1 leads to















xk+1 = proxτk f
(

xk − τkA
∗(2yk − yk−1)

)

yk+1 = proxcg∗(yk + cAxk+1).

(11)

When τk = τ > 0 for all k ≥ 1, this iterative s
hemes be
omes the

primal-dual algorithm proposed by Chambolle and Po
k.

5

5

A �rst-order primal-dual algorithm for 
onvex problems with appli
ations to

imaging, Journal of Mathemati
al Imaging and Vision 40(1), 120-145, 2011
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Existen
e and uniqueness

In what follows everywhere we assume that one of the 
onditions

(C1)-(C3) stated in Remark 2 holds. Now we are able to spe
ify

whi
h type of solutions are we 
onsidering in the analysis of the

dynami
al system (4).

De�nition

We say that the ve
tor fun
tion

(x , z , y) : [0,+∞) −→ H× G × G is a strong global solutions of

(4), if the following properties are satis�ed:

(i) the fun
tions x , z , y are lo
ally absolutely 
ontinuous;
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(ii)

ẋ(t) + x(t) = argminx∈H

(

F (t, x) + c
2

∥

∥

∥
x −

(

M
1

(t)
c

x(t) + A∗z(t)− A∗

c
y(t)− 1

c
∇h(x(t))

)
∥

∥

∥

2

)

,

ż(t) + z(t) = argminx∈G

(

G (t, x) + c
2

∥

∥

∥
x −

(

M
2

(t)
c

z(t) + A(γẋ(t) + x(t)) + 1

c
y(t)

)
∥

∥

∥

2

)

,

and

ẏ(t) = cA(x(t) + ẋ(t))− c(z(t) + ż(t))

for almost every t ≥ 0;

(iii)

x(0) = x
0

, y(0) = y
0

, and z(0) = z
0

.

We prove existen
e and uniqueness of a strong global solution of

(4) by making use of the Cau
hy-Lips
hitz-Pi
ard Theorem for

absolutely 
ontinues traje
tories. The key argument is that one 
an

rewrite (4) as a parti
ular �rst order dynami
al system in a suitably


hosen produ
t spa
e.
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Theorem

Assume that one of the 
onditions (C1), (C2) or (C3) holds.

Assume further that for every T > 0 the fun
tions

t −→ ‖M
1

(t)‖, t −→ ‖M
2

(t)‖

are integrable on [0,T ], that is, ‖M
1

(·)‖, ‖M
2

(·)‖ ∈ L1loc ([0,+∞)).

Then, for every starting points (x
0

, z
0

, y
0

) ∈ H × G × G, the
dynami
al system (4) has a unique strong global solution

(x , z , y) : [0,+∞) −→ H× G × G.
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In order to 
ontinue our analysis we need the following derivative


on
ept. We say that the map M : [0,+∞) −→ L(H), t −→ M(t)

is derivable at t ∈ [0,+∞) if there exists the limit

lim
h−→0

M(t + h)−M(t)

h

taken after the topology indu
ed by the norm of L(H).

Let us denote by Ṁ(t) the value of the above limit. Obviously,

Ṁ(t) ∈ L(H). If M is lo
ally absolutely 
ontinuous then Ṁ(t)

exists at almost every t ∈ [0,+∞). It is straightforward that,

whenever Ṁ(t) exists, one has

Ṁ(t)x = lim
h−→0

M(t + h)x −M(t)x

h
, for every x ∈ H.
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Assume now that M(t) ∈ L(H) is self adjoint for every

t ∈ [0,+∞) and that is derivable at t
0

∈ [0,+∞). Then, Ṁ(t
0

) is

also self adjoint.

Further we will need the following derivation formula used when we

prove the 
onvergen
e of the traje
tories of (4).

Consider the maps x , y : [0,+∞) −→ H and assume that x and y

are derivable at t
0

. Then, the real fun
tion t −→ 〈M(t)x(t), y(t)〉
is also derivable at t

0

and one has

d

dt
〈M(t)x(t), y(t)〉

∣

∣

t=t
0

= (12)

〈Ṁ(t
0

)x(t
0

), y(t
0

)〉+ 〈M(t
0

)ẋ(t
0

), y(t
0

)〉+ 〈M(t
0

)x(t
0

), ẏ(t
0

)〉.
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Assume that the mappings t −→ M
1

(t), t −→ M
2

(t) are lo
ally

absolutely 
ontinuous on [0,+∞), and for the starting points

(x
0

, z
0

, y
0

) ∈ H × G × G, let (x , z , y) : [0,+∞) −→ H× G × G be

the unique strong global solution of the dynami
al system (4).

Then, t −→ (ẋ(t), ż(t), ẏ(t)) is lo
ally absolutely 
ontinuous,

hen
e (ẍ(t), z̈(t), ÿ(t)) exists for almost every t ≥ 0. Moreover, if

supt≥0

‖M
1

(t)‖ < +∞ and supt≥0

‖M
2

(t)‖ < +∞, then there

exists L > 0 su
h that

‖ẍ(t)‖+ ‖z̈(t)‖+ ‖ÿ (t)‖ ≤

L(‖ẋ(t)‖+ ‖ż(t)‖+ ‖ẏ (t)‖+ ‖Ṁ
1

(t)‖‖ẋ(t)‖+ ‖Ṁ
2

(t)‖‖ż(t)‖),

for almost every t ∈ [0,+∞).
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Asymptoti
 analysis

Next, we state a version of 
ontinuous Opial Lemma that will be

used for showing the 
onvergen
e of the traje
tories generated by

the dynami
al system (4). It 
an be seen as the 
ontinuous


ounter-part of the Opial Lemma formulated in the setting of

variable metri
s by Combettes and V�u.

6

Lemma

Let C ⊆ H be a nonempty set and let x : [0,+∞) → H be a


ontinuous map. Let M : [0,+∞) −→ S+(H) and assume that

there exists α > 0 su
h that M(t) ∈ Pα(H) for all t ∈ [0,+∞).

Assume further that M(t
1

) < M(t
2

) for all t
1

≤ t
2

and the

following 
onditions hold.

6

Variable metri
 quasi-Fejér monotoni
ity, Nonlinear Analysis 78, 17-31, 2013
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(i) for every z ∈ C, limt→+∞ ‖x(t)− z‖M(t) exists;

(ii) every weak sequential 
luster point of the map x belongs to C.

Then there exists x∞ ∈ C su
h that w − limt→+∞ x(t) = x∞.

Remark

If a map M : [0,+∞) −→ S+(H) satis�es M(t
1

) < M(t
2

) for all

t
1

≤ t
2

, t
1

, t
2

∈ [0,+∞) we will say that M is monotone

de
reasing. Note, that in 
ase M is monotone de
reasing and

lo
ally absolutely 
ontinuous then Ṁ(t) exists for almost every

t ∈ [0,+∞) and, by making abuse of notation,

‖x‖2
Ṁ(t)

= 〈Ṁ(t)x , x〉 ≤ 0 for almost every t ∈ [0,+∞).
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Our 
onvergen
e result is the following.

Theorem

Consider the Problem (1) and assume that C, the set of saddle

points of the Lagrangian l is nonempty. Assume further that the

maps M
1

(t) + c(1−γ)
4

A∗A− Lh
4

I ,M
1

(t) ∈ S+(H), M
2

(t) ∈ S+(G)
for all t ≥ 0 are lo
ally absolutely 
ontinuous and monotone

de
reasing and supt≥0

‖Ṁ
1

(t)‖ < +∞ and supt≥0

‖Ṁ
2

(t)‖ < +∞.

Moreover, assume that one of the following assumptions hold.

(I) M
1

(t) + c(1−γ)
4

A∗A− Lh
4

I ∈ Pα
1

(H) for all t ≥ 0 and for some

α
1

> 0.

(II) γ ∈ [0, 1) and A∗A ∈ Pα(H) for some α > 0.
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For a starting point (x
0

, z
0

, y
0

) ∈ H × G × G, let
(x , z , y) : [0,+∞) −→ H× G × G be the unique strong global

solution of the dynami
al system (4). Then, the ve
tor fun
tion

t −→ (x(t), z(t), y(t)) 
onverges weakly to a saddle point of l as

t −→ +∞.

Our proof, beside the previously stated 
ontinuous Opial lemma, is

based on a result of A. Alotaibi, P. L. Combettes and N. Shahzad.

7

7

Solving Coupled Composite Monotone In
lusions by Su

essive Fejér

Approximations of their Kuhn-Tu
ker Set, SIAM J. Optim., 24(4), 2076-2095,

(2014)
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Lemma ACS

In the setting of Problem (1), let (an, a
∗
n)n∈N be a sequen
e in

Gr ∂(f + h), let (bn, b
∗
n)n∈N be a sequen
e in Gr ∂g . Suppose that

an 
onverges weakly to x ∈ H, b∗n 
onverges weakly to v ∈ G
a∗n + A∗b∗n −→ 0, and Aan − bn −→ 0. Then,

〈an, a∗n〉+ 〈bn, b∗n〉 −→ 0

and

v ∈ ∂g(Ax), −A∗v −∇h(x) ∈ ∂f (x).

Further, we derive the following key inequality.
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For almost every t ∈ [0,+∞) one has

1

2

d
dt

(

‖x(t)− x∗‖2
M

1

(t)+c(1−γ)A∗A
+ ‖z(t)− Ax∗‖2

M
2

(t)+cI
+ 1

c
‖y(t)− y∗‖2

)

+

‖ẋ(t)‖2
M

1

(t)+
(1−γ)c

4

A∗A−
Lh
4

I
+ ‖ż(t)‖2M

2

(t)+ c
4

I +
γ + 1

3c
‖ẏ (t)‖2+

∥

∥

∥

∥

∥

√
3c

2

ż(t) +
1√
3c

ẏ(t)

∥

∥

∥

∥

∥

2

+ (1− γ)

∥

∥

∥

∥

∥

√
3c

2

Aẋ(t)− 1√
3c

ẏ(t)

∥

∥

∥

∥

∥

2

+

−1

2

‖x(t)− x∗‖2
Ṁ

1

(t)
− 1

2

‖z(t)− Ax∗‖2
Ṁ

2

(t)
+

1

Lh

∥

∥

∥

∥

∇h(x(t))−∇h(x∗) +
Lh

2

ẋ(t)

∥

∥

∥

∥

2

≤ 0.

Analogously, if Lh = 0, i.e. h ≡ 0, we obtain the same inequality

without the last term.
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From here almost immediately we obtain that

limt−→+∞(‖x(t) − x∗‖2
M

1

(t)+c(1−γ)A∗A
+ ‖z(t)− Ax∗‖2

M
2

(t)+cI
+ 1

c
‖y(t)− y∗‖2) ∈ R.

whi
h is nothing else but the �rst assumption of our 
ontinuous

Opial Lemma applied in the produ
t spa
e H× G × G for the

fun
tion t −→ (x(t), z(t), y(t)), for the map

W (t) =

(

M
1

(t) + c(1− γ)A∗A,M
2

(t) + cI ,
1

c
I

)

and C the set of saddle points of the Lagrangian l .

Further, ẋ(t) ∈ L2([0,+∞),H), ż(t), ẏ(t) ∈ L2([0,+∞),G).

From here we get

lim
t−→+∞

ẋ(t) = lim
t−→+∞

ż(t) = lim
t−→+∞

ẏ(t) = 0.
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It remained to show that every weak sequential 
luster point of

t −→ (x(t), z(t), y(t)) belongs to S .

Let (x , z , y) a weak sequentially 
luster point of the ve
tor fun
tion

t −→ (x(t), z(t), y(t)). Then, there exists a sequen
e (sn)n≥0

with

sn −→ +∞ su
h that (x(sn), z(sn), y(sn)) 
onverges to (x , z , y) in

the weak topology of H× G × G as n −→ +∞.

We apply Lemma ACS with

an = ẋ(sn) + x(sn),

a∗n = −cA∗A(ẋ(sn) + x(sn))−M
1

(sn)ẋ(sn)+

cA∗z(sn)− A∗y(sn)−∇h(x(sn)) +∇h(ẋ(sn) + x(sn))

and

bn = ż(sn) + z(sn),

b∗n = −c(ż(sn)+ z(sn))+ cA(γẋ(sn)+ x(sn))−M
2

(sn)ż(sn)+ y(sn) 32



We get

an ⇀ x

and

b∗n ⇀ y .

− A∗y −∇h(x) ∈ ∂f (x) (13)

and

y ∈ ∂g(Ax). (14)

Further, sin
e Aan − bn ⇀ 0 and an ⇀ x , bn ⇀ z we have

Ax = z . (15)

Consequently, (x , z , y) is a saddle point of l .
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Consequen
es

In 
ase M
1

(t) = M
2

(t) = 0 for all t ≥ 0 we have

Theorem

Consider the Problem (1) and assume that C, the set of saddle

points of the Lagrangian l is nonempty. Assume further, that

γ ∈ [0, 1) and A∗A− Lh
c(1−γ) I ∈ S+(H) (or, if h ≡ 0, A∗A ∈ Pα(H)

for some α > 0).

For a starting point (x
0

, z
0

, y
0

) ∈ H × G × G, let
(x , z , y) : [0,+∞) −→ H× G × G be the unique strong global

solution of the dynami
al system obtained from (4). Then, the

ve
tor fun
tion t −→ (x(t), z(t), y(t)) 
onverges weakly to a

saddle point of l as t −→ +∞.

34



Let us 
onsider now the parti
ular 
ase

M
1

(t) =
1

τ(t)
I − cA∗A, M

2

(t) = 0, ∀t ∈ [0,+∞),

where τ(t) > 0 for all t ≥ 0 and cτ(t)‖A‖2 ≤ 1.

Theorem

Consider the Problem (1) and assume that C, the set of saddle

points of the Lagrangian l is nonempty. Assume further that the

map

4−τ(t)Lh
4τ(t) I + 5c−cγ

4

A∗A ∈ S+(H) for all t ≥ 0 and τ is lo
ally

absolutely 
ontinuous, τ ′(t) ≥ 0 for almost every t ≥ 0 and

supt≥0

τ ′(t)
τ2(t)

< +∞. Moreover, assume that one of the following

assumptions hold.
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(I)

4−τ(t)Lh
4τ(t) I + 5c−cγ

4

A∗A ∈ Pα
1

(H) for all t ≥ 0 and for some

α
1

> 0.

(II) γ ∈ [0, 1) and A∗A ∈ Pα(H) for some α > 0.

For a starting point (x
0

, z
0

, y
0

) ∈ H × G × G, let
(x , z , y) : [0,+∞) −→ H× G × G be the unique strong global

solution of the dynami
al system (10). Then, the ve
tor fun
tion

t −→ (x(t), z(t), y(t)) 
onverges weakly to a saddle point of l as

t −→ +∞.
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Thank you for your attention.
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