A primal-dual dynamical approach to a nonsmooth convex minimization

Szilárd Csaba László
Department of Mathematics
Technical University of Cluj-Napoca
Joint work with Radu Ioan Boț and Ernö Robert Csetnek
GDO, 2019
Cluj-Napoca

Let \mathcal{H} and \mathcal{G} be real Hilbert spaces and consider the optimization problem

$$
\begin{equation*}
\inf _{x \in \mathcal{H}}(f(x)+h(x)+g(A x)) \tag{1}
\end{equation*}
$$

where, $f: \mathcal{H} \longrightarrow \overline{\mathbb{R}}, g: \mathcal{G} \longrightarrow \overline{\mathbb{R}}$ are proper, convex and lower semicontinuous functions, $h: \mathcal{H} \longrightarrow \mathbb{R}$ is a convex and Frèchet differentiable function with L_{h} Lipschitz continuous gradient, i.e. there exists $L_{h} \geq 0$ such that $\|\nabla h(x)-\nabla h(y)\| \leq L_{h}\|x-y\|$ for all $x, y \in \mathcal{H}$, and $A: \mathcal{H} \longrightarrow \mathcal{G}$ is a continuous linear map.

If $L_{h}=0$ obviously h is constant and will not contribute to problem
(1), therefore we will assume in this case that $h \equiv 0$.

Note, that problem (1) can be rewritten as

$$
\begin{equation*}
\inf _{\substack{(x, z) \in \mathcal{H} \times \mathcal{G} \\ A x-z=0}}(f(x)+h(x)+g(z)) \tag{2}
\end{equation*}
$$

hence $x^{*} \in \mathcal{H}$ is an optimal solution of (1), if and only if $\left(x^{*}, z^{*}\right) \in \mathcal{H} \times \mathcal{G}$ is an optimal solution of (2), and $A x^{*}=z^{*}$.

Note, that problem (1) can be rewritten as

$$
\begin{equation*}
\inf _{\substack{(x, z) \in \mathcal{H} \times \mathcal{G} \\ A x-z=0}}(f(x)+h(x)+g(z)) \tag{2}
\end{equation*}
$$

hence $x^{*} \in \mathcal{H}$ is an optimal solution of (1), if and only if $\left(x^{*}, z^{*}\right) \in \mathcal{H} \times \mathcal{G}$ is an optimal solution of (2), and $A x^{*}=z^{*}$.

The usefulness of the above formulation consists in the fact that the Lagrangian,
$I: \mathcal{H} \times \mathcal{G} \times \mathcal{G} \longrightarrow \overline{\mathbb{R}}, I(x, z, y)=f(x)+h(x)+g(z)+\langle y, A x-z\rangle$,
can be introduced.

We emphasize that $\left(x^{*}, z^{*}, y^{*}\right) \in \mathcal{H} \times \mathcal{G} \times \mathcal{G}$ is a saddle point of I, that is

$$
I\left(x^{*}, z^{*}, y\right) \leq I\left(x^{*}, z^{*}, y^{*}\right) \leq I\left(x, z, y^{*}\right), \forall(x, z, y) \in \mathcal{H} \times \mathcal{G} \times \mathcal{G}
$$

if and only if $z^{*}=A x^{*}, x^{*}$ is an optimal solution of (1), hence, $\left(x^{*}, z^{*}\right)$ is an optimal solution of (2), and y^{*} is an optimal solution of the Fenchel dual to problem (1), i.e.

$$
\begin{equation*}
\sup _{y \in \mathcal{G}}\left(-\left(f^{*} \square h^{*}\right)\left(-A^{*} y\right)-g^{*}(y)\right) \tag{3}
\end{equation*}
$$

and the optimal values of (1) and (3) coincide.

We emphasize that $\left(x^{*}, z^{*}, y^{*}\right) \in \mathcal{H} \times \mathcal{G} \times \mathcal{G}$ is a saddle point of I, that is

$$
I\left(x^{*}, z^{*}, y\right) \leq I\left(x^{*}, z^{*}, y^{*}\right) \leq I\left(x, z, y^{*}\right), \forall(x, z, y) \in \mathcal{H} \times \mathcal{G} \times \mathcal{G}
$$

if and only if $z^{*}=A x^{*}, x^{*}$ is an optimal solution of (1), hence, $\left(x^{*}, z^{*}\right)$ is an optimal solution of (2), and y^{*} is an optimal solution of the Fenchel dual to problem (1), i.e.

$$
\begin{equation*}
\sup _{y \in \mathcal{G}}\left(-\left(f^{*} \square h^{*}\right)\left(-A^{*} y\right)-g^{*}(y)\right) \tag{3}
\end{equation*}
$$

and the optimal values of (1) and (3) coincide.
The existence of a saddle point is guaranteed whenever the Attouch-Brézis regularity condition

$$
0 \in \operatorname{sqri}(\operatorname{dom} g-A(\operatorname{dom} f))
$$

holds, where sqri denotes the strong quasi-relative interior of a set.

Let us denote by $S_{+}(\mathcal{H})$ the family of continuous linear operators $U: \mathcal{H} \longrightarrow \mathcal{H}$ which are self-adjoint and positive semidefinite and for $U \in S_{+}(\mathcal{H})$ we introduce the following seminorm:

$$
\|x\|_{U}^{2}=\langle x, U x\rangle, \forall x \in \mathcal{H}
$$

In $S_{+}(\mathcal{H})$ can be introduced a partial ordering as follows: for $U_{1}, U_{2} \in S_{+}(\mathcal{H})$

$$
U_{1} \succcurlyeq U_{2} \Leftrightarrow\|x\|_{U_{1}}^{2} \geq\|x\|_{U_{2}}^{2} \forall x \in \mathcal{H} .
$$

For $\alpha>0$ we denote

$$
P_{\alpha}(\mathcal{H})=\left\{U \in S_{+}(\mathcal{H}): U \succcurlyeq \alpha I\right\} .
$$

Here $I: \mathcal{H} \longrightarrow \mathcal{H}, I(x)=x$ denotes the identity operator.
Consider the mappings $M_{1}:[0,+\infty) \longrightarrow S_{+}(\mathcal{H})$ and $M_{2}:[0,+\infty) \longrightarrow S_{+}(\mathcal{G})$ and the parameters $c>0, \gamma \geq 0$.

We define the functions $F:[0,+\infty) \times \mathcal{H} \longrightarrow \overline{\mathbb{R}}$

$$
F(t, x)=f(x)+\frac{c}{2}\left(\|A x\|^{2}-\|x\|^{2}\right)+\frac{1}{2}\|x\|_{M_{1}(t)}^{2}
$$

and $G:[0,+\infty) \times \mathcal{G} \longrightarrow \overline{\mathbb{R}}$

$$
G(t, x)=g(x)+\frac{1}{2}\|x\|_{M_{2}(t)}^{2}
$$

The dynamical system related to the problems (1)-(3) is

$$
\begin{align*}
& \dot{x}(t)+x(t) \in \operatorname{argmin}_{x \in \mathcal{H}}\left(F(t, x)+\frac{c}{2}\left\|x-\left(\frac{M_{1}(t)}{c} x(t)+A^{*} z(t)-\frac{A^{*}}{c} y(t)-\frac{1}{c} \nabla h(x(t))\right)\right\|^{2}\right) \\
& \dot{z}(t)+z(t)=\operatorname{argmin}_{x \in \mathcal{G}}\left(G(t, x)+\frac{c}{2}\left\|x-\left(\frac{M_{2}(t)}{c} z(t)+A(\gamma \dot{x}(t)+x(t))+\frac{1}{c} y(t)\right)\right\|^{2}\right) \\
& \dot{y}(t)=c A(x(t)+\dot{x}(t))-c(z(t)+\dot{z}(t)) \\
& t \in[0,+\infty), x(0)=x_{0} \in \mathcal{H}, y(0)=y_{0} \in \mathcal{G}, z(0)=z_{0} \in \mathcal{G}, c>0, \gamma \in[0,1] . \tag{4}
\end{align*}
$$

Remark

Meanwhile, for every $t \in[0,+\infty)$ the convexity of the function $G(t, \cdot)$ is obvious, hence the equality in the second equation of (4) is assured by the strong convexity of the function $x \rightarrow G(t, x)+\frac{c}{2}\|x-u\|^{2}$ for all $u \in \mathcal{G}$, observe that the positive semidefiniteness of the operator
$M_{1}(t)+c\left(A^{*} A-I\right)$ for all $t \in[0,+\infty)$, ensures the convexity of the function $F(t, \cdot)$ and implicitly the equality in the first equation of (4).

In this case the dynamical system (4) becomes

$$
\left\{\begin{array}{l}
\dot{x}(t)=\operatorname{prox}_{\frac{1}{c} F(t,)}\left(\frac{M_{1}(t)}{c} x(t)+A^{*} z(t)-\frac{A^{*}}{c} y(t)-\frac{1}{c} \nabla h(x(t))\right)-x(t) \\
\dot{z}(t)=\operatorname{prox}_{\frac{1}{c} G(t,)}\left(\frac{M_{2}(t)}{c} z(t)+A(\gamma \dot{x}(t)+x(t))+\frac{1}{c} y(t)\right)-z(t) \\
\dot{y}(t)=c A(x(t)+\dot{x}(t))-c(z(t)+\dot{z}(t)) \\
x(0)=x_{0} \in \mathcal{H}, y(0)=y_{0} \in \mathcal{G}, z(0)=z_{0} \in \mathcal{G}, c>0, \gamma \in[0,1] . \tag{5}
\end{array}\right.
$$

Here
$\operatorname{prox}_{\lambda f}: \mathcal{H} \rightarrow \mathcal{H}, \quad \operatorname{prox}_{\lambda f}(x)=\operatorname{argmin}_{y \in \mathcal{H}}\left\{f(y)+\frac{1}{2 \lambda}\|y-x\|^{2}\right\}$, denotes the proximal point operator of the convex function λf.

Remark

Nevertheless, the strong convexity of the function $x \rightarrow F(t, x)+\frac{c}{2}\|x-u\|^{2}$ for all $u \in \mathcal{H}$ is also assured if one of the following assumptions holds:
(C1) for every $t \in[0,+\infty)$ there exists $\alpha_{1}(t)>0$ such that

$$
M_{1}(t) \in P_{\alpha_{1}(t)}(\mathcal{H})
$$

(C2) there exists $\alpha>0$ such that $A^{*} A \in P_{\alpha}(\mathcal{H})$,
(C3) for every $t \in[0,+\infty)$ there exists $\alpha(t)>0$ such that

$$
c A^{*} A+M_{1}(t) \in P_{\alpha(t)}(\mathcal{H})
$$

Indeed, one has

$$
\begin{equation*}
\partial_{x}\left(F(t, x)+\frac{c}{2}\|x-u\|^{2}\right)=\partial f(x)+c A^{*} A x+M_{1}(t) x-c u, \tag{6}
\end{equation*}
$$

which is obviously $\alpha_{1}(t)$-strongly monotone, $c \alpha$-strongly monotone or $\alpha(t)$-strongly monotone, if (C1), (C2) or (C3) holds.
Moreover, taking into account that $A^{*} A \in S_{+}(\mathcal{H})$ and $M_{1}(t) \in S_{+}(\mathcal{H})$ for all $t \in[0,+\infty)$ we conclude that

$$
(C 1) \Rightarrow(C 3)
$$

and

$$
(C 2) \Rightarrow(C 3)
$$

Remark

Let $S=\{x \in \mathcal{H}:\|x\|=1\}$ the unit sphere of \mathcal{H}.
(A1) Observe that for every $t \geq 0$ we have

$$
\alpha_{1}(t) \leq \inf _{x \in S}\left\langle x, M_{1}(t) x\right\rangle=\inf _{x \in S}\|x\|_{M_{1}(t)}^{2} .
$$

Consequently (C1) holds, if and only if

$$
\inf _{x \in S}\|x\|_{M_{1}(t)}^{2}>0, \forall t \in[0,+\infty) \text { and in this case one can take }
$$

$$
\alpha_{1}(t)=\inf _{x \in S}\|x\|_{M_{1}(t)}^{2}
$$

Note that $\inf _{t \in[0,+\infty)} \alpha_{1}(t)>0$, if and only if, there exists $\alpha>0$ such that $M_{1}(t) \in P_{\alpha}(\mathcal{H})$ for all $t \in[0,+\infty)$.
(A2) Similarly, (C2) holds, if and only if

$$
\inf _{x \in S}\|A x\|>0, \text { and in this case one can take } \alpha=\left(\inf _{x \in S}\|A x\|\right)^{2}
$$

(A3) Finally, (C3) holds, if and only if for all $t \in[0,+\infty)$ one has

$$
\begin{gathered}
\inf _{x \in S}\left(c\|A x\|^{2}+\|x\|_{M_{1}(t)}^{2}\right)>0, \text { and in this case one can take } \\
\alpha(t)=\inf _{x \in S}\left(c\|A x\|^{2}+\|x\|_{M_{1}(t)}^{2}\right)
\end{gathered}
$$

that is

$$
\alpha(t)=\inf _{x \in S}\|x\|_{C A^{*} A+M_{1}(t)}^{2} .
$$

Note that $\inf _{t \in[0,+\infty)} \alpha(t)>0$, if and only if, there exists $\alpha>0$ such that $c A^{*} A+M_{1}(t) \in P_{\alpha}(\mathcal{H})$ for all $t \in[0,+\infty)$.

Let us show that time discretization of the dynamical system (4) leads to the proximal ADMM algorithm from the literature, see M. Fazel, T.K. Pong, D. Sun, P. Tseng ${ }^{1}$, R. Shefi, M. Teboulle ${ }^{2}$, S. Banert, R.I. Boț, E.R. Csetnek ${ }^{3}$.

[^0]Indeed, the first equation of (4) can be written as
$0 \in \partial f(\dot{x}(t)+x(t))+c A^{*} A(\dot{x}(t)+x(t))+M_{1}(t) \dot{x}(t)-\left(c A^{*} z(t)-A^{*} y(t)-\nabla h(x(t))\right)$.

Consequently, by the explicit discretization of the above inclusion with respect to the time variable t, constant step size $h_{k} \equiv 1$ and initial points $x^{0}=x_{0}, y^{0}=y_{0}, z^{0}=z_{0}$ yields the iterative scheme $0 \in \frac{1}{c} \partial f\left(x^{k+1}\right)+A^{*} A x^{k+1}+\frac{M_{1}^{k}}{c}\left(x^{k+1}-x^{k}\right)-A^{*} z^{k}+\frac{A^{*}}{c} y^{k}+\frac{1}{c} \nabla h\left(x^{k}\right)$.

Hence,
$\left.0 \in \partial\left(f(x)+\left\langle x-x^{k}, \nabla h\left(x^{k}\right)\right\rangle+\frac{c}{2}\left\|A x-z^{k}+\frac{y^{k}}{c}\right\|^{2}+\frac{1}{2}\left\|x-x^{k}\right\|_{M_{1}^{k}}^{2}\right)\right|_{x=x^{k+1}}$
in other words
$x^{k+1} \in \operatorname{argmin}_{x \in \mathcal{H}}\left(f(x)+\left\langle x-x^{k}, \nabla h\left(x^{k}\right)\right\rangle+\frac{c}{2}\left\|A x-z^{k}+\frac{y^{k}}{c}\right\|^{2}+\frac{1}{2}\left\|x-x^{k}\right\|_{M_{1}^{k}}^{2}\right)$.

Similarly, the second equation (4) leads to

$$
z^{k+1}=\left(I+\frac{1}{c} \partial_{x} G\left(t_{k}, \cdot\right)\right)^{-1}\left(\frac{M_{2}^{k}}{c} z^{k}+A\left(\gamma x^{k+1}+(1-\gamma) x^{k}\right)+\frac{1}{c} y^{k}\right)
$$

hence,

$$
0=\left.\partial\left(g(z)+\frac{c}{2}\left\|A\left(\gamma x^{k+1}+(1-\gamma) x^{k}\right)-z+\frac{y^{k}}{c}\right\|^{2}+\frac{1}{2}\left\|z-z^{k}\right\|_{M_{2}^{k}}^{2}\right)\right|_{z=z^{k+1}} .
$$

Consequently,
$z^{k+1}=\operatorname{argmin}_{z \in \mathcal{G}}\left(g(z)+\frac{c}{2}\left\|A\left(\gamma x^{k+1}+(1-\gamma) x^{k}\right)-z+\frac{y^{k}}{c}\right\|^{2}+\frac{1}{2}\left\|z-z^{k}\right\|_{M_{2}^{k}}^{2}\right)$.

Taking into account the equations (7) and (8), our dynamical system (4) leads through explicit discretization to

$$
\left\{\begin{array}{l}
x^{k+1} \in \operatorname{argmin}_{x \in \mathcal{H}}\left(f(x)+\left\langle x-x^{k}, \nabla h\left(x^{k}\right)\right\rangle+\frac{c}{2}\left\|A x-z^{k}+\frac{y^{k}}{c}\right\|^{2}+\frac{1}{2}\left\|x-x^{k}\right\|_{M_{1}^{k}}^{2}\right) \\
z^{k+1}=\operatorname{argmin}_{z \in \mathcal{G}}\left(g(z)+\frac{c}{2}\left\|A\left(\gamma x^{k+1}+(1-\gamma) x^{k}\right)-z+\frac{y^{k}}{c}\right\|^{2}+\frac{1}{2}\left\|z-z^{k}\right\|_{M_{2}^{k}}^{2}\right) \\
y^{k+1}=y^{k}+c\left(A x^{k+1}-z^{k+1}\right) \\
x^{0} \in \mathcal{H}, y^{0}, z^{0} \in \mathcal{G} \tag{9}
\end{array}\right.
$$

Let us notice that in case $\gamma=1, h=0$ and M_{1} and M_{2} are constant in each iteration, this is nothing else than the proximal ADMM method from the literature.

Furthermore, the situation $\gamma=0$ leads to an extension of the linearized proximal method of multipliers of Chen-Teboulle. ${ }^{4}$

Let us consider now the particular case

$$
M_{1}(t)=\frac{1}{\tau(t)} I-c A^{*} A, M_{2}(t)=0, \forall t \in[0,+\infty)
$$

where $\tau(t)>0$ for all $t \geq 0$ and $c \tau(t)\|A\|^{2} \leq 1$.
In this particular case (4) becomes

$$
\left\{\begin{array}{l}
\dot{x}(t)+x(t)=\operatorname{prox}_{\tau(t) f}\left(\left(I-c \tau(t) A^{*} A\right) x(t)+c \tau(t) A^{*} z(t)-\tau(t) A^{*} y(t)-\tau(t) \nabla h(x(t))\right) \\
\dot{y}(t)+y(t)+c(\gamma-1) A \dot{x}(t)=\operatorname{prox}_{c g^{*}}(c A(\gamma \dot{x}(t)+x(t))+y(t)) \\
\dot{y}(t)=c A(x(t)+\dot{x}(t))-c(z(t)+\dot{z}(t)) \\
t \in[0,+\infty), x(0)=x_{0} \in \mathcal{H}, y(0)=y_{0} \in \mathcal{G}, z(0)=z_{0} \in \mathcal{G}, c>0, \gamma \in[0,1] \tag{10}
\end{array}\right.
$$

${ }^{4}$ A proximal-based decomposition method for convex minimization problems, Mathematical Programming 64, 81-101, 1994

The discretization of (10) in case $h \equiv 0$ and $\gamma=1$ leads to

$$
\left\{\begin{array}{l}
x^{k+1}=\operatorname{prox}_{\tau_{k} f}\left(x^{k}-\tau_{k} A^{*}\left(2 y^{k}-y^{k-1}\right)\right) \tag{11}\\
y^{k+1}=\operatorname{prox}_{c g^{*}}\left(y^{k}+c A x^{k+1}\right)
\end{array}\right.
$$

When $\tau_{k}=\tau>0$ for all $k \geq 1$, this iterative schemes becomes the primal-dual algorithm proposed by Chambolle and Pock. ${ }^{5}$

[^1]In what follows everywhere we assume that one of the conditions (C1)-(C3) stated in Remark 2 holds. Now we are able to specify which type of solutions are we considering in the analysis of the dynamical system (4).

Definition

We say that the vector function $(x, z, y):[0,+\infty) \longrightarrow \mathcal{H} \times \mathcal{G} \times \mathcal{G}$ is a strong global solutions of (4), if the following properties are satisfied:
(i) the functions x, z, y are locally absolutely continuous;
(ii)
$\dot{x}(t)+x(t)=\operatorname{argmin}_{x \in \mathcal{H}}\left(F(t, x)+\frac{c}{2}\left\|x-\left(\frac{M_{1}(t)}{c} x(t)+A^{*} z(t)-\frac{A^{*}}{c} y(t)-\frac{1}{c} \nabla h(x(t))\right)\right\|^{2}\right)$,
$\dot{z}(t)+z(t)=\operatorname{argmin}_{x \in \mathcal{G}}\left(G(t, x)+\frac{c}{2}\left\|x-\left(\frac{N_{2}(t)}{c} z(t)+A(\gamma \dot{x}(t)+x(t))+\frac{1}{c} y(t)\right)\right\|^{2}\right)$,
and
$\dot{y}(t)=c A(x(t)+\dot{x}(t))-c(z(t)+\dot{z}(t))$
for almost every $t \geq 0$;
(iii)
$x(0)=x_{0}, y(0)=y_{0}$, and $z(0)=z_{0}$.
We prove existence and uniqueness of a strong global solution of (4) by making use of the Cauchy-Lipschitz-Picard Theorem for absolutely continues trajectories. The key argument is that one can rewrite (4) as a particular first order dynamical system in a suitably chosen product space.

Theorem

Assume that one of the conditions (C1), (C2) or (C3) holds. Assume further that for every $T>0$ the functions

$$
t \longrightarrow\left\|M_{1}(t)\right\|, t \longrightarrow\left\|M_{2}(t)\right\|
$$

are integrable on $[0, T]$, that is, $\left\|M_{1}(\cdot)\right\|,\left\|M_{2}(\cdot)\right\| \in L_{\text {loc }}^{1}([0,+\infty))$.
Then, for every starting points $\left(x_{0}, z_{0}, y_{0}\right) \in \mathcal{H} \times \mathcal{G} \times \mathcal{G}$, the dynamical system (4) has a unique strong global solution $(x, z, y):[0,+\infty) \longrightarrow \mathcal{H} \times \mathcal{G} \times \mathcal{G}$.

In order to continue our analysis we need the following derivative concept. We say that the map $M:[0,+\infty) \longrightarrow \mathcal{L}(\mathcal{H}), t \longrightarrow M(t)$ is derivable at $t \in[0,+\infty)$ if there exists the limit

$$
\lim _{h \longrightarrow 0} \frac{M(t+h)-M(t)}{h}
$$

taken after the topology induced by the norm of $\mathcal{L}(\mathcal{H})$.
Let us denote by $\dot{M}(t)$ the value of the above limit. Obviously, $\dot{M}(t) \in \mathcal{L}(\mathcal{H})$. If M is locally absolutely continuous then $\dot{M}(t)$ exists at almost every $t \in[0,+\infty)$. It is straightforward that, whenever $\dot{M}(t)$ exists, one has

$$
\dot{M}(t) x=\lim _{h \longrightarrow 0} \frac{M(t+h) x-M(t) x}{h}, \text { for every } x \in \mathcal{H}
$$

Assume now that $M(t) \in \mathcal{L}(\mathcal{H})$ is self adjoint for every $t \in[0,+\infty)$ and that is derivable at $t_{0} \in[0,+\infty)$. Then, $\dot{M}\left(t_{0}\right)$ is also self adjoint.

Further we will need the following derivation formula used when we prove the convergence of the trajectories of (4).

Consider the maps $x, y:[0,+\infty) \longrightarrow \mathcal{H}$ and assume that x and y are derivable at t_{0}. Then, the real function $t \longrightarrow\langle M(t) x(t), y(t)\rangle$ is also derivable at t_{0} and one has

$$
\begin{gather*}
\left.\frac{d}{d t}\langle M(t) x(t), y(t)\rangle\right|_{t=t_{0}}= \tag{12}\\
\left\langle\dot{M}\left(t_{0}\right) x\left(t_{0}\right), y\left(t_{0}\right)\right\rangle+\left\langle M\left(t_{0}\right) \dot{x}\left(t_{0}\right), y\left(t_{0}\right)\right\rangle+\left\langle M\left(t_{0}\right) x\left(t_{0}\right), \dot{y}\left(t_{0}\right)\right\rangle .
\end{gather*}
$$

Assume that the mappings $t \longrightarrow M_{1}(t), t \longrightarrow M_{2}(t)$ are locally absolutely continuous on $[0,+\infty)$, and for the starting points $\left(x_{0}, z_{0}, y_{0}\right) \in \mathcal{H} \times \mathcal{G} \times \mathcal{G}$, let $(x, z, y):[0,+\infty) \longrightarrow \mathcal{H} \times \mathcal{G} \times \mathcal{G}$ be the unique strong global solution of the dynamical system (4). Then, $t \longrightarrow(\dot{x}(t), \dot{z}(t), \dot{y}(t))$ is locally absolutely continuous, hence $(\ddot{x}(t), \ddot{z}(t), \ddot{y}(t))$ exists for almost every $t \geq 0$. Moreover, if $\sup _{t \geq 0}\left\|M_{1}(t)\right\|<+\infty$ and $\sup _{t \geq 0}\left\|M_{2}(t)\right\|<+\infty$, then there exists $L>0$ such that

$$
\|\ddot{x}(t)\|+\|\ddot{z}(t)\|+\|\ddot{y}(t)\| \leq
$$

$$
L\left(\|\dot{x}(t)\|+\|\dot{z}(t)\|+\|\dot{y}(t)\|+\left\|\dot{M}_{1}(t)\right\|\|\dot{x}(t)\|+\left\|\dot{M}_{2}(t)\right\|\|\dot{z}(t)\|\right)
$$

for almost every $t \in[0,+\infty)$.

Next, we state a version of continuous Opial Lemma that will be used for showing the convergence of the trajectories generated by the dynamical system (4). It can be seen as the continuous counter-part of the Opial Lemma formulated in the setting of variable metrics by Combettes and Vũ. ${ }^{6}$

Lemma

Let $\mathcal{C} \subseteq \mathcal{H}$ be a nonempty set and let $x:[0,+\infty) \rightarrow \mathcal{H}$ be a continuous map. Let $M:[0,+\infty) \longrightarrow S_{+}(\mathcal{H})$ and assume that there exists $\alpha>0$ such that $M(t) \in P_{\alpha}(\mathcal{H})$ for all $t \in[0,+\infty)$.
Assume further that $M\left(t_{1}\right) \succcurlyeq M\left(t_{2}\right)$ for all $t_{1} \leq t_{2}$ and the following conditions hold.
${ }^{6}$ Variable metric quasi-Fejér monotonicity, Nonlinear Analysis 78, 17-31, 2013
(i) for every $z \in \mathcal{C}, \lim _{t \rightarrow+\infty}\|x(t)-z\|_{M(t)}$ exists;
(ii) every weak sequential cluster point of the map x belongs to \mathcal{C}.

Then there exists $x_{\infty} \in \mathcal{C}$ such that $w-\lim _{t \rightarrow+\infty} x(t)=x_{\infty}$.
Remark
If a map $M:[0,+\infty) \longrightarrow S_{+}(\mathcal{H})$ satisfies $M\left(t_{1}\right) \succcurlyeq M\left(t_{2}\right)$ for all
$t_{1} \leq t_{2}, t_{1}, t_{2} \in[0,+\infty)$ we will say that M is monotone decreasing. Note, that in case M is monotone decreasing and locally absolutely continuous then $\dot{M}(t)$ exists for almost every $t \in[0,+\infty)$ and, by making abuse of notation, $\|x\|_{\dot{M}(t)}^{2}=\langle\dot{M}(t) x, x\rangle \leq 0$ for almost every $t \in[0,+\infty)$.

Our convergence result is the following.

Theorem

Consider the Problem (1) and assume that \mathcal{C}, the set of saddle points of the Lagrangian I is nonempty. Assume further that the maps $M_{1}(t)+\frac{c(1-\gamma)}{4} A^{*} A-\frac{L_{h}}{4} I, M_{1}(t) \in S_{+}(\mathcal{H}), M_{2}(t) \in S_{+}(\mathcal{G})$ for all $t \geq 0$ are locally absolutely continuous and monotone decreasing and $\sup _{t \geq 0}\left\|\dot{M}_{1}(t)\right\|<+\infty$ and $\sup _{t \geq 0}\left\|\dot{M}_{2}(t)\right\|<+\infty$. Moreover, assume that one of the following assumptions hold.
(I) $M_{1}(t)+\frac{c(1-\gamma)}{4} A^{*} A-\frac{L_{h}}{4} I \in P_{\alpha_{1}}(\mathcal{H})$ for all $t \geq 0$ and for some $\alpha_{1}>0$.
(II) $\gamma \in[0,1)$ and $A^{*} A \in P_{\alpha}(\mathcal{H})$ for some $\alpha>0$.

For a starting point $\left(x_{0}, z_{0}, y_{0}\right) \in \mathcal{H} \times \mathcal{G} \times \mathcal{G}$, let $(x, z, y):[0,+\infty) \longrightarrow \mathcal{H} \times \mathcal{G} \times \mathcal{G}$ be the unique strong global solution of the dynamical system (4). Then, the vector function $t \longrightarrow(x(t), z(t), y(t))$ converges weakly to a saddle point of I as $t \longrightarrow+\infty$.

Our proof, beside the previously stated continuous Opial lemma, is based on a result of A. Alotaibi, P. L. Combettes and N. Shahzad. ${ }^{7}$

[^2]
Lemma ACS

In the setting of Problem (1), let $\left(a_{n}, a_{n}^{*}\right)_{n \in \mathbb{N}}$ be a sequence in $\operatorname{Gr} \partial(f+h)$, let $\left(b_{n}, b_{n}^{*}\right)_{n \in \mathbb{N}}$ be a sequence in $\operatorname{Gr} \partial g$. Suppose that a_{n} converges weakly to $\bar{x} \in \mathcal{H}, b_{n}^{*}$ converges weakly to $\bar{v} \in \mathcal{G}$ $a_{n}^{*}+A^{*} b_{n}^{*} \longrightarrow 0$, and $A a_{n}-b_{n} \longrightarrow 0$. Then,

$$
\left\langle a_{n}, a_{n}^{*}\right\rangle+\left\langle b_{n}, b_{n}^{*}\right\rangle \longrightarrow 0
$$

and

$$
\bar{v} \in \partial g(A \bar{x}),-A^{*} \bar{v}-\nabla h(\bar{x}) \in \partial f(\bar{x}) .
$$

Further, we derive the following key inequality.

For almost every $t \in[0,+\infty)$ one has

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left(\left\|x(t)-x^{*}\right\|_{M_{1}(t)+c(1-\gamma) A^{*} A}^{2}+\left\|z(t)-A x^{*}\right\|_{M_{2}(t)+c l}^{2}+\frac{1}{c}\left\|y(t)-y^{*}\right\|^{2}\right)+ \\
\|\dot{x}(t)\|_{M_{1}(t)+\frac{(1-\gamma) c}{4} A^{*} A-\frac{L_{h} I}{4}+\|\dot{z}(t)\|_{M_{2}(t)+\frac{c}{4} I}^{2}+\frac{\gamma+1}{3 c}\|\dot{y}(t)\|^{2}+}^{\left\|\frac{\sqrt{3 c}}{2} \dot{z}(t)+\frac{1}{\sqrt{3 c}} \dot{y}(t)\right\|^{2}+(1-\gamma)\left\|\frac{\sqrt{3 c}}{2} A \dot{x}(t)-\frac{1}{\sqrt{3 c}} \dot{y}(t)\right\|^{2}+} \\
-\frac{1}{2}\left\|x(t)-x^{*}\right\|_{\dot{M}_{1}(t)}^{2}-\frac{1}{2}\left\|z(t)-A x^{*}\right\|_{\dot{M}_{2}(t)}^{2}+ \\
\frac{1}{L_{h}}\left\|\nabla h(x(t))-\nabla h\left(x^{*}\right)+\frac{L_{h}}{2} \dot{x}(t)\right\|^{2} \leq 0 .
\end{gathered}
$$

Analogously, if $L_{h}=0$, i.e. $h \equiv 0$, we obtain the same inequality without the last term.

From here almost immediately we obtain that
$\lim _{t \longrightarrow+\infty}\left(\left\|x(t)-x^{*}\right\|_{M_{1}(t)+c(1-\gamma) A^{*} A}^{2}+\left\|z(t)-A x^{*}\right\|_{M_{2}(t)+c l}^{2}+\frac{1}{c}\left\|y(t)-y^{*}\right\|^{2}\right) \in \mathbb{R}$.
which is nothing else but the first assumption of our continuous Opial Lemma applied in the product space $\mathcal{H} \times \mathcal{G} \times \mathcal{G}$ for the function $t \longrightarrow(x(t), z(t), y(t))$, for the map

$$
W(t)=\left(M_{1}(t)+c(1-\gamma) A^{*} A, M_{2}(t)+c \iota, \frac{1}{c} \jmath\right)
$$

and \mathcal{C} the set of saddle points of the Lagrangian $/$.
Further, $\dot{x}(t) \in L^{2}([0,+\infty), \mathcal{H}), \dot{z}(t), \dot{y}(t) \in L^{2}([0,+\infty), \mathcal{G})$.
From here we get

$$
\lim _{t \longrightarrow+\infty} \dot{x}(t)=\lim _{t \longrightarrow+\infty} \dot{z}(t)=\lim _{t \longrightarrow+\infty} \dot{y}(t)=0
$$

It remained to show that every weak sequential cluster point of $t \longrightarrow(x(t), z(t), y(t))$ belongs to S.

Let $(\bar{x}, \bar{z}, \bar{y})$ a weak sequentially cluster point of the vector function $t \longrightarrow(x(t), z(t), y(t))$. Then, there exists a sequence $\left(s_{n}\right)_{n \geq 0}$ with $s_{n} \longrightarrow+\infty$ such that $\left(x\left(s_{n}\right), z\left(s_{n}\right), y\left(s_{n}\right)\right)$ converges to $(\bar{x}, \bar{z}, \bar{y})$ in the weak topology of $\mathcal{H} \times \mathcal{G} \times \mathcal{G}$ as $n \longrightarrow+\infty$.

We apply Lemma ACS with

$$
\begin{gathered}
a_{n}=\dot{x}\left(s_{n}\right)+x\left(s_{n}\right), \\
a_{n}^{*}=-c A^{*} A\left(\dot{x}\left(s_{n}\right)+x\left(s_{n}\right)\right)-M_{1}\left(s_{n}\right) \dot{x}\left(s_{n}\right)+ \\
c A^{*} z\left(s_{n}\right)-A^{*} y\left(s_{n}\right)-\nabla h\left(x\left(s_{n}\right)\right)+\nabla h\left(\dot{x}\left(s_{n}\right)+x\left(s_{n}\right)\right)
\end{gathered}
$$

and

$$
\begin{gathered}
b_{n}=\dot{z}\left(s_{n}\right)+z\left(s_{n}\right), \\
b_{n}^{*}=-c\left(\dot{z}\left(s_{n}\right)+z\left(s_{n}\right)\right)+c A\left(\gamma \dot{x}\left(s_{n}\right)+x\left(s_{n}\right)\right)-M_{2}\left(s_{n}\right) \dot{z}\left(s_{n}\right)+y\left(s_{n}\right)
\end{gathered}
$$

We get

$$
a_{n} \rightharpoonup \bar{x}
$$

and

$$
\begin{gather*}
b_{n}^{*} \rightharpoonup \bar{y} . \\
-A^{*} \bar{y}-\nabla h(\bar{x}) \in \partial f(\bar{x}) \tag{13}
\end{gather*}
$$

and

$$
\begin{equation*}
\bar{y} \in \partial g(A \bar{x}) \tag{14}
\end{equation*}
$$

Further, since $A a_{n}-b_{n} \rightharpoonup 0$ and $a_{n} \rightharpoonup \bar{x}, b_{n} \rightharpoonup \bar{z}$ we have

$$
\begin{equation*}
A \bar{x}=\bar{z} \tag{15}
\end{equation*}
$$

Consequently, $(\bar{x}, \bar{z}, \bar{y})$ is a saddle point of I.

In case $M_{1}(t)=M_{2}(t)=0$ for all $t \geq 0$ we have

Theorem

Consider the Problem (1) and assume that \mathcal{C}, the set of saddle points of the Lagrangian I is nonempty. Assume further, that $\gamma \in[0,1)$ and $A^{*} A-\frac{L_{h}}{c(1-\gamma)} I \in S_{+}(\mathcal{H})$ (or, if $h \equiv 0, A^{*} A \in P_{\alpha}(\mathcal{H})$ for some $\alpha>0$).

For a starting point $\left(x_{0}, z_{0}, y_{0}\right) \in \mathcal{H} \times \mathcal{G} \times \mathcal{G}$, let $(x, z, y):[0,+\infty) \longrightarrow \mathcal{H} \times \mathcal{G} \times \mathcal{G}$ be the unique strong global solution of the dynamical system obtained from (4). Then, the vector function $t \longrightarrow(x(t), z(t), y(t))$ converges weakly to a saddle point of I as $t \longrightarrow+\infty$.

Let us consider now the particular case

$$
M_{1}(t)=\frac{1}{\tau(t)} I-c A^{*} A, M_{2}(t)=0, \forall t \in[0,+\infty)
$$

where $\tau(t)>0$ for all $t \geq 0$ and $c \tau(t)\|A\|^{2} \leq 1$.

Theorem

Consider the Problem (1) and assume that \mathcal{C}, the set of saddle points of the Lagrangian I is nonempty. Assume further that the $\operatorname{map} \frac{4-\tau(t) L_{h}}{4 \tau(t)} I+\frac{5 c-c \gamma}{4} A^{*} A \in S_{+}(\mathcal{H})$ for all $t \geq 0$ and τ is locally absolutely continuous, $\tau^{\prime}(t) \geq 0$ for almost every $t \geq 0$ and $\sup _{t \geq 0} \frac{\tau^{\prime}(t)}{\tau^{2}(t)}<+\infty$. Moreover, assume that one of the following assumptions hold.
(I) $\frac{4-\tau(t) L_{h}}{4 \tau(t)} I+\frac{5 c-c \gamma}{4} A^{*} A \in P_{\alpha_{1}}(\mathcal{H})$ for all $t \geq 0$ and for some $\alpha_{1}>0$.
(II) $\gamma \in[0,1)$ and $A^{*} A \in P_{\alpha}(\mathcal{H})$ for some $\alpha>0$.

For a starting point $\left(x_{0}, z_{0}, y_{0}\right) \in \mathcal{H} \times \mathcal{G} \times \mathcal{G}$, let $(x, z, y):[0,+\infty) \longrightarrow \mathcal{H} \times \mathcal{G} \times \mathcal{G}$ be the unique strong global solution of the dynamical system (10). Then, the vector function $t \longrightarrow(x(t), z(t), y(t))$ converges weakly to a saddle point of I as $t \longrightarrow+\infty$.

Thank you for your attention.

[^0]: ${ }^{1}$ Hankel matrix rank minimization with applications in system identification and realization, SIAM Journal on Matrix Analysis and Applications 34, 946-977, 2013
 ${ }^{2}$ Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex optimization, Siam Journal on Optimization 24(1), 269-297, 2014,
 ${ }^{3}$ Fixing and extending some recent results on the ADMM algorithm, arXiv:1612.05057, 2016

[^1]: ${ }^{5}$ A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision 40(1), 120-145, 2011

[^2]: ${ }^{7}$ Solving Coupled Composite Monotone Inclusions by Successive Fejér Approximations of their Kuhn-Tucker Set, SIAM J. Optim., 24(4), 2076-2095, (2014)

