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Introdution

Let H and G be real Hilbert spaes and onsider the optimization

problem

inf
x∈H

(f (x) + h(x) + g(Ax)), (1)

where, f : H −→ R, g : G −→ R are proper, onvex and lower

semiontinuous funtions, h : H −→ R is a onvex and Frèhet

di�erentiable funtion with Lh Lipshitz ontinuous gradient, i.e.

there exists Lh ≥ 0 suh that ‖∇h(x)−∇h(y)‖ ≤ Lh‖x − y‖ for

all x , y ∈ H, and A : H −→ G is a ontinuous linear map.

If Lh = 0 obviously h is onstant and will not ontribute to problem

(1), therefore we will assume in this ase that h ≡ 0.
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Note, that problem (1) an be rewritten as

inf
(x,z)∈H×G

Ax−z=0

(f (x) + h(x) + g(z)), (2)

hene x∗ ∈ H is an optimal solution of (1), if and only if

(x∗, z∗) ∈ H × G is an optimal solution of (2), and Ax∗ = z∗.
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Note, that problem (1) an be rewritten as

inf
(x,z)∈H×G

Ax−z=0

(f (x) + h(x) + g(z)), (2)

hene x∗ ∈ H is an optimal solution of (1), if and only if

(x∗, z∗) ∈ H × G is an optimal solution of (2), and Ax∗ = z∗.

The usefulness of the above formulation onsists in the fat that

the Lagrangian,

l : H× G × G −→ R, l(x , z , y) = f (x) + h(x) + g(z) + 〈y ,Ax − z〉,

an be introdued.
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We emphasize that (x∗, z∗, y∗) ∈ H× G × G is a saddle point of l ,

that is

l(x∗, z∗, y) ≤ l(x∗, z∗, y∗) ≤ l(x , z , y∗), ∀(x , z , y) ∈ H × G × G,

if and only if z∗ = Ax∗, x∗ is an optimal solution of (1), hene,

(x∗, z∗) is an optimal solution of (2), and y∗ is an optimal solution

of the Fenhel dual to problem (1), i.e.

sup
y∈G

(−(f ∗�h∗)(−A∗y)− g∗(y)) (3)

and the optimal values of (1) and (3) oinide.
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We emphasize that (x∗, z∗, y∗) ∈ H× G × G is a saddle point of l ,

that is

l(x∗, z∗, y) ≤ l(x∗, z∗, y∗) ≤ l(x , z , y∗), ∀(x , z , y) ∈ H × G × G,

if and only if z∗ = Ax∗, x∗ is an optimal solution of (1), hene,

(x∗, z∗) is an optimal solution of (2), and y∗ is an optimal solution

of the Fenhel dual to problem (1), i.e.

sup
y∈G

(−(f ∗�h∗)(−A∗y)− g∗(y)) (3)

and the optimal values of (1) and (3) oinide.

The existene of a saddle point is guaranteed whenever the

Attouh-Brézis regularity ondition

0 ∈ sqri(dom g − A(dom f ))

holds, where sqri denotes the strong quasi-relative interior of a set.
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Let us denote by S+(H) the family of ontinuous linear operators

U : H −→ H whih are self-adjoint and positive semide�nite and

for U ∈ S+(H) we introdue the following seminorm:

‖x‖2U = 〈x ,Ux〉,∀x ∈ H.

In S+(H) an be introdued a partial ordering as follows: for

U
1

,U
2

∈ S+(H)

U
1

< U
2

⇔ ‖x‖2U
1

≥ ‖x‖2U
2

∀x ∈ H.

For α > 0 we denote

Pα(H) = {U ∈ S+(H) : U < αI}.

Here I : H −→ H, I (x) = x denotes the identity operator.

Consider the mappings M
1

: [0,+∞) −→ S+(H) and

M
2

: [0,+∞) −→ S+(G) and the parameters c > 0, γ ≥ 0.
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We de�ne the funtions F : [0,+∞)×H −→ R

F (t, x) = f (x) +
c

2

(‖Ax‖2 − ‖x‖2) + 1

2

‖x‖2M
1

(t)

and G : [0,+∞)× G −→ R

G (t, x) = g(x) +
1

2

‖x‖2M
2

(t).

The dynamial system related to the problems (1)-(3) is



























































ẋ(t) + x(t) ∈ argminx∈H

(

F (t, x) + c
2

∥

∥

∥
x −

(

M
1

(t)
c

x(t) + A∗z(t)− A∗

c
y(t)− 1

c
∇h(x(t))

)∥

∥

∥

2

)

ż(t) + z(t) = argminx∈G

(

G (t, x) + c
2

∥

∥

∥
x −

(

M
2

(t)
c

z(t) + A(γẋ(t) + x(t)) + 1

c
y(t)

)∥

∥

∥

2

)

ẏ(t) = cA(x(t) + ẋ(t))− c(z(t) + ż(t))

t ∈ [0,+∞), x(0) = x
0

∈ H, y(0) = y
0

∈ G, z(0) = z
0

∈ G, c > 0, γ ∈ [0, 1].

(4)
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Remark

Meanwhile, for every t ∈ [0,+∞) the onvexity of the funtion

G (t, ·) is obvious, hene the equality in the seond equation of (4)

is assured by the strong onvexity of the funtion

x → G (t, x) + c
2

‖x − u‖2 for all u ∈ G, observe that the positive

semide�niteness of the operator

M
1

(t) + c(A∗A− I ) for all t ∈ [0,+∞), ensures the onvexity of

the funtion F (t, ·) and impliitly the equality in the �rst equation

of (4).

In this ase the dynamial system (4) beomes
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ẋ(t) = prox
1

c
F (t,·)

(

M
1

(t)
c

x(t) + A∗z(t)− A∗

c
y(t)− 1

c
∇h(x(t))

)

− x(t)

ż(t) = prox
1

c
G(t,·)

(

M
2

(t)
c

z(t) + A(γẋ(t) + x(t)) + 1

c
y(t)

)

− z(t)

ẏ(t) = cA(x(t) + ẋ(t))− c(z(t) + ż(t))

x(0) = x
0

∈ H, y(0) = y
0

∈ G, z(0) = z
0

∈ G, c > 0, γ ∈ [0, 1].

(5)

Here

proxλf : H → H, proxλf (x) = argminy∈H
{

f (y) + 1

2λ
‖y − x‖2

}

,

denotes the proximal point operator of the onvex funtion λf .
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Remark

Nevertheless, the strong onvexity of the funtion

x → F (t, x) + c
2

‖x − u‖2 for all u ∈ H is also assured if one of the

following assumptions holds:

(C1) for every t ∈ [0,+∞) there exists α
1

(t) > 0 suh that

M
1

(t) ∈ Pα
1

(t)(H),

(C2) there exists α > 0 suh that A∗A ∈ Pα(H),

(C3) for every t ∈ [0,+∞) there exists α(t) > 0 suh that

cA∗A+M
1

(t) ∈ Pα(t)(H).
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Indeed, one has

∂x

(

F (t, x) +
c

2

‖x − u‖2
)

= ∂f (x) + cA∗Ax +M
1

(t)x − cu, (6)

whih is obviously α
1

(t)−strongly monotone, cα−strongly

monotone or α(t)−strongly monotone, if (C1), (C2) or (C3) holds.

Moreover, taking into aount that A∗A ∈ S+(H) and

M
1

(t) ∈ S+(H) for all t ∈ [0,+∞) we onlude that

(C1) ⇒ (C3)

and

(C2) ⇒ (C3).
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Remark

Let S = {x ∈ H : ‖x‖ = 1} the unit sphere of H.

(A1) Observe that for every t ≥ 0 we have

α
1

(t) ≤ inf
x∈S

〈x ,M
1

(t)x〉 = inf
x∈S

‖x‖2M
1

(t).

Consequently (C1) holds, if and only if

inf
x∈S

‖x‖2M
1

(t) > 0, ∀t ∈ [0,+∞) and in this ase one an take

α
1

(t) = inf
x∈S

‖x‖2M
1

(t).

Note that inft∈[0,+∞) α1

(t) > 0, if and only if, there exists α > 0

suh that M
1

(t) ∈ Pα(H) for all t ∈ [0,+∞).
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(A2) Similarly, (C2) holds, if and only if

inf
x∈S

‖Ax‖ > 0, and in this ase one an take α = ( inf
x∈S

‖Ax‖)2.

(A3) Finally, (C3) holds, if and only if for all t ∈ [0,+∞) one has

inf
x∈S

(c‖Ax‖2 + ‖x‖2M
1

(t)) > 0, and in this ase one an take

α(t) = inf
x∈S

(c‖Ax‖2 + ‖x‖2M
1

(t))

that is

α(t) = inf
x∈S

‖x‖2cA∗A+M
1

(t).

Note that inft∈[0,+∞) α(t) > 0, if and only if, there exists α > 0

suh that cA∗A+M
1

(t) ∈ Pα(H) for all t ∈ [0,+∞).
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Let us show that time disretization of the dynamial system (4)

leads to the proximal ADMM algorithm from the literature, see M.

Fazel, T.K. Pong, D. Sun, P. Tseng

1

, R. She�, M. Teboulle

2

, S.

Banert, R.I. Boµ, E.R. Csetnek

3

.

1

Hankel matrix rank minimization with appliations in system identi�ation

and realization, SIAM Journal on Matrix Analysis and Appliations 34,

946-977, 2013

2

Rate of onvergene analysis of deomposition methods based on the

proximal method of multipliers for onvex optimization, Siam Journal on

Optimization 24(1), 269-297, 2014,

3

Fixing and extending some reent results on the ADMM algorithm,

arXiv:1612.05057, 2016
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Indeed, the �rst equation of (4) an be written as

0 ∈ ∂f (ẋ(t) + x(t)) + cA∗A(ẋ(t) + x(t)) +M
1

(t)ẋ(t)− (cA∗z(t)− A∗y(t)−∇h(x(t))).

Consequently, by the expliit disretization of the above inlusion

with respet to the time variable t, onstant step size hk ≡ 1 and

initial points x0 = x
0

, y0 = y
0

, z0 = z
0

yields the iterative sheme

0 ∈ 1

c
∂f (xk+1) + A∗Axk+1 +

Mk
1

c
(xk+1 − xk)− A∗zk + A∗

c
yk + 1

c
∇h(xk).

Hene,

0 ∈ ∂

(

f (x) + 〈x − xk ,∇h(xk)〉+ c
2

∥

∥

∥
Ax − zk + yk

c

∥

∥

∥

2

+ 1

2

‖x − xk‖2
Mk

1

)
∣

∣

∣

∣

x=xk+1

in other words

xk+1 ∈ argminx∈H

(

f (x) + 〈x − xk ,∇h(xk)〉+ c
2

∥

∥

∥
Ax − zk + yk

c

∥

∥

∥

2

+ 1

2

‖x − xk‖2
Mk

1

)

.

(7)
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Similarly, the seond equation (4) leads to

zk+1 =
(

I + 1

c
∂xG (tk , ·)

)−1

(

Mk
2

c
zk + A(γxk+1 + (1− γ)xk) + 1

c
yk

)

,

hene,

0 = ∂

(

g(z) + c
2

∥

∥

∥
A(γxk+1 + (1− γ)xk)− z + yk

c

∥

∥

∥

2

+ 1

2

‖z − zk‖2
Mk

2

)
∣

∣

∣

∣

z=zk+1
.

Consequently,

zk+1 = argminz∈G

(

g(z) + c
2

∥

∥

∥
A(γxk+1 + (1− γ)xk)− z + yk

c

∥

∥

∥

2

+ 1

2

‖z − zk‖2
Mk

2

)

.

(8)

Taking into aount the equations (7) and (8), our dynamial

system (4) leads through expliit disretization to
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xk+1 ∈ argminx∈H

(

f (x) + 〈x − xk ,∇h(xk)〉+ c
2

∥

∥

∥
Ax − zk + yk

c

∥

∥

∥

2

+ 1

2

‖x − xk‖2
Mk

1

)

zk+1 = argminz∈G

(

g(z) + c
2

∥

∥

∥
A(γxk+1 + (1− γ)xk)− z + yk

c

∥

∥

∥

2

+ 1

2

‖z − zk‖2
Mk

2

)

yk+1 = yk + c(Axk+1 − zk+1)

x0 ∈ H, y0, z0 ∈ G.
(9)

Let us notie that in ase γ = 1, h = 0 and M
1

and M
2

are

onstant in eah iteration, this is nothing else than the proximal

ADMM method from the literature.
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Furthermore, the situation γ = 0 leads to an extension of the

linearized proximal method of multipliers of Chen-Teboulle.

4

Let us onsider now the partiular ase

M
1

(t) =
1

τ(t)
I − cA∗A, M

2

(t) = 0, ∀t ∈ [0,+∞),

where τ(t) > 0 for all t ≥ 0 and cτ(t)‖A‖2 ≤ 1.

In this partiular ase (4) beomes



























ẋ(t) + x(t) = proxτ(t)f ((I − cτ(t)A∗A)x(t) + cτ(t)A∗z(t)− τ(t)A∗y(t)− τ(t)∇h(x(t)))

ẏ(t) + y(t) + c(γ − 1)Aẋ(t) = proxcg∗(cA(γẋ(t) + x(t)) + y(t))

ẏ(t) = cA(x(t) + ẋ(t))− c(z(t) + ż(t))

t ∈ [0,+∞), x(0) = x
0

∈ H, y(0) = y
0

∈ G, z(0) = z
0

∈ G, c > 0, γ ∈ [0, 1].

(10)

4

A proximal-based deomposition method for onvex minimization problems,

Mathematial Programming 64, 81-101, 1994
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The disretization of (10) in ase h ≡ 0 and γ = 1 leads to















xk+1 = proxτk f
(

xk − τkA
∗(2yk − yk−1)

)

yk+1 = proxcg∗(yk + cAxk+1).

(11)

When τk = τ > 0 for all k ≥ 1, this iterative shemes beomes the

primal-dual algorithm proposed by Chambolle and Pok.

5

5

A �rst-order primal-dual algorithm for onvex problems with appliations to

imaging, Journal of Mathematial Imaging and Vision 40(1), 120-145, 2011
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Existene and uniqueness

In what follows everywhere we assume that one of the onditions

(C1)-(C3) stated in Remark 2 holds. Now we are able to speify

whih type of solutions are we onsidering in the analysis of the

dynamial system (4).

De�nition

We say that the vetor funtion

(x , z , y) : [0,+∞) −→ H× G × G is a strong global solutions of

(4), if the following properties are satis�ed:

(i) the funtions x , z , y are loally absolutely ontinuous;
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(ii)

ẋ(t) + x(t) = argminx∈H

(

F (t, x) + c
2

∥

∥

∥
x −

(

M
1

(t)
c

x(t) + A∗z(t)− A∗

c
y(t)− 1

c
∇h(x(t))

)
∥

∥

∥

2

)

,

ż(t) + z(t) = argminx∈G

(

G (t, x) + c
2

∥

∥

∥
x −

(

M
2

(t)
c

z(t) + A(γẋ(t) + x(t)) + 1

c
y(t)

)
∥

∥

∥

2

)

,

and

ẏ(t) = cA(x(t) + ẋ(t))− c(z(t) + ż(t))

for almost every t ≥ 0;

(iii)

x(0) = x
0

, y(0) = y
0

, and z(0) = z
0

.

We prove existene and uniqueness of a strong global solution of

(4) by making use of the Cauhy-Lipshitz-Piard Theorem for

absolutely ontinues trajetories. The key argument is that one an

rewrite (4) as a partiular �rst order dynamial system in a suitably

hosen produt spae.
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Theorem

Assume that one of the onditions (C1), (C2) or (C3) holds.

Assume further that for every T > 0 the funtions

t −→ ‖M
1

(t)‖, t −→ ‖M
2

(t)‖

are integrable on [0,T ], that is, ‖M
1

(·)‖, ‖M
2

(·)‖ ∈ L1loc ([0,+∞)).

Then, for every starting points (x
0

, z
0

, y
0

) ∈ H × G × G, the
dynamial system (4) has a unique strong global solution

(x , z , y) : [0,+∞) −→ H× G × G.
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In order to ontinue our analysis we need the following derivative

onept. We say that the map M : [0,+∞) −→ L(H), t −→ M(t)

is derivable at t ∈ [0,+∞) if there exists the limit

lim
h−→0

M(t + h)−M(t)

h

taken after the topology indued by the norm of L(H).

Let us denote by Ṁ(t) the value of the above limit. Obviously,

Ṁ(t) ∈ L(H). If M is loally absolutely ontinuous then Ṁ(t)

exists at almost every t ∈ [0,+∞). It is straightforward that,

whenever Ṁ(t) exists, one has

Ṁ(t)x = lim
h−→0

M(t + h)x −M(t)x

h
, for every x ∈ H.
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Assume now that M(t) ∈ L(H) is self adjoint for every

t ∈ [0,+∞) and that is derivable at t
0

∈ [0,+∞). Then, Ṁ(t
0

) is

also self adjoint.

Further we will need the following derivation formula used when we

prove the onvergene of the trajetories of (4).

Consider the maps x , y : [0,+∞) −→ H and assume that x and y

are derivable at t
0

. Then, the real funtion t −→ 〈M(t)x(t), y(t)〉
is also derivable at t

0

and one has

d

dt
〈M(t)x(t), y(t)〉

∣

∣

t=t
0

= (12)

〈Ṁ(t
0

)x(t
0

), y(t
0

)〉+ 〈M(t
0

)ẋ(t
0

), y(t
0

)〉+ 〈M(t
0

)x(t
0

), ẏ(t
0

)〉.
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Assume that the mappings t −→ M
1

(t), t −→ M
2

(t) are loally

absolutely ontinuous on [0,+∞), and for the starting points

(x
0

, z
0

, y
0

) ∈ H × G × G, let (x , z , y) : [0,+∞) −→ H× G × G be

the unique strong global solution of the dynamial system (4).

Then, t −→ (ẋ(t), ż(t), ẏ(t)) is loally absolutely ontinuous,

hene (ẍ(t), z̈(t), ÿ(t)) exists for almost every t ≥ 0. Moreover, if

supt≥0

‖M
1

(t)‖ < +∞ and supt≥0

‖M
2

(t)‖ < +∞, then there

exists L > 0 suh that

‖ẍ(t)‖+ ‖z̈(t)‖+ ‖ÿ (t)‖ ≤

L(‖ẋ(t)‖+ ‖ż(t)‖+ ‖ẏ (t)‖+ ‖Ṁ
1

(t)‖‖ẋ(t)‖+ ‖Ṁ
2

(t)‖‖ż(t)‖),

for almost every t ∈ [0,+∞).
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Asymptoti analysis

Next, we state a version of ontinuous Opial Lemma that will be

used for showing the onvergene of the trajetories generated by

the dynamial system (4). It an be seen as the ontinuous

ounter-part of the Opial Lemma formulated in the setting of

variable metris by Combettes and V�u.

6

Lemma

Let C ⊆ H be a nonempty set and let x : [0,+∞) → H be a

ontinuous map. Let M : [0,+∞) −→ S+(H) and assume that

there exists α > 0 suh that M(t) ∈ Pα(H) for all t ∈ [0,+∞).

Assume further that M(t
1

) < M(t
2

) for all t
1

≤ t
2

and the

following onditions hold.

6

Variable metri quasi-Fejér monotoniity, Nonlinear Analysis 78, 17-31, 2013
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(i) for every z ∈ C, limt→+∞ ‖x(t)− z‖M(t) exists;

(ii) every weak sequential luster point of the map x belongs to C.

Then there exists x∞ ∈ C suh that w − limt→+∞ x(t) = x∞.

Remark

If a map M : [0,+∞) −→ S+(H) satis�es M(t
1

) < M(t
2

) for all

t
1

≤ t
2

, t
1

, t
2

∈ [0,+∞) we will say that M is monotone

dereasing. Note, that in ase M is monotone dereasing and

loally absolutely ontinuous then Ṁ(t) exists for almost every

t ∈ [0,+∞) and, by making abuse of notation,

‖x‖2
Ṁ(t)

= 〈Ṁ(t)x , x〉 ≤ 0 for almost every t ∈ [0,+∞).
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Our onvergene result is the following.

Theorem

Consider the Problem (1) and assume that C, the set of saddle

points of the Lagrangian l is nonempty. Assume further that the

maps M
1

(t) + c(1−γ)
4

A∗A− Lh
4

I ,M
1

(t) ∈ S+(H), M
2

(t) ∈ S+(G)
for all t ≥ 0 are loally absolutely ontinuous and monotone

dereasing and supt≥0

‖Ṁ
1

(t)‖ < +∞ and supt≥0

‖Ṁ
2

(t)‖ < +∞.

Moreover, assume that one of the following assumptions hold.

(I) M
1

(t) + c(1−γ)
4

A∗A− Lh
4

I ∈ Pα
1

(H) for all t ≥ 0 and for some

α
1

> 0.

(II) γ ∈ [0, 1) and A∗A ∈ Pα(H) for some α > 0.
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For a starting point (x
0

, z
0

, y
0

) ∈ H × G × G, let
(x , z , y) : [0,+∞) −→ H× G × G be the unique strong global

solution of the dynamial system (4). Then, the vetor funtion

t −→ (x(t), z(t), y(t)) onverges weakly to a saddle point of l as

t −→ +∞.

Our proof, beside the previously stated ontinuous Opial lemma, is

based on a result of A. Alotaibi, P. L. Combettes and N. Shahzad.

7

7

Solving Coupled Composite Monotone Inlusions by Suessive Fejér

Approximations of their Kuhn-Tuker Set, SIAM J. Optim., 24(4), 2076-2095,

(2014)
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Lemma ACS

In the setting of Problem (1), let (an, a
∗
n)n∈N be a sequene in

Gr ∂(f + h), let (bn, b
∗
n)n∈N be a sequene in Gr ∂g . Suppose that

an onverges weakly to x ∈ H, b∗n onverges weakly to v ∈ G
a∗n + A∗b∗n −→ 0, and Aan − bn −→ 0. Then,

〈an, a∗n〉+ 〈bn, b∗n〉 −→ 0

and

v ∈ ∂g(Ax), −A∗v −∇h(x) ∈ ∂f (x).

Further, we derive the following key inequality.
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For almost every t ∈ [0,+∞) one has

1

2

d
dt

(

‖x(t)− x∗‖2
M

1

(t)+c(1−γ)A∗A
+ ‖z(t)− Ax∗‖2

M
2

(t)+cI
+ 1

c
‖y(t)− y∗‖2

)

+

‖ẋ(t)‖2
M

1

(t)+
(1−γ)c

4

A∗A−
Lh
4

I
+ ‖ż(t)‖2M

2

(t)+ c
4

I +
γ + 1

3c
‖ẏ (t)‖2+

∥

∥

∥

∥

∥

√
3c

2

ż(t) +
1√
3c

ẏ(t)

∥

∥

∥

∥

∥

2

+ (1− γ)

∥

∥

∥

∥

∥

√
3c

2

Aẋ(t)− 1√
3c

ẏ(t)

∥

∥

∥

∥

∥

2

+

−1

2

‖x(t)− x∗‖2
Ṁ

1

(t)
− 1

2

‖z(t)− Ax∗‖2
Ṁ

2

(t)
+

1

Lh

∥

∥

∥

∥

∇h(x(t))−∇h(x∗) +
Lh

2

ẋ(t)

∥

∥

∥

∥

2

≤ 0.

Analogously, if Lh = 0, i.e. h ≡ 0, we obtain the same inequality

without the last term.
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From here almost immediately we obtain that

limt−→+∞(‖x(t) − x∗‖2
M

1

(t)+c(1−γ)A∗A
+ ‖z(t)− Ax∗‖2

M
2

(t)+cI
+ 1

c
‖y(t)− y∗‖2) ∈ R.

whih is nothing else but the �rst assumption of our ontinuous

Opial Lemma applied in the produt spae H× G × G for the

funtion t −→ (x(t), z(t), y(t)), for the map

W (t) =

(

M
1

(t) + c(1− γ)A∗A,M
2

(t) + cI ,
1

c
I

)

and C the set of saddle points of the Lagrangian l .

Further, ẋ(t) ∈ L2([0,+∞),H), ż(t), ẏ(t) ∈ L2([0,+∞),G).

From here we get

lim
t−→+∞

ẋ(t) = lim
t−→+∞

ż(t) = lim
t−→+∞

ẏ(t) = 0.
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It remained to show that every weak sequential luster point of

t −→ (x(t), z(t), y(t)) belongs to S .

Let (x , z , y) a weak sequentially luster point of the vetor funtion

t −→ (x(t), z(t), y(t)). Then, there exists a sequene (sn)n≥0

with

sn −→ +∞ suh that (x(sn), z(sn), y(sn)) onverges to (x , z , y) in

the weak topology of H× G × G as n −→ +∞.

We apply Lemma ACS with

an = ẋ(sn) + x(sn),

a∗n = −cA∗A(ẋ(sn) + x(sn))−M
1

(sn)ẋ(sn)+

cA∗z(sn)− A∗y(sn)−∇h(x(sn)) +∇h(ẋ(sn) + x(sn))

and

bn = ż(sn) + z(sn),

b∗n = −c(ż(sn)+ z(sn))+ cA(γẋ(sn)+ x(sn))−M
2

(sn)ż(sn)+ y(sn) 32



We get

an ⇀ x

and

b∗n ⇀ y .

− A∗y −∇h(x) ∈ ∂f (x) (13)

and

y ∈ ∂g(Ax). (14)

Further, sine Aan − bn ⇀ 0 and an ⇀ x , bn ⇀ z we have

Ax = z . (15)

Consequently, (x , z , y) is a saddle point of l .
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Consequenes

In ase M
1

(t) = M
2

(t) = 0 for all t ≥ 0 we have

Theorem

Consider the Problem (1) and assume that C, the set of saddle

points of the Lagrangian l is nonempty. Assume further, that

γ ∈ [0, 1) and A∗A− Lh
c(1−γ) I ∈ S+(H) (or, if h ≡ 0, A∗A ∈ Pα(H)

for some α > 0).

For a starting point (x
0

, z
0

, y
0

) ∈ H × G × G, let
(x , z , y) : [0,+∞) −→ H× G × G be the unique strong global

solution of the dynamial system obtained from (4). Then, the

vetor funtion t −→ (x(t), z(t), y(t)) onverges weakly to a

saddle point of l as t −→ +∞.
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Let us onsider now the partiular ase

M
1

(t) =
1

τ(t)
I − cA∗A, M

2

(t) = 0, ∀t ∈ [0,+∞),

where τ(t) > 0 for all t ≥ 0 and cτ(t)‖A‖2 ≤ 1.

Theorem

Consider the Problem (1) and assume that C, the set of saddle

points of the Lagrangian l is nonempty. Assume further that the

map

4−τ(t)Lh
4τ(t) I + 5c−cγ

4

A∗A ∈ S+(H) for all t ≥ 0 and τ is loally

absolutely ontinuous, τ ′(t) ≥ 0 for almost every t ≥ 0 and

supt≥0

τ ′(t)
τ2(t)

< +∞. Moreover, assume that one of the following

assumptions hold.
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(I)

4−τ(t)Lh
4τ(t) I + 5c−cγ

4

A∗A ∈ Pα
1

(H) for all t ≥ 0 and for some

α
1

> 0.

(II) γ ∈ [0, 1) and A∗A ∈ Pα(H) for some α > 0.

For a starting point (x
0

, z
0

, y
0

) ∈ H × G × G, let
(x , z , y) : [0,+∞) −→ H× G × G be the unique strong global

solution of the dynamial system (10). Then, the vetor funtion

t −→ (x(t), z(t), y(t)) onverges weakly to a saddle point of l as

t −→ +∞.
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Thank you for your attention.
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