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Let H and G be real Hilbert spaces and consider the optimization
problem

jnf (F(x) + h(x) + g(Ax)), (1)

where, f : H — R, g:Gg— R are proper, convex and lower
semicontinuous functions, h: H — R is a convex and Fréchet
differentiable function with Lj Lipschitz continuous gradient, i.e.
there exists L, > 0 such that | Vh(x) — Vh(y)|| < Lp||x — y|| for

all x,y € H, and A:H — G is a continuous linear map.

If L, = 0 obviously h is constant and will not contribute to problem

(1), therefore we will assume in this case that h = 0.



Note, that problem (1) can be rewritten as

_nf(F()+ h(x) + g(2). )
Ax—z=0

hence x* € H is an optimal solution of (1), if and only if

(x*,z*) € H x G is an optimal solution of (2), and Ax* = z*.



Note, that problem (1) can be rewritten as

_nf(F()+ h(x) + g(2). )
Ax—z=0

hence x* € H is an optimal solution of (1), if and only if

(x*,z*) € H x G is an optimal solution of (2), and Ax* = z*.

The usefulness of the above formulation consists in the fact that

the Lagrangian,
I HxGxG— R, I(x,2,y) = f(x) + h(x) + g(z) + (v, Ax — 2),

can be introduced.



We emphasize that (x*,z*,y*) € H x G x G is a saddle point of /,
that is

I(x*,z* y) < I(x*,z*, y*) < I(x,z,y"), V(x,z,y) € H x G x G,
if and only if z* = Ax*, x* is an optimal solution of (1), hence,

(x*,z*) is an optimal solution of (2), and y* is an optimal solution

of the Fenchel dual to problem (1), i.e.

;gg(—(f*ﬂh*)(—%\*y) - (y) (3)

and the optimal values of (1) and (3) coincide.



We emphasize that (x*,z*,y*) € H x G x G is a saddle point of /,
that is
I(x*,z* y) < I(x*,z*, y*) < I(x,z,y"), V(x,z,y) € H x G x G,

if and only if z* = Ax*, x* is an optimal solution of (1), hence,
(x*,z*) is an optimal solution of (2), and y* is an optimal solution

of the Fenchel dual to problem (1), i.e.

;gg(—(f*ﬂh*)(—%\*y) - (y) (3)

and the optimal values of (1) and (3) coincide.

The existence of a saddle point is guaranteed whenever the

Attouch-Brézis regularity condition
0 € sqri(dom g — A(dom £))

holds, where sqri denotes the strong quasi-relative interior of a set.



Let us denote by S, (#) the family of continuous linear operators
U : H — H which are self-adjoint and positive semidefinite and

for U € S, (H) we introduce the following seminorm:
X112 = (x, Ux),¥x € H.

In S, (#) can be introduced a partial ordering as follows: for
Ui, U € S4(H)

Uy = Up & [IxI3, = lIxI3, vx € 7.
For & > 0 we denote

Po(H) ={U e SL(H): U= al}.
Here | : H — H, I(x) = x denotes the identity operator.

Consider the mappings M : [0, 4+00) — S, () and
My : [0, +00) — S4(G) and the parameters ¢ > 0, v > 0.



We define the functions F : [0, +o0) x H — R
Ft,x) = F60 + SUAI = K1) + 5 xR e
and G : [0, +00) x G — R
G(£,2) = 809 + 3 X Rgey

The dynamical system related to the problems (1)-(3) is

x(t) 4+ x(t) € argmin, <y (F(t,x) &

x— (Mx(t) + A2(1) - y(t) - LVA(x(1))) H2>

2(t) + 2(t) = argmin g (G(t, %)+ §||x = (2222(e) + A(yx(e) + x(0)) + Ly (1)) H2>

(1) = cAlx(t) + x(t)) — c(2(t) + 2(1))

te[0,+x), x(0)=x0 € H, y(0) =y €G, z(0) =2 € G, c>0,~ve[0,1].

(4)



Remark

Meanwhile, for every t € [0, +00) the convexity of the function
G(t,-) is obvious, hence the equality in the second equation of (4)
is assured by the strong convexity of the function

x = G(t,x) + §||x — u||® for all u € G, observe that the positive
semidefiniteness of the operator

My (t) + c(A*A—1) for all t € [0, +00), ensures the convexity of
the function F(t,-) and implicitly the equality in the first equation

of (4).

In this case the dynamical system (4) becomes



£(t) = proxa e,y (M2 (t) + A2(t) — Ay (t) - LVh(x(2)) - x(t)

2(t) = proxa g, (M22(8) + A(y(8) + x(8)) + Ly(2)) - ()

y(8) = cAlx(t) + x(t)) — c(2(1) + 2(1))

x(0)=xo€H,y(0) =y €G, 2z(0)=2¢€G, c>0,v€0,1].
(5)

Here

proxys : H — M, proxye(x) = argmin, o4 {f(y) + =y — %1},

denotes the proximal point operator of the convex function Af.



Remark

Nevertheless, the strong convexity of the function

x — F(t,x) + §||x — u||? for all u € H is also assured if one of the

following assumptions holds:

(C1) for every t € [0,+00) there exists a3 (t) > 0 such that
Ml(t) € Pal(t)(H)a

(C2) there exists a > 0 such that A*A € P,(H),

(C3) for every t € [0, +00) there exists a(t) > 0 such that
cA*A + Ml(t) c Pa(t)(H)



Indeed, one has
C % *
Ox (F(t,x) + E”X —ul| ) = 0f (x) + cA"Ax + My (t)x — cu, (6)

which is obviously «a;(t)—strongly monotone, ca—strongly
monotone or «(t)—strongly monotone, if (C1), (C2) or (C3) holds.
Moreover, taking into account that A*A € S, (H) and

M (t) € S4(H) for all t € [0,+00) we conclude that

(C1) = (C3)
and

(C2) = (C3).

10



Remark

Let S = {x € H : ||x|| = 1} the unit sphere of H.

(A1) Observe that for every t > 0 we have
a(t) < inf (x, M(£)x) = inf [l oy
Consequently (C1) holds, if and only if
infS ”XH%/,l(t) > 0, Vt € [0, +00) and in this case one can take
x€e
o (t) = inf [lx|[3, o)

Note that inf.co 4oy 1(t) > 0, if and only if, there exists o > 0
such that My(t) € P, (#) for all t € [0, 4+00).
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(A2) Similarly, (C2) holds, if and only if

inf ||Ax|| > 0, and in this case one can take a = (inf ||Ax|)2.
x€S x€S

(A3) Finally, (C3) holds, if and only if for all ¢t € [0,400) one has

inf (c||Ax||* + [|x/13, (t)) > 0, and in this case one can take
x€ES B

a(t) = inf (c[[Ax[|* + [Ix[I3s e))

inf
xeS
that is

, 2
a(t) = inf lIxlCas asmaso)-

Note that inf.cio 4 o) (t) > 0, if and only if, there exists o > 0
such that cA*A + My (t) € P,(#) for all t € [0, +00).
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Let us show that time discretization of the dynamical system (4)

leads to the proximal ADMM algorithm from the literature, see M.

Fazel, T.K. Pong, D. Sun, P. Tseng !, R. Shefi, M. Teboulle?, S.
Banert, R.l. Bot, E.R. Csetnek3 .

YHankel matrix rank minimization with applications in system identification
and realization, SIAM Journal on Matrix Analysis and Applications 34,

946-977, 2013
2Rate of convergence analysis of decomposition methods based on the

proximal method of multipliers for convex optimization, Siam Journal on

Optimization 24(1), 269-297, 2014,
3Fixing and extending some recent results on the ADMM algorithm,

arXiv:1612.05057, 2016
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Indeed, the first equation of (4) can be written as

0 € Of (x(t) + x(t)) + cA*A(x(t) + x(t)) + My (t)x(t) — (cA*z(t) — A*y(t) — Vh(x(t))).

Consequently, by the explicit discretization of the above inclusion
with respect to the time variable t, constant step size hy = 1 and

initial points x% = xp, y® = yp, 2% = zy yields the iterative scheme

1 k+1 k41 MEo k1 k kL A k1 k
0 € 2Of(X"TH) + A"AX T+ 2L (XM — x¥) — A* 2K 4 = yK 4 2V h(x¥).
Hence,

0€d (f(x)+ (x — xK, Vh(xk)) + § ||Ax — zF + y?k

2
+ 3= 1Ry

x=xk+1

in other words

k
Ax—zk—&-y?

2
xkt1l ¢ argmin, < (f(x) +(x — xk, Vh(xk)) il + %Hx - xk||$wk> .
1

(7)
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Similarly, the second equation (4) leads to

-1 k
ZH = (1 + %5‘XG(tk, ) (%zk + A(yxF + (1 = y)xF) + %yk) )

hence,

Akt 4 (1= )k =2+ %

c

o:a<g(z)+g

2
+l- 21y )

z=zk+1

Consequently,

k+1 k Ly
A 4 (L= y)xk) - 2+ &

2
+ 4= 241y )

(8)

Zkt1 — argmin g (g(z) + %

Taking into account the equations (7) and (8), our dynamical

system (4) leads through explicit discretization to

15



k
Ax —zk+ L

2
xk+1 ¢ argmin, oy (f(x) + (x — xK, Vh(xK)) + § + %HX - XkHﬁ/,lk)

k+1

z A(’yxk‘"1 +(1 —'y)xk)—z—I—%

2
= argmin, g (g(z) -5 +3llz - ZkH%,,zk)

yk+1 — yk + C(AXk-l—l _ Zk+1)

xV e, 0,20 eq.

(9)
Let us notice that in case v =1, h=0 and M; and M, are
constant in each iteration, this is nothing else than the proximal

ADMM method from the literature.
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Furthermore, the situation v = 0 leads to an extension of the

linearized proximal method of multipliers of Chen-Teboulle.*

Let us consider now the particular case

1
My(t) = mI — cA*A, My(t) =0, Vt € [0, +0),

where 7(t) > 0 for all t > 0 and c7(t)||A|? < L.
In this particular case (4) becomes

X(t) + x(t) = prox e (1 = cT(t)A*A)x(t) + c7(t)A*z(t) — T(t)A*y(t) — 7(t)Vh(x(t)))
J(1) + y (1) + c(y — D)AX(2) = proxeg- (A(X(t) + x(t)) + y(1))

#(t) = A(x(t) + X(2)) - c(2(t) + £(1))

te[0,400), x(0) =x0 € H, y(0) =y € G, z(0) =2 € G, c >0, €[0,1].

(10)

4A proximal-based decomposition method for convex minimization problems,
Mathematical Programming 64, 81-101, 1994
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The discretization of (10) in case h =0 and 7 =1 leads to

xk+1

= prox,, ¢ (xk = TkA*(2yk — yk_l))

(11)

YR = prox g« (y* 4 cAxkT1).

When 7, = 7 > 0 for all kK > 1, this iterative schemes becomes the

primal-dual algorithm proposed by Chambolle and Pock.®

SA first-order primal-dual algorithm for convex problems with applications to
imaging, Journal of Mathematical Imaging and Vision 40(1), 120-145, 2011
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In what follows everywhere we assume that one of the conditions
(C1)-(C3) stated in Remark 2 holds. Now we are able to specify
which type of solutions are we considering in the analysis of the

dynamical system (4).
Definition
We say that the vector function

(x,z,y) : [0,4+00) — H x G x G is a strong global solutions of
(4), if the following properties are satisfied:

(i) the functions x, z, y are locally absolutely continuous;

19



(ii)

x(t) + x(t) = argmin, ¢y <F(t,x) el

x— (M‘T“)x(t) +A2(t) — oy (t) - %V”(X(t))) H2>

x— (M9 2(8) + Alri(e) + x(2) + Ly (1) H2> ’

z(t) + z(t) = argmin, g <G(t,x) + 5
and

y(t) = cA(x(t) + X(t)) — c(2(t) + 2(t))

for almost every t > 0;

(iii)

x(0) = xo, ¥(0) = yo, and z(0) = z.

We prove existence and uniqueness of a strong global solution of
(4) by making use of the Cauchy-Lipschitz-Picard Theorem for
absolutely continues trajectories. The key argument is that one can
rewrite (4) as a particular first order dynamical system in a suitably

chosen product space.

20



Theorem

Assume that one of the conditions (C1), (C2) or (C3) holds.
Assume further that for every T > 0 the functions

t— [Mi()ll, & — [IMa(2)]

are integrable on [0, T], that is, |My(")||, [|[Ma(-)|| € L}, ([0, +00)).

loc

Then, for every starting points (xg, 2o, yo) € H X G X G, the
dynamical system (4) has a unique strong global solution

(x,z,y) : [0,4+00) — H x G x G.

21



In order to continue our analysis we need the following derivative
concept. We say that the map M : [0, +00) — L(H), t — M(t)
is derivable at t € [0, 400) if there exists the limit

i M(t + h) — M(t)
hﬁlo h

taken after the topology induced by the norm of L(H).

Let us denote by M(t) the value of the above limit. Obviously,
M(t) € L(H). If M is locally absolutely continuous then M(t)
exists at almost every t € [0, +00). It is straightforward that,
whenever M(t) exists, one has

M(t)x = fim M+ Rx = M(t)x

, for every x € H.
h—0 h J

22



Assume now that M(t) € L(H) is self adjoint for every
t € [0,400) and that is derivable at ty € [0, +00). Then, M(tp) is

also self adjoint.

Further we will need the following derivation formula used when we

prove the convergence of the trajectories of (4).

Consider the maps x, y : [0, +00) — H and assume that x and y
are derivable at ty. Then, the real function t — (M(t)x(t), y(t))

is also derivable at tg and one has

& MOX(E), (0], = (12)

(M(t0)x(t0), ¥ (t0)) + (M(t0)X(to), ¥(t0)) + (M(t0)x(to), ¥ (to)).-

23



Assume that the mappings t —> M;(t), t — My(t) are locally
absolutely continuous on [0, +00), and for the starting points
(x0,20,¥0) EH X G X G, let (x,z,y):[0,+0) — H x G x G be
the unique strong global solution of the dynamical system (4).
Then, t — (x(t),z(t),y(t)) is locally absolutely continuous,
hence (x(t), Z(t), y(t)) exists for almost every t > 0. Moreover, if
supy>o |[Mi(t)|| < +o0o and sup;sg || Ma(t)]| < 400, then there
exists L > 0 such that

I+ 2] + Iy ()]l <

LX)+ 2+ Iy (0] + M) IX ()] + M) 1 2(E)]1),

for almost every t € [0, +00).
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Next, we state a version of continuous Opial Lemma that will be
used for showing the convergence of the trajectories generated by
the dynamical system (4). It can be seen as the continuous
counter-part of the Opial Lemma formulated in the setting of

variable metrics by Combettes and Vii.°

Lemma

Let C C H be a nonempty set and let x : [0, +00) — H be a
continuous map. Let M : [0, +00) — Sy (H) and assume that
there exists o > 0 such that M(t) € P,(H) for all t € [0, +0).
Assume further that M(ty) = M(ty) for all t; < t, and the

®Variable metric quasi-Fejér monotonicity, Nonlinear Analysis 78, 17-31, 2013
25



(i) for every z € C, lim¢—s oo [|X(t) — z||m(r) exists;
(i) every weak sequential cluster point of the map x belongs to C.
Then there exists xo, € C such that w — lim¢— 1 oo x(t) = Xoo-

Remark
If a map M : [0, 4+00) — S (H) satisfies M(t1) = M(tz) for all

t1 < t, t1, ta € [0,400) we will say that M is monotone
decreasing. Note, that in case M is monotone decreasing and
locally absolutely continuous then M(t) exists for almost every
t € [0,400) and, by making abuse of notation,

s
”XHM(t) = (M(t)x, x) < 0 for almost every t € [0, +00).
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Our convergence result is the following.

Theorem

Consider the Problem (1) and assume that C, the set of saddle
points of the Lagrangian | is nonempty. Assume further that the
maps My (t) + S0 A A — Lag My (1) € S (M), Ma(t) € S4(G)
for all t > 0 are locally absolutely continuous and monotone
decreasing and sup,> |My(t)|| < 400 and SUP;>p |Ma(2)]| < +o0.

Moreover, assume that one of the following assumptions hold.
(1) My(t)+ L2 A*A — Lof e P, () for all t > 0 and for some
ag > 0.

() v €[0,1) and A*A € P,(H) for some v > 0.

27



For a starting point (xg, 20, ¥0) € H X G X G, let

(x,z,y) : [0,+00) — H x G X G be the unique strong global
solution of the dynamical system (4). Then, the vector function

t — (x(t), z(t), y(t)) converges weakly to a saddle point of / as
t — +o0.

Our proof, beside the previously stated continuous Opial lemma, is
based on a result of A. Alotaibi, P. L. Combettes and N. Shahzad.”

"Solving Coupled Composite Monotone Inclusions by Successive Fejér
Approximations of their Kuhn-Tucker Set, SIAM J. Optim., 24(4), 2076-2095,
(2014)
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Lemma ACS

In the setting of Problem (1), let (an, a};)nen be a sequence in
GrO(f + h), let (bp, b})nen be a sequence in Grdg. Suppose that
an converges weakly to X € H, b} converges weakly to v e G
ay+ A*b; — 0, and Aa, — b, —> 0. Then,

(an, an) + (bn, b;) — 0

n

and
v € 0g(AX), —A*V — Vh(x) € 0f(X).

Further, we derive the following key inequality.
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For almost every t € [0, 400) one has

34 (I(8) = X" Byt + 1208) = AX By s + 2y () = y7I2) +
(1112 Y12
||x<t)||M1(t)+u_ﬁ>cA*A  + 12Oy eres + SO+

2
V3c 1 V3c 1
~—2(t) + —=y(O)|| + 1 —7)|—=—Ax(t) — —=y(t)| +
'22() @y() (1 =) | —5Ax(1) @y()
1 * (12 1 *112
—5lIx(e) = X3, oy — 3 12(8) = Ax 12y o+
2

1 . Ly .

= |[VAG(e) = VA + Zx(e)| <0

h

Analogously, if L, =0, i.e. h =0, we obtain the same inequality

without the last term.
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From here almost immediately we obtain that

ime—sroo(1(8) = X3 ey peqaompara + 12(2) = Ax [y o + Lly()) = y*I12) € R.

which is nothing else but the first assumption of our continuous
Opial Lemma applied in the product space H x G x G for the
function t — (x(t), z(t), y(t)), for the map

W(t) = <M1(t) o1 7)AA Ma(t) + %/)
and C the set of saddle points of the Lagrangian /.
Further, x(t) € L?([0, +00),H), 2(t), y(t) € L*([0, +0),G).
From here we get

lim x(t)= lim z(t)= lim y(t)=0.

t—> 400 t—> 400 t—> 400
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It remained to show that every weak sequential cluster point of

t — (x(t),z(t),y(t)) belongs to S.

Let (X,Z,y) a weak sequentially cluster point of the vector function
t — (x(t),z(t),y(t)). Then, there exists a sequence (sp)n>0 with
sn — +00 such that (x(sp), z(sn), y(sn)) converges to (X,Z,¥) in

the weak topology of H x G x G as n — +o0.
We apply Lemma ACS with
an = X(sn) + x(sn),
ap, = —cA"A(x(sn) + x(sn)) — My (sn)x(sn)+
cA*z(sp) — A%y(sn) — Vh(x(sn)) + Vh(x(sn) + x(sn))

and
bn = z(sn) + z(sn),

bt = —c(2(sp) + 2(sn)) + cA(Y%(5n) + X(5n)) — Ma(5n)2(5n) + y(5n)
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We get

ap, — X
and
by, =y
— A*y — Vh(x) € 0f(X) (13)
and
y € 0g(AX). (14)

Further, since Aa, — b, — 0 and a, — X, b, — Z we have
AX = 3. (15)
Consequently, (X,Z,y) is a saddle point of /.
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In case M;(t) = My(t) =0 for all t > 0 we have

Theorem

Consider the Problem (1) and assume that C, the set of saddle
points of the Lagrangian | is nonempty. Assume further, that

v €10,1) and A*A— {251 € Si(H) (or, ifh=0, A"A € Po(H)
for some a > 0).

For a starting point (xg,z0,¥0) € H X G X G, let

(x,z,y) : [0,4+00) — H x G x G be the unique strong global
solution of the dynamical system obtained from (4). Then, the
vector function t — (x(t), z(t), y(t)) converges weakly to a
saddle point of | as t — +oc.
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Let us consider now the particular case

My (t) = —1 — cA*A, My(t) =0, Vt € [0, +00),

()

where 7(t) > 0 for all t > 0 and c7(t)||Al|> < 1.

Theorem

Consider the Problem (1) and assume that C, the set of saddle
points of the Lagrangian | is nonempty. Assume further that the
map 4_[7((?)“/ +2UAA € S (H) for all t > 0 and T is locally

absolutely continuous, T'(t) > 0 for almost every t > 0 and

SUP¢>0 % < 400. Moreover, assume that one of the following

assumptions hold.
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(1) 4_;7((?)L’7I + 22UAA € Py, (H) for all t >0 and for some
ag > 0.

(1) v €[0,1) and A*A € P,(H) for some a > 0.

For a starting point (xg, 20, ¥0) € H X G X G, let

(x,z,y) : [0,+00) — H x G X G be the unique strong global
solution of the dynamical system (10). Then, the vector function
t — (x(t),z(t), y(t)) converges weakly to a saddle point of / as
t — +4o0.
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Thank you for your attention.
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