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Abstract
The purpose of this talk is to underline links between no-regret
algorithms used in learning, games and convex optimization.
In particular we will study continuous and discrete time versions
and their connections.
We will comment on recent advances on:
- Euclidean and non-euclidean approaches
- speed of convergence of the evaluation
- convergence of the trajectories



Model

V normed vector space, finite dimensional
dual V∗ and duality map 〈.|.〉
X ⊂ V compact convex
The aim is to study properties of algorithms that associate to a
process of observations {ut ∈ V∗, t ≥ 0}, a process of choices
{xt ∈ X, t ≥ 0}, where xt is function of {(xs,us),0≤ s < t},
satisfying:

Rt(y) =
∫ t

0
〈us|y− xs〉ds≤ o(t), t ≥ 0,∀y ∈ X (1)

or in discrete time {xm} depending on {x1,u1, ...,xm−1,um−1} with:

Rn(y) =
n

∑
m=1
〈um|y− xm〉 ≤ o(n), ∀y ∈ X. (2)

This means that the average regret vanishes.



Basic properties

Case 1 : general bounded process {ut} or {un}
no-regret learning

Case 2 : vector field g : X→ V∗

ut = g(xt) or un = g(xn)
Variational inequalities or game framework
Consider a game with a finite set of players I where equilibria
are solution of variational inequalities:

〈gi(x)|xi− yi〉 ≥ 0, ∀yi ∈ Xi,∀i ∈ I

Xi ⊂ V i is the strategy set of player i, X = ∏i Xi, and gi : X→ V i∗

is his evaluation function.
Examples include:
- finite games
- continuous games with payoff Gi C 1 and concave wrt xi, ∀i ∈ I
- population games
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At stage n each player i chooses xi
n, this defines a profile xn ∈ X

and the reference process for player i is ui
n = gi(xn). Let:

〈g(x)|y− x〉= ∑
i
〈gi(x)|yi− xi〉

S′ is the set of solutions of the variational inequality:

〈g(x)|y− x〉 ≤ 0, ∀y ∈ X (3)

Lemma
If g is continuous and xs→ x then x ∈ S′.



S is the set of solutions of the variational inequality:

〈g(y)|y− x〉 ≤ 0, ∀y ∈ X. (4)

g dissipative (〈g(x)−g(y)|x− y〉 ≤ 0,∀x,y ∈ X) implies S′ ⊂ S and
g continuous implies: S⊂ S′.

Let xt =
1
t

∫ t
0 xsds, and xn =

1
n ∑

n
1 xm.

Lemma
If g is dissipative the accumulation points of {xt} or {xn} are in S.
Proof:

Rt(y)
t

=
1
t

∫ t

0
〈g(xs)|y− xs〉 ≥

1
t

∫ t

0
〈g(y)|y− xs〉= 〈g(y)|y− xt〉



Case 3 : ut =−∇f (xt), f convex C 1

convex optimization

〈∇f (xt)|y− xt〉 ≤ f (y)− f (xt)

gives: ∫ t

0
[f (xs)− f (y)]dt ≤

∫ t

0
〈−∇f (xs)|y− xs〉ds = Rt(y)

which implies by Jensen’s inequality:

f (xt)− f (y)≤ 1
t

∫ t

0
[f (xs)− f (y)]ds≤ Rt(y)

t
(5)

Lemma
The accumulation points of {xt} or {xn} belong to S = argminX f .



Continuous time
Potential function P(t;y)≥ 0 satisfying:

〈ut,y− xt〉 ≤ −
d
dt

P(t;y), hence

Rt(y) =
∫ t

0
〈us|y− xs〉ds≤ P(0;y)−P(t;y)

(1) rate of convergence 1/t.
(2) Assume y∗ ∈ S, then P(t;y∗) is decreasing:

d
dt

P(t;y∗)≤ 〈g(xt),xt− y∗〉 ≤ 0

(3) If {xt} is a descent procedure ( d
dt f (xt)≤ 0),

E(t;y) = t(f (xt)− f (y))+P(t;y)

is decreasing, for all y ∈ X.
d
dt

E(t;y) = f (xt)− f (y)+ t
d
dt

f (xt)+
d
dt

P(t;y)

≤ f (xt)− f (y)+ 〈∇f (xt),y− xt〉 ≤ 0

Accumulation points of {xt} are in S.



A. Projected gradient
V Hilbert, X ⊂ V, convex closed.
Dynamics
(Projected) gradient descent is defined by:

〈ut− ẋt,y− xt〉 ≤ 0,∀y ∈ X. (6)
which is:

ẋt = ΠTX(xt)(ut) (7)

where ΠC is the projection on the closed convex set C and
TC(x) is the tangent cône to C at x.
Potential
Let:

V(t;y) =
1
2
‖xt− y‖2, y ∈ X. (8)

〈ut,y− xt〉 ≤ 〈ẋt,y− xt〉=−
d
dt

V(t;y)



Trajectories

Lemma
Assume S 6= /0 and g dissipative.
{xt} converges weakly to a point in S.
Proof:
- {xt} is bounded hence has weak accumulation points.
- The weak limit points of {xt} are in S
- ‖xt− y∗‖ converges when y∗ ∈ S
Hence by Opial’s lemma, xt converges weakly to a point in S.



Descent properties
Consider case 3: ut =−∇f (xt).

Lemma
f (xt) is decreasing
Proof:

d
dt

f (xt) = 〈∇f (xt), ẋt〉=−‖ẋt‖2

since 〈ut− ẋt, ẋt〉= 0 (Moreau’s decomposition).

Lemma
{xt} weakly converges to a point in S

Proof:
Weak accumulation points of {xt} are in S. Then Opial’s lemma
applies.



to summarize :
- Rt is bounded
- in addition in case 2, for g dissipative, {xt} weakly converges
to a point in S
- in case 3, f (xt) is decreasing thus f (xt) converges to
f ∗ = minX f at speed 1/t and {xt} weakly converges to a point in
S.



B. Mirror descent
Continuous version of “Mirror descent algorithm”’
Nemirovski and Yudin [49], Beck and Teboulle [12]
Alvarez, Bolte and Brahic, Attouch and Teboulle, Bolte and
Teboulle ...

Dynamics
H strictly convex, C 1

X, compact, convex ⊂ domH.
The continuous time process satisfies:

〈ut−
d
dt

∇H(xt)|y− xt〉 ≤ 0,∀y ∈ X. (9)

The previous analysis corresponds to the case: H(x) = 1
2‖x‖

2.



Potential
Bregman distance associated to H

DH(y,x) = H(y)−H(x)−〈∇H(x)|y− x〉(≥ 0).

d
dt

DH(y,xt) = 〈−
d
dt

∇H(xt)|y− xt〉 (10)

so that (9) implies

〈ut|y− xt〉 ≤ −
d
dt

DH(y,xt)

and the potential is P(t;y) = DH(y,xt).



The use of a special functions H adapted to X allows to get rid
of the normal cône and to produce a trajectory that remains in
intX.
This leads to:

d
dt

∇H(xt) = ut (11)

ẋt = ∇
2H(xt)

−1ut. (12)

which corresponds to a Riemannian metric.
In this case one has a descent algorithm for the gradient since:

〈∇f (xt)|ẋt〉=−〈∇f (xt)|∇2H(xt)
−1

∇f (xt)〉 ≤ 0



To prove convergence of the trajectory {xt} the steps are:
1) {xt} has accumulation points (sublevels of DH(x∗, .) bounded)
2) If xtk → x then x ∈ S
3) H1 if zk→ y then DH(y,zk)→ 0
For example H L-smooth and then:

0≤ DH(x,y)≤
L
2
‖x− y‖2

4) H2 if DH(y,zk)→ 0 then zk→ y
For example H β -strongly convex and then:

DH(x,y)≥
β

2
‖x− y‖2



C. Dual averaging
Continuous version of dual averaging Nesterov [51], “Lazy
gradient mirror descent ”, Kwon and Mertikopoulos [37].

Dynamics
Assume h bounded strictly convex sci with domh = X ⊂ V
convex compact.
Let Ut =

∫ t
0 usds and xt be the argmax of:

〈Ut|x〉−h(x).

Let h∗(w) = supx∈V〈w|x〉−h(x) be the Fenchel conjugate. h∗ is
differentiable.
The dynamics is given by:

xt = ∇h∗(Ut) ∈ X (13)



Potential
Define, for y ∈ X:

W(t;y) = h∗(Ut)−〈Ut|y〉+h(y) (≥ 0). (14)

d
dt

h∗(Ut) = 〈ut|∇h∗(Ut)〉= 〈ut|xt〉 (15)

thus:
d
dt

W(t;y) = 〈ut|xt− y〉

and P = W.



Trajectories

Lemma
f (xt) is decreasing.
Proof:

d
dt

f (xt) = 〈∇f (xt)|∇2h∗(Ut)(ut)〉

with ut =−∇f (xt).

Hence the accumulation points of xt are in S.



Discrete time

A. Projected gradient
Dynamics
Levitin and Polyak [41], Polyak [58]

xm+1 = argminX{〈∇f (xm),x〉+(1/2ηm)‖x− xm‖2}, (16)

(ηm decreasing) which corresponds to:

xm+1 = ΠX[xm +ηmum], (17)

or with variational characterization:

〈xm +ηmum− xm+1,y− xm+1〉 ≤ 0,∀y ∈ X. (18)



Values
Let m(X) be the diameter of X. Assume ‖um‖∗ ≤M.

Proposition

Rn(x)≤
1

2ηn
m(X)2 +

M2

2

n

∑
m=1

ηm

hence with ηn = 1/
√

n, Rn(x)≤ O(
√

n).
Trajectories
Assume S 6= /0.

Lemma
For x∗ ∈ S, ‖xm− x∗‖ converges if ηn ∈ `2.

Lemma
If ηn ∈ `2 and g is dissipative, {xn} converges to a point in S.



B. Mirror descent

Assumption: H L-strongly convex for some norm ‖.‖ on V = IRn.
‖un‖∗ ≤M.
Dynamics
Nemirovski and Yudin [49], Beck and Teboulle [12]
The usual MD algorithm is given by :

xm+1 = argminX{〈∇f (xm)|x〉+(1/ηm)DH(x,xm)}, (19)

General formulation:

〈∇H(xm)+ηmum−∇H(xm+1)|x− xm+1〉 ≤ 0,∀x ∈ X. (20)



Values

Proposition

Rn(x)≤
DH(x,x1)

η
+nη

M2

2L
.

Then η = 1/
√

n and Rn(x)≤ O(
√

n).

Trajectories
Assume S 6= /0.

Lemma
For x∗ ∈ S, DH(x∗,xn) converges if {ηn} ∈ `2.



C: Dual averaging
Assumption: h L-strongly convex for some norm ‖.‖ on V = IRn.
Dynamics
Nesterov [51]
The algorithm is given by:

xm+1 = ∇h∗(ηmUm).

and {ηm} is decreasing.
Values
Nesterov [51] or discrete approximation of (13) Kwon and
Mertikopoulos [37]:

Proposition

Rn(x) =
n

∑
m=1
〈um|x− xm〉 ≤

rX(h)
ηn

+
∑

n
m=1 ηm−1‖um‖2

∗
2L

(21)

Assume: ‖um‖∗ ≤M.
Hence the convergence rate O(

√
n) with time varying

parameters ηm = 1/
√

m.



Smooth case

Assume that f is β smooth:

|f (y)− f (x)−〈∇f (x)|y− x〉| ≤ β

2
‖x− y‖2 (22)

A: Projected gradient

Let xm+1 = ΠX(ym+1), ym+1 = xm +ηum and um =−∇f (xm).
Take η = 1/β and define vn = β (xn+1− xn)

f (xn+1)− f (y)≤ 〈vn,y− xn〉−
1

2β
‖vn‖2

in particular f (xn) decreasing and {‖vn‖} ∈ `2.



Values

n[f (xn+1)− f (y)]≤ Rv
n(y)−

1
2β
‖

n

∑
m=1
‖vm‖2 =

β

2
‖y− x1‖2

Hence convergence rate of the order 1
n .

Trajectories

Lemma
Let y∗ ∈ S. Then ‖xn− y∗‖ decreases.

Lemma
{xn} weakly converge to a point in S.



B: Mirror descent
We follow Bauschke, Bolte and Teboulle [11].

〈∇H(xn)−λ∇f (xn)−∇H(xn+1)|x− xn+1〉 ≤ 0,∀x ∈ X

Hypothesis 1:
LDH−Df ≥ 0

(LH− f convex) If H is strongly convex and f is smooth, there
exist L such that this holds.
Values
One has, by H1:

f (x)≤ f (y)+ 〈∇f (z)|x− y〉+LDh(x,z)−Df (y,z)

(the last term is ≤ 0 when f is convex). Take 2λL = 1

Theorem
Assume f convex, lower bounded.
1) f (xn) is decreasing.
2) ∑DH(xn+1,xn)<+∞.

f (xn)− f (y)≤ 2L
n

DH(y,x1)



Trajectories

Theorem
Assume f convex, S compact 6= /0.
1) y∗ ∈ S implies DH(y∗,xn) decreases.
2) Assume
H2 : xk→ x∗ ∈ S⇒ DH(x∗,xk)→ 0
H3 : x∗ ∈ S,DH(x∗,xk)→ 0⇒ xk→ x∗

Then {xn} converges to a point in S.



C: Dual averaging
Similar results for the values in case 3.
Lu, Freund and Nesterov (2018)



D: Mirror prox
Nemirovski (2004)
Assume g to be β Lipschitz.
Dynamics
xn gives yn+1 via usual MD i.e. vn = g(xn)

〈∇H(xn)+λg(xn)−∇H(yn+1)−|x− yn+1〉 ≤ 0,∀x ∈ X

xn gives xn+1 via translated MD i.e. un = g(yn+1)

〈∇H(xn)+λg(yn+1)−∇H(xn+1)|x− xn+1〉 ≤ 0,∀x ∈ X

Values
If H is α strongly convex and α ≥ λβ

λ

n

∑
m=1
〈g(ym)|u− ym〉 ≤ DH(u,x1)−DH(u,xn)



Acceleration: from discrete to continuous
Nesterov (1983)

xk+1 = yk− s∇f (yk)

yk+1 = xk+1 +
k

k+3
(xk+1− xk)

f with Lip gradient L and s≤ 1/L
convergence of f (xk) of the order O(1/k2) (best bound)

Su, Boyd, Candes (NIPS 2014, JMLR 2016)

ẍt +
r
t
ẋt +∇f (xt) = 0,

r = 3 : continuous version of Nesterov discrete algorithm.
Lyapounov function

E(t;y) =
t2

r−1
[f (xt)− f (y)]+

r−1
2
‖xt +

t
r−1

ẋt− y‖2

For r = 3, E(t;y) is decreasing for all y.
If r > 3, E(t;y∗) is decreasing for y∗ ∈ S. In particular

f (xt)− f ∗ ≤ O(
1
t2 )
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Attouch, Chbani, Peypouquet, Redont (Math Pro 2018) extend
the analysis
r ≥ 3 Hilbert space H + L1 perturbation
same speed of convergence for the values (with the same
Lyapunov function)
if r > 3 weak convergence of the trajectory xt using energy
functions of the form (with real parameters a,b)

F(t) =
t2

r−1
[f (xt)− f ∗]+

r−1
2
‖a(xt− x∗)+

t
r−1

ẋt‖2 +b‖xt− x∗‖2

leading (for some specific b) to

F′(t)≤ (2−a)t[f (xt)− f ∗]− (r−a−1)t‖ẋ(t)‖2

in fact for r > 3 speed of cv o( 1
t2 ) (May, 2017)



Extension non euclidean
Krichene, Bayen, Bartlett (NIPS 2015)

F(t;y) =
t2

q
[f (xt)− f (y)]+q[h∗(zt)−〈y,zt〉+h(y)]

F′(t;y) =
2t
q
[f (xt)− f (y)]+

t2

q
〈∇f (xt), ẋt〉+q〈∇h∗(zt)− y, żt〉

choose
żt =−

t
q

∇f (xt), xt +
t
q

ẋt = ∇h∗(zt)

F′(t;y) =
2t
q
[f (xt)− f (y)]− t〈∇f (xt),−

t
q

ẋt +∇h∗(zt)− y〉

=
2t
q
[f (xt)− f (y)]− t〈∇f (xt),xt−y〉 ≤ 2t

q
[f (xt)− f (y)]− t[f (xt)− f (y)]

which is non positive if q = 2 or q > 2 and y = y∗ ∈ S.
Note: no condition on ∇f .



For the euclidean unconstrained case take h(x) = 1
2‖x‖

2 so that
∇h∗ = Id and one has

d
dt
[xt +

t
q

ẋt] =−
t
q

∇f (xt)

which is the SBC equation with r = q+1.

The second equation can be written

tqxt = q
∫ t

0
sq−1

∇h∗(zs)ds

so that xt is an average of the previous ∇h∗(zs).

Alternative approach : Wibisono, Wilson, Jordan (PNAS 2016)
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More extension KBB, (NIPS 2016)

żt =−ηt∇f (xt), xt =
1

Wt

∫ t

0
ws∇h∗(zs)ds

with η and w positive.
new Lyapounov function is of the form

E(t) = at[f (xt)− f (y)]+ [h∗(zt)−〈y,zt〉]

and speed of cv 1/at, with compatibility conditions between η ,
w and a (standard case at = t2)

E′(t)≤ [f (xt)− f (y)](a′t−ηt)+ 〈∇f (xt), ẋt〉(at−
ηtWt

wt
)



Discrete properties
no natural discretization
2 first order equations: choice of coefficients

xk+1 = yk− s∇f (yk)

yk+1 = xk+1 +
k

k+ r
(xk+1− xk)

discrete Lyapounov function (SBC)

E(k) =
2(k+ r−2)2s

r−1
[f (xk)− f ∗]+ (r−1)‖wk− x∗‖2

with
wk =

k+ r−1
r−1

yk−
k

r−1
xk

satisfies

E(k)+
2s[(r−3)(k+ r−2)+1]

r−1
[f (xk)− f ∗]≤ E(k−1)



Similar computations in BBK and WWJ

In addition for r > 3:
weak convergence of xn, Chambolle and Dossal (2015), ACPR
(2018)
Attouch and Peypouquet (2016) cv of the value with rate o( 1

n2 )
The property of f is used trough

f (y− s∇f (y))≤ f (x)+ 〈∇f (y),y− x〉− s
2
‖∇f (y)‖2

Note: this allows for a simpler proof for the (weak) cv of xn

compared to the continuous case (cv of xt) where f is not
assumed to have Lipschitz gradient.



Open pb:
- link between continuous and discrete:
property of the curve
property of the approximation
- cv of the trajectory in the non euclidean setting
- similar procedure for smooth learning ??
******************************************************************************************************************************
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