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The problem

Let Kp ⊂ Rm, Kq ⊂ Rn be two convex compact sets. We shall prove the existence of
P(·)× Q(·)-monotone solutions of the following mixed system

(P5)


x ′(t) ∈ projTP(x(t))(x(t))(−∂x Γ(x(t), y(t)), a.e. t ∈ [0,+∞),

y ′(t) ∈ projTQ(y(t))(y(t))(∂+
y Γ(x(t), y(t)), a.e. t ∈ [0,+∞),

x(0) = x0 ∈ Kp, y(0) = y0 ∈ Kq.

� Γ : Kp × Kq → R+ is a convex-concave function,
� ∂uΓ(u, v) is the subdifferential of the convex function Γ(·, v) with respect to u,

∂uΓ(u, v) = {u∗ ∈ Rn | Γ(u′, v) ≥ Γ(u, v) + 〈u∗, u′ − u〉, u′ ∈ Rn}.

� ∂+
v Γ(u, v) is the superdifferential of the concave function Γ(u, ·) with respect to v ,

∂+
v Γ(u, v) = {v∗ ∈ Rn | Γ(u, v ′) ≤ Γ(u, v) + 〈v∗, v ′ − v〉, v ′ ∈ Rn}.
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The problem

In order to study the planning procedures in mathematical economy, Henry(73)
introduced in the 70s the differential inclusion

x ′(t) ∈ projTC (x(t)) F (x(t)), x(0) = x0 ∈ C .

where C is a nonempty closed convex subset of Rn and F : C ⇒ Rn is an upper
semicontinuous multivalued mapping.

Later on, this inclusion has been associated to the existence of a minimal norm
absolutely continuous solution for the following problem

x ′(t) ∈ −NC (x(t)) + F (x(t)), x(0) = x0 ∈ C

by Cornet(83).
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Monotone trajectories

Let [0,T ] be any finite interval (T > 0), and K a closed subset of Rn. We say that an
absolutely continuous function x from [0,T ] into Rn is a monotone trajectory for F
starting at x0 ∈ K if



(i) x ′(t) ∈ F (x(t)) a.e. t in [0,T ],

(ii) x(0) = x0,

(iii) x(t) ∈ K for all t ∈ [0,T ],

(iv) if t ≥ s then x(t) ∈ P(x(s)).

Aubin-Cellina-Nohel(77), Aubin(79), Clarke-Aubin(77), Falcone-Siconolfi(83),
Haddad(81)
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Monotone trajectories

Let K ⊂ Rn be a convex set. We recall that a preorder P on K is a multivalued
mapping P : K ⇒ K such that{

(a) x ∈ P(x), for any x ∈ K (reflexivity);

(b) z ∈ P(y), y ∈ P(x)⇒ z ∈ P(x) (transitivity).

The necessary and sufficient condition to have monotone solutions is

∀x ∈ K , F (x) ∩ TP(x)(x) 6= ∅.

Definition of P × Q monotone solutions
We say that trajectories x : [0,∞)→ Kp and y : [0,∞)→ Kq of (P5) are
P × Q-monotone, if
(a) x(·) is monotone with respect to P(·),

(b) y(·) is monotone with respect to Q(·).
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Existence of monotone trajectories

We consider the following differential inclusion

(P)
{

x ′(t) ∈ projTR(x(t))(x(t))(V (x(t))), a.e. in [0,∞),
x(0) = x0.

Let K is a convex compact set of Rn, V : K → Rn is an u.s.c. multivalued mapping,
and R(·) is a preorder defined on K .

Existence Theorem – Haddad(81)
Let R(·) be a continuous preorder with convex compact values defined on a compact
convex subset K in Rn, and let V : K → Rn be u.s.c. Then, for any initial point
x0 ∈ K there exists a R-monotone solution x(t) of (P).
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Let us define the multivalued mapping P : Kp → Kp by:

P(x) = {s ∈ Kp : min
z∈Fp(s)

hp(z) ≤ min
z∈Fp(x)

hp(z)}, ∀x ∈ Kp.

Hypotheses: Kp ⊆ Rm
+ is a compact convex set.

Fp : Kp ⇒ Rn
+ is a multivalued mapping satisfying;

(H1
p)


(a) Fp(x) is a convex compact set, ∀x ∈ Kp;
(b) Fp(·) is concave;
(c) Fp(·) is continuous.

hp : Rn
+ → R+ is a single-valued function satisfying;

(H2
p)


(a) hp(·) is continuous;
(b) hp(·) is strictly convex;
(c) if x1 ≥ x2, then hp(x1) ≤ hp(x2),∀x1, x2 ∈ Kp.

Proposition II.1
Assume that Assumptions (H1

p), and (H2
p) are satisfied. Then the preorder P(·) defined

on Kp is continuous with nonempty compact convex values.
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Similarly, let us define the multivalued mapping Q : Kq → Kq by:

Q(y) = {s ∈ Kq : max
z∈Fq(s)

hq(z) ≥ max
z∈Fq(y)

hq(z)}, ∀y ∈ Kq.

Hypotheses:

Fq : Kq ⇒ Rn
+ is a multivalued mapping satisfying;

(H1
q)


(a) Fq(x) is a convex compact set, ∀x ∈ Kq;
(b) Fq(·) is concave;
(c) Fq(·) is continuous.

hq : Rn
+ → R+ is a single-valued function satisfying;

(H2
q)


(a) hq(·) is continuous;
(b) hq(·) is strictly concave;
(c) if y1 ≥ y2, then hq(y1) ≥ hq(y2), ∀y1, y2 ∈ Kq.

Proposition II.2
Assume that Assumptions (H1

q), and (H2
q) are satisfied. Then the preorder Q(·)

defined on Kq is continuous with nonempty compact convex values.
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Applications

The problem
To show that (x∗, y∗) is the maximum of the profit of the firm Γ : Kp × Kq → R+
given by

Γ(x , y) = r̃(y)− w̃(x) for all input-output vector (x , y).

The profit maximization is the process by which the firm determines the price and
output level that returns the greatest profit. Therefore, to find (x∗, y∗) such that

Γ(x∗, y∗) = r̃(y∗)− w̃(x∗) = max
(x ,y)∈P(x∗)×Q(y∗)

r̃(y)− w̃(x).

such that r̃ is the revenue and w̃ is the cost function.
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Main existence result

Hypotheses on Γ: Now let us suppose that Γ : Kp ×Kq → R+ satisfying the following
assumptions:

(H1) For every fixed y ∈ Kq, the function x → Γ(x , y)
is convex and lower semicontinuous.

(H2) For every fixed x ∈ Kp, the function y → Γ(x , y)
is concave and upper semicontinuous.

Objective: We shall show that the trajectories solutions x(t) and y(t) of the mixed
system (P5) converges to limits points x̃ and ỹ which verifies

Γ(x̃ , ỹ) = min
x∈P(x̃)

max
y∈Q(ỹ)

Γ(x , y) = max
y∈Q(ỹ)

min
x∈P(x̃)

Γ(x , y).
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Main existence result

Main Theorem
Let P(·) and Q(·) be two continuous preorders with convex compact values defined on
compact convex subsets Kp and Kq respectively, and let Γ : Kp × Kq → R+ be a
function satisfying (H1) and (H2). Then,

(a) there exists a P(·)× Q(·)-monotone solution (x(·), y(·)) of (P5) for any initial
points x0 ∈ Kp, and y0 ∈ Kq.

(b) Moreover, let x(·) and y(·) be solutions of the mixed problem (P5), and let

x̃ = lim
tn→+∞

x(tn) and ỹ = lim
tn→+∞

y(tn).

Then, we have

Γ(x̃ , ỹ) = min
x∈P(x̃)

max
y∈Q(ỹ)

Γ(x , y) = max
y∈Q(ỹ)

min
x∈P(x̃)

Γ(x , y).
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Proof of the main result

Step 1: Existence of P(·)× Q(·)-monotone solutions
� Assumptions (H1) and (H2),
� P(·) and Q(·) are two continuous multivalued mappings with convex compact

values.
V = (−∂x Γ, ∂+

y Γ), is an u.s.c. multivalued mapping,
R = P × Q, is a preorder,
(x ′, y ′) ∈ projTR (V ) = (projTP(x)

(−∂x Γ(x , y)), projTQ(y)
(∂+

y Γ(x , y))).

Step 2: Saddle-point problem
(1) ψ(x(t), y(t)) is a measurable selection in ∂x Γ(x(t), y(t)), and ϕ(x(t), y(t)) is a

measurable selection in ∂+
y Γ(x(t), y(t)). We have the following

d
dt Γ(x(t), y(t)) = 〈ψ(x(t), y(t)), x ′(t)〉+ 〈ϕ(x(t), y(t)), y ′(t)〉 a.e. t ≥ 0.
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Proof of the main result

(2) points x̃ = limtn→+∞ x(tn) and ỹ = limtn→+∞ y(tn) verify

min
x∈P(x̃)

max
y∈Q(ỹ)

Γ(x , y) = Γ(x̃ , ỹ) = max
y∈Q(ỹ)

min
x∈P(x̃)

Γ(x , y).

if and only if

projTP(x̃)
(−ψ(x̃ , ỹ)) = 0 and projTQ(ỹ)

(ϕ(x̃ , ỹ)) = 0.

Step 3: We use K. Fan(53) minimax theorem for saddle-functions to show that

min
x∈P(x̃)

max
y∈Q(ỹ)

Γ(x , y) = max
y∈Q(ỹ)

min
x∈P(x̃)

Γ(x , y).

�
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Applications: Game

We consider a two players p and q game with a collective pay-off. The loss function
hp : Rn

+ → R+ represents the negative gain of player p, with the preorder P : Kp → Kp
given by

P(x) = {s ∈ Kp : min
z∈F (s)

hp(z) ≤ min
z∈F (x)

hp(z)}, ∀x ∈ Kp.

Similarly, the gain function hq : Rn
+ → R+ represents the positive gain of player q, with

the preorder Q : Kq → Kq given by

Q(y) = {s ∈ Kq : max
z∈F (s)

hq(z) ≥ max
z∈F (y)

hq(z)}, ∀y ∈ Kq.

Player p seeks to minimize hp and player q seeks to maximize hq. The sets Kp and Kq
are the sets of strategies of player p and player q respectively. x(t) is a strategy of
player p in Kp and y(t) is a strategy of player q in Kq. The pay-off function Γ(x , y)
represent the collective pay-off of the two players.

Oana-Silvia-Serea Existence of monotone solutions with respect to a preorder and applications



Existence of monotone solutions with respect to a preorder and applications
Perspectives

Appendix

Main results
Further results

Applications: Game

The problem
To prove that (x∗, y∗) is the maximum for the collective pay-off function Γ(x , y) i. e.

Γ(x∗, y∗) = max
(x ,y)∈P(x∗)×Q(y∗)

Γ(x , y).

it is sufficient to maximize a collective well-being with Γ(x , y) = r̃(y)− w̃(x), such
that r̃ is the revenue and w̃ is the cost function.
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The prox-regular case: The problem

This part deals with the existence of P-monotone solutions of the differential inclusion

(P6)

 x ′(t) ∈ projTP(x(t))(x(t))(−∂w(x(t))), a.e. in [0,∞),

x(0) = x0.

where,
� ∂w(·) is the proximal subdifferential of the function w(·).

∂w(x) = {x∗ ∈ Rn | 〈x∗, x ′ − x〉 ≤ w(x ′)− w(x) + c
2‖x

′ − x‖2,∀x ′ ∈ Rn}.

(A0c) w : K → R+ is a proper, lower semicontinuous c-prox-regular function.
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Notion of monotone solutions
Let K be a convex compact set of Rm

+. We define the following preorder P on K :

P(x) = {y ∈ K : min
z∈F (y)

h(z) ≤ min
z∈F (x)

h(z)}, ∀x ∈ K .

Hypotheses:

F : K ⇒ Rn
+ is a multivalued mapping satisfying;

(A1)


(a) F (x) is a convex compact set, ∀x ∈ K ;
(b) F (·) is concave;
(c) F (·) is continuous.

h : Rn
+ → R+ is a single-valued function satisfying;

(A2c)


(a) h(·) is continuous;
(b) h(·) is c-prox-regular;
(c) if x ≥ y , then h(x) ≤ h(y).

Proposition II.3
Assume that Assumptions (A1), and (A2c) are satisfied. Then, the preorder P(·)
defined on K is continuous with nonempty compact prox-regular values.
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Existence result

Theorem II.2
Let P(·) be a continuous preorder with compact prox-regular values defined on a

compact convex subset K , and let w : K → R+ be a function satisfying (A0c). Then,

(a) there exists a P(·)-monotone solution x(·) of (P6) for any initial points x0 ∈ K .

(b) let x(·) be a solution of the problem (P6), and let

x̄ = lim
tn→+∞

x(tn).

Then, we have
w(x̄) = min

x∈P(x̄)
w(x).
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The proof of Theorem II.2 is based on the following:

� Under (A0c), the subdifferential ∂w is an u.s.c. multivalued map.

� The preorder P(·) is continuous with nonempty compact prox-regular values.

� Let x ∈ K , and let ψ̃(x) be a measurable selection in ∂w(x). Then, we have

d
dt w(x(t)) = 〈ψ̃(x(t)), x ′(t)〉 a.e. t ≥ 0.

� A limit point x̄ is a minimum of w on P(x̄) if and only if

projTP(x̄)
(−ψ̃(x̄)) = 0.

�

Aubin-Cellina(84), Falcone-Scinolfi(83)
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� Control theory.

� Second order differential inclusions.

� Applications: economic, game theory.
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Thank you for your attention!
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