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Recall: A Central Pillar Underlying Analysis of FOM

inf{<|>(x) = f(X)+g(x): xe€ ]Rd} ,
@ f:R? — (—o0,4o0] is proper and lower semicontniuous.
@ g: R Ris continuously differentiable.

Captures many applied problems, and the source for fundamental FOM.

A central assumption: g admits an L-Lipschitz continuous gradient on R?.
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Recall: A Central Pillar Underlying Analysis of FOM

inf{¢(x) = f(X)+g(x): xe€ Rd},
@ f:R? — (—o0,4o0] is proper and lower semicontniuous.
@ g: R Ris continuously differentiable.

Captures many applied problems, and the source for fundamental FOM.

[ A central assumption: g admits an L-Lipschitz continuous gradient on R?.

A simple, yet a key consequence of this, is the so-called descent Lemma:

90) <G+ (VaW) X~y + 5 Ix—yl2, ¥ xyer.
This inequality provides
@ An upper quadratic approximation of g.
@ A crucial pillar in the development and analysis of many FOM.

However, in many contexts and applications:
@ the differentiable function g does not have a global L-smooth gradient.

@ Hence precludes direct use of basic FOM methodology and schemes.
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Starting Point: A Recent Approach for Convex Problems

Recently, in (Bauschke, Bolte and Teboulle (2017)) a simple framework was proposed for the
convex composite minimization

inf{cb(x) = f(x)+g(x): xeRd},

@ f:R? — (—o0,40o0] is proper and lower semicontniuous.

e g: R — Ris continuously differentiable, but does not have a globally Lipschitz
continuous gradient.
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Starting Point: A Recent Approach for Convex Problems

Recently, in (Bauschke, Bolte and Teboulle (2017)) a simple framework was proposed for the
convex composite minimization

inf{¢(x) =f(X)+g(x): xe]Rd},

@ f:R? — (—o0,40o0] is proper and lower semicontniuous.

e g: R — Ris continuously differentiable, but does not have a globally Lipschitz
continuous gradient.

@ The idea of this framework is based on “better capturing the geometry" of the
problem at hand.

© Allows for a new Descent Lemma: the classical upper quadratic approximation of
V is replaced by a more suitable approximation which can be adapted to the
objective function.

© The corresponding emerges FOM enjoys guaranteed complexity estimates and
pointwise global convergence results in the convex setting.
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Starting Point: A Recent Approach for Convex Problems

Recently, in (Bauschke, Bolte and Teboulle (2017)) a simple framework was proposed for the
convex composite minimization

inf{¢(x) =f(X)+g(x): xe]Rd},

@ f:R? — (—o0,40o0] is proper and lower semicontniuous.

e g: R — Ris continuously differentiable, but does not have a globally Lipschitz
continuous gradient.

@ The idea of this framework is based on “better capturing the geometry" of the
problem at hand.

© Allows for a new Descent Lemma: the classical upper quadratic approximation of
V is replaced by a more suitable approximation which can be adapted to the
objective function.

© The corresponding emerges FOM enjoys guaranteed complexity estimates and
pointwise global convergence results in the convex setting.

Main Goal: Extend BBT framework to analyze nonconvex composite minimiza-
tion problems.
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The Nonconvex Composite Model

We are focusing on the nonconvex and nonsmooth composite problem

(P) inf{w(x) —f(x)+g(x): x eé},

Assumption 1
@ Cis a honempty, convex and open subset of RY.
@ f:R? — (—o0,40c0] is a proper and Isc function with dom f N C # .
@ g:R? — (—o0, +0o0] is proper and Isc, and C" on C.
@ v(P):=inf {\IJ (x): xe 6} > —o0.
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Smooth Adaptable Functions

First, we need to define a specific class of Kernel functions.
> Let C be a nonempty, convex and open subset of RY.

> Let h: RY — (—o0, 4+00] be proper, Isc and convex such that
(i) domh C C and domdh = C.
(ii) his C' onintdomh = C.

We denote this class of functions by G(C).
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Smooth Adaptable Functions

First, we need to define a specific class of Kernel functions.
> Let C be a nonempty, convex and open subset of RY.

> Let h: RY — (—o0, 4+00] be proper, Isc and convex such that
(i) domh C C and domdh = C.
(ii) his C' onintdomh = C.

We denote this class of functions by G(C).

Definition (L-smooth adaptable)

Let h € G(C), and let g : RY — (—o0, +00] be a proper and Isc function with
dom h C dom g, which is C' on C = intdom h. The pair (g, h) is called L-smooth
adaptable on C if there exists L > 0 such that Lh — g and Lh + g are convex on C.
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Approximation without Lipschitz Gradient Continuity

Lemma (Fundamental approximation)
The pair of functions (g, h) is L-smooth adaptable on C if and only if:

[g(x)—9gy) —(Va(y),x = y)| < LDn(x,y), V X,y € intdomh.
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Approximation without Lipschitz Gradient Continuity

Lemma (Fundamental approximation)
The pair of functions (g, h) is L-smooth adaptable on C if and only if:

[g(x)—9gy) —(Va(y),x = y)| < LDn(x,y), V X,y € intdomh.

D, stands for the Bregman Distance (Bregman (67)) associated to h € G(C):

Dn(x,y) :=h(x)—=[h(y)+(Vh(y),x—y)], V x €domh,y € intdom h.

Distance-like properties. For all (x, y) € dom h x intdom h we have

(i) his convex if and only if Dy (x,y) > 0 for all x € dom hand y € intdom h.
(i) When h is strictly convex, Dx (x,y) =0 if and only if x = y.
(iii) However, note that D, is in general not symmetric!
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Approximation without Lipschitz Gradient Continuity

Lemma (Fundamental approximation)
The pair of functions (g, h) is L-smooth adaptable on C if and only if:

[g(x)—9gy) —(Va(y),x = y)| < LDn(x,y), V X,y € intdomh.

D, stands for the Bregman Distance (Bregman (67)) associated to h € G(C):

Dn(x,y) :=h(x)—=[h(y)+(Vh(y),x—y)], V x €domh,y € intdom h.

Distance-like properties. For all (x, y) € dom h x intdom h we have

(i) his convex if and only if Dy (x,y) > 0 for all x € dom hand y € intdom h.
(i) When h is strictly convex, Dx (x,y) =0 if and only if x = y.
(iii) However, note that D, is in general not symmetric!

Proof of Lemma. Lh + g is convex on C = intdom h is equivalent to:

Dipig(X,y) >0 <= LDn(x,y) £ Dy(x,y)>0.
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Smooth Adaptable Functions - Few Comments

@ When C =R%and h(-) = (1/2) ||||?, we recover the fundamental:

L
9(x) g () = (Va).x =y < 5llx =yl V¥ xyeR”

@ When g is assumed convex, the condition Lh + g is convex, trivially holds!
And we recover the Nolips Descent Lemma of BBT, i.e,,

Dy (x,y) < LDn(x,y).

@ The convexity of Lh + g can be written with respect to a different parameter ¢ < L.
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Smooth Adaptable Functions - Few Comments
@ When C =R%and h(-) = (1/2) ||||?, we recover the fundamental:

L
9(x) g () = (Va).x =y < 5llx =yl V¥ xyeR”

@ When g is assumed convex, the condition Lh + g is convex, trivially holds!
And we recover the Nolips Descent Lemma of BBT, i.e,,

Dy (x,y) < LDn(x,y).

@ The convexity of Lh + g can be written with respect to a different parameter ¢ < L.

Note 1: Here g is not convex.
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Smooth Adaptable Functions - Few Comments

@ When C =R%and h(-) = (1/2) ||||?, we recover the fundamental:

L
9(x) g () = (Va).x =y < 5llx =yl V¥ xyeR”

@ When g is assumed convex, the condition Lh + g is convex, trivially holds!
And we recover the Nolips Descent Lemma of BBT, i.e,,

DQ(X7.y)§LDh(X7y)'

@ The convexity of Lh + g can be written with respect to a different parameter ¢ < L.

Note 1: Here g is not convex.
Note 2: We can always assume that his o-strongly convex:

Lth—g=_L(h=(o/2) 1) - (9~ (Lo/2) |I?) == Lh - &.
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Smooth Adaptable Functions - Few Comments

@ When C =R%and h(-) = (1/2) ||-||%, we recover the fundamental:

L
9(x) g () = (Va).x =y < 5llx =yl V¥ xyeR”

@ When g is assumed convex, the condition Lh + g is convex, trivially holds!
And we recover the Nolips Descent Lemma of BBT, i.e,,

DQ(X7.y) S LDh(Xay)'

@ The convexity of Lh + g can be written with respect to a different parameter ¢ < L.

Note 1: Here g is not convex.
Note 2: We can always assume that his o-strongly convex:

Lth—g=_L(h=(o/2) 1) - (9~ (Lo/2) |I?) == Lh - &.

For our purposes, it will be enough to consider only the condition that Lh — g
is convex on C.
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The Nonconvex Composite Model

We are focusing on the nonconvex nonsmooth composite problem

(P) inf{w(x) —f(x)+g(x): x eé},

Assumption 1
(i) he G(C) such that Lh — g convex on C = intdom h
(ii) f:RY — (—o0,4o00] is a proper and Isc function with dom f N C # 0.
(iii) g:RY — (—o0, +00] is proper and Isc with dom h € dom g, and C" on C.
) v(P) =.nf{uJ(x);xe6}>—oo.

(iv
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Bregman Proximal Gradient Map

For all x € intdom h and any A\ > 0, we define
1
Tx (X) := argmin, {f(u) +(Vg(x),u—x)+ XD"(U’ x)} .

The map emerges from the usual approach:
@ Linearize the differentiable part g around x and regularize it.
@ Leave untouched the nonsmooth function f.
@ Since f is nonconvex, the mapping T, is not, in general, single-valued.

Classical case: With h(-) := } [I-]I? nothing else but the classical proximal gradient
(forward-backward) map:

T» (x) := argmin,, {f(u) +{(Vg(x),u—x)+ 21—/\ [lu— x||2} .
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Bregman Proximal Gradient Map

For all x € intdom h and any A\ > 0, we define
. 1
Tx (X) := argmin, {f(u) +(Vg(x),u—x)+ XD,, (u, x)} .

The map emerges from the usual approach:
@ Linearize the differentiable part g around x and regularize it.
@ Leave untouched the nonsmooth function f.
@ Since f is nonconvex, the mapping T, is not, in general, single-valued.

Classical case: With h(-) := } [I-]I? nothing else but the classical proximal gradient
(forward-backward) map:

Tx (X) := argmin, {f(u) +(Vg(x),u—x)+ 21—/\ llu— x||2} .

@ Mostly studied in the convex setting: f and g both convex, with Lipschitz Vg.
@ Further extended to find the zero of maximal monotone inclusions.

(Bruck (77), Passty (79), Lions-Mercier (79), Fukushima-Milne (81)...)
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Well-Posedness of T,

Assumption 2
(i) The function h + Af is supercoercive for all A > 0, that is,

h(u) + Af(u)
llull—o0 [|ull

(i) Forallx e Cwehave T\ (x) C C, VxeC.
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Well-Posedness of T,

Assumption 2
(i) The function h+ Af is supercoercive for all A > 0, that is,
h(u) + X (u)

llull—o0 [|ull

(i) Forallx e Cwehave T\ (x) C C, VxeC.

@ ltem (i) is a quite standard coercivity condition, e.g., automatically satisfied when
C is compact.

@ ltem (ii) can be shown to hold under a classical constraint qualification condition:
o°f(x) N (—=87h(x)) ={0}, VxeR"

@ Item (ii) also holds automatically when C = R or f is convex (note: problem (P)
remains nonconvex!).

In later case, T reduces to minimize a strictly convex function, and T, is
single-valued from int dom h to intdom h.
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The Bregman Proximal Gradient Algorithm

Bregman Proximal Gradient - BPG

Input. A function h € G(C) with C = intdom h such that Lh — g convex on C.
Initialization. x° € intdom h and let A > 0.

General Step. For k = 1,2, ..., compute

x* € argmin {f(x) + <x - X" vg (xk_1)> + %Dh (X,Xk_1) P XE 6}.

Under our standing Assumption 1 and 2 the algorithm is well-defined.
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The Bregman Proximal Gradient Algorithm

Bregman Proximal Gradient - BPG

Input. A function h € G(C) with C = intdom h such that Lh — g convex on C.
Initialization. x° € intdom h and let A > 0.

General Step. For k = 1,2, ..., compute

x* € argmin {f(x) + <x - X" vg (xk_1)> + %Dh (X,Xk_1) P XE 6}.

Under our standing Assumption 1 and 2 the algorithm is well-defined.
Main computational step. For any x € C, needs to solve

x* = Ty (x) := argmin, {\f (u) + h(u) + (u,c(x))}.
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Properties and Rate of Convergence for NonConvex-BPG Algorithm

Theorem (Properties and rate of Ncvx-BPG)

Let {x"}, o be a sequence generated by BPG. Then, with AL € (0, 1) we have
(i) (Sufficient decrease) The sequence {W (x*)},_,; is nonincreasing.
(i) (Summability) 3°3° | Dy (x*, x*7") < co.

1AL

(ii) (Rate) miny<ken Dy (x*, xK1) < 2 (M) .
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Properties and Rate of Convergence for NonConvex-BPG Algorithm

Theorem (Properties and rate of Ncvx-BPG)
Let {x"}, o be a sequence generated by BPG. Then, with AL € (0, 1) we have
(i) (Sufficient decrease) The sequence {V (x*)},_, is nonincreasing.

(i) (Summability) 3°3° | Dy (x*, x*7") < co.
(ii) (Rate) miny<ken Dy (x*, xK1) < 2 (M) .

1AL

@ Recall: we can assume that his o-strongly convex on C, and we immediately get:

min dist? (qu, Tx (qu)) < min

0
K k71H2<é v (x%) —w,
1<k<n = 1<k<n

S B R (= YA R

@ Special case: h(u) = (1/2) ||u|)?, the classical O(n~'/2) rate for proximal
gradient in the nonconvex setting is recovered:

n = min
g 1<k<n

o L (2<"’<L>—"’>>/

Shoham Sabach (Technion) Smooth Adaptable Nonconvex Composite Optimization



Global Convergence Analysis of Nonconvex BPG

From now on, we consider the same nonconvex model, but with C = RY.
(P) inf{\ll(x) =f(x)+g(x): x€ Rd} ,
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Global Convergence Analysis of Nonconvex BPG

From now on, we consider the same nonconvex model, but with C = RY.
(P) inf{\ll(x) =f(x)+g(x): x€ Rd},

Assumption 3
(i) domh=RY.
(i) his strongly convex on RY.
(i) Vhand Vg are Lipschitz continuous on any bounded subset of RY.
In this case, the set of critical points of W is simply given by:
Crit W = {x €R?: 0 €V (x) = f (x) +Vg(x)}.

Notes: Item (iii) is harmeless. Item (ii) can always be enforced, without impairing the
convexity of Lh — g!.

(Limiting) Subdifferential oW (x) (Rockafellar-Wets (93)):
xTeow(x) iff (X, xT) = (x,x¥) st W(x) — W(x) and
Flu) > FO)+ (¢, u—x) +o(llu — x|l
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Global Convergence of the BPG

(P) inf{w(x) —f(x)+g(x): xe Rd},

Bregman Proximal Gradient - BPG

Input. A function h € G(C) with C = intdom h such that Lh — g convex on C.
Initialization. x° € intdom h and let A > 0.

General Step. For k = 1,2, ..., compute

x* € argmin {f(x) + <x —x" vg (xk_1)> + %Dh (X, xk_') D xe 5}.

Theorem (Convergence of BPG)
Let {x*}, < be a bounded sequence generated by BPG and 0 < AL < 1.

(i) Subsequential convergence. Any limit point of {x" } «en IS a critical point of W.

(ii) Global convergence. Assume V is real semi-algebraic. Then the sequence
{x*} «en has finite length and converges to a critical point x* of W.
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Global Convergence of the BPG

(P) inf{w(x) —f(x)+g(x): xe Rd},

Bregman Proximal Gradient - BPG

Input. A function h € G(C) with C = intdom h such that Lh — g convex on C.
Initialization. x° € intdom h and let A > 0.

General Step. For k = 1,2, ..., compute

x* € argmin {f(x) + <x —x" vg (xk_1)> + %Dh (X, xk_') D xe 5}.

Theorem (Convergence of BPG)
Let {x*}, < be a bounded sequence generated by BPG and 0 < AL < 1.

(i) Subsequential convergence. Any limit point of {x" } «en IS a critical point of W.

(ii) Global convergence. Assume V is real semi-algebraic. Then the sequence
{x*} «en has finite length and converges to a critical point x* of W.

Open Question: Convergence when dom h # R9?
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Application: Quadratic Inverse Problems

@ A e R j=1.2 ... msymmetric matrices.
@ b e R™ vector of noisy measurements.

Goal: find x € RY, that solves the following system

x"Ax~b, i=1,2,....,m.

@ Natural extension of classical linear inverse problems.

@ Includes the class of phase retrieval problems, which is fundamental in
physical/engineering sciences. See Phase retrieval, what’s new ? (Luke (17)).
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Application: Quadratic Inverse Problems

@ A e R j=1.2 ... msymmetric matrices.
@ b e R™ vector of noisy measurements.

Goal: find x € RY, that solves the following system

x"Ax~b, i=1,2,....,m.

@ Natural extension of classical linear inverse problems.

@ Includes the class of phase retrieval problems, which is fundamental in
physical/engineering sciences. See Phase retrieval, what’s new ? (Luke (17)).

Nonconvex optimization formulation. Adopting the usual least-squares model:
(QIP)  mind W (x) := 1 Zm: (XTA'X - b-)2 +f(x): xeR?
. 4 i=1 I I - ,

where f (can be nonconvex) describes relevant constraints or is a regularizer
(nonsmooth) to ensure well-posedness.
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Applying Ncvx BPG on Quadratic Inverse Problems

The function g (x) := § 37, (xTAix — b,»)2
@ is nonconvex and C' on R,
@ but does not admit a global Lipschitz continuous gradient.
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Applying Ncvx BPG on Quadratic Inverse Problems

The function g (x) := § 37, (xTAix — b,')2
@ is nonconvex and C' on R,
@ but does not admit a global Lipschitz continuous gradient.

We can activate Ncvx PBG, that is:
@ find an h and an explicit L in terms of (A;, b;) such that Lh — g is convex on RC.

@ Explicitly computable T, (-) in the following two important cases for QIP:
(a) A convex ¢1-norm regularization. With f (x) = ||x]|;.

(b) A nonconvex sparsity constraint. With f (x) = J]BS (x):

B = {x: |Ix]lp < s}, (¢ quasi-ball 0 < s < d).
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Applying Ncvx BPG on Quadratic Inverse Problems

The function g (x) := § 37, (xTAix — b,')2
@ is nonconvex and C' on R,
@ but does not admit a global Lipschitz continuous gradient.

We can activate Ncvx PBG, that is:
@ find an h and an explicit L in terms of (A;, b;) such that Lh — g is convex on RC.

@ Explicitly computable T (-) in the following two important cases for QIP:
(a) A convex ¢1-norm regularization. With f (x) = ||x]|;.

(b) A nonconvex sparsity constraint. With f (x) = 5“33 (x):
B = {x: |Ix]lp < s}, (¢ quasi-ball 0 < s < d).

In both cases, the data is semi-algebraic, and the main computational step:

T (x) = argmin{f(u) +(Vg(x),u—x)+ %Dh(u,x) tue Rd} (A>0).

produces a new, simple and explicit schemes, proven to generate globally
convergent sequences (details in (Bolte-Sabach-T.-Vaisbourd (18))).
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A Smooth Adaptable (h, g) for the QIP

Clearly, the nonconvex function g : RY — (—oo0, +oc] defined by

1 (.7 2
9 (x) ::ZZ(X A,x—b,) ,
pa

is C' on RY, but does not admit a global Lipschitz continuous gradient.
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A Smooth Adaptable (h, g) for the QIP

Clearly, the nonconvex function g : RY — (—oo0, +oc] defined by

1 (.7 2
9 (x) ::ZZ(X A,x—b,) :
i

is C' on RY, but does not admit a global Lipschitz continuous gradient.

Now we need to identify a suitable function h € G(R?) such that Lh — g convex holds
for the pair (g, h). Here, we show that the following h : R — R does the job:

1 1
h(x) = 2 lIxll3 + 5 x5
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A Smooth Adaptable (h, g) for the QIP

Clearly, the nonconvex function g : RY — (—oo0, +oc] defined by

1 (.7 2
g(X) = ZZ(X AIX_bi) )
i=1

is C' on RY, but does not admit a global Lipschitz continuous gradient.

Now we need to identify a suitable function h € G(R?) such that Lh — g convex holds
for the pair (g, h). Here, we show that the following h : R — R does the job:

1 1
h(x) = 2 lIxll3 + 5 x5

Lemma

Let g and h as defined above. Then, Lh — g is convex onR? for any L satisfying

m
L2 (31IAI° + 1Al o)
i=1
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Explicit Formula for The case f = ||-||,

Proposition (Bregman Proximal Formula for the ¢;-Norm)
Let x € RY, let v(x) := Sxg (A\Vg (x) — Vh(x)). Then, x* = T, (x) is given by
xt = —t'v(x) = t*Sxe (Vh(x) — AVg (X)),
where t* is the unique positive real root of
£ vz +t—1=0,

which admits an explicit formula (Cardano (1545))

Soft-thresholding (with parameter 7). For any y € R?,

. 1
S (y) = sngmin, s { 711, + ¢ = 1} = max{ly] = . Obsen(y),

with the absolute value understood to be component-wise.
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Explicit Formula for the Sparsity Constrained Case f = Opg

Proposition (Bregman Proximal Formula T, for the ¢y-Ball)
Letx € R%, A > 0 and pr(x) := Vh(x) — AVg (x).Then,

X' = Ta(x) = =Vt [Hs (Pr ()l Hs (Pa(X)) s
where \/t* = n* is the unique positive real root of the cubic equation

n® +n— |[Hs (pr (x))]l, = 0,

which admits an explicit formula (Cardano (1545)).

Hard-thresholding (with parameter 7). For any y € R,

. 7 yi’ I S ™
He (y) = x—y|°: xeBp=
(v) = argmin,_pq {|| vl 0 } {0, otherwise,

where we assumed, without the loss of generality, that |y1| > |y2| > -+ > |¥al-
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More Details/Results

For more information and results see

Bolte, J., Sabach, S., Teboulle, M. and Vaisbourd, Y.: First Order Methods Beyond
Convexity and Lipschitz Gradient Continuity with Applications to Quadratic
Inverse Problems. SIAM J. Optim., 28(3), 2131-2151. (2018).

Thanks for your attention!

Email: ssabach@ie.technion.ac.il

Website: http://ssabach.net.technion.ac.il/
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