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Recall: A Central Pillar Underlying Analysis of FOM

inf
{

Φ (x) := f (x) + g (x) : x ∈ Rd
}
,

f : Rd → (−∞,+∞] is proper and lower semicontniuous.

g : Rd → R is continuously differentiable.

Captures many applied problems, and the source for fundamental FOM.

A central assumption: g admits an L-Lipschitz continuous gradient on Rd .

A simple, yet a key consequence of this, is the so-called descent Lemma:

g (x) ≤ g (y) + 〈∇g (y) , x − y〉+
L
2
‖x − y‖2 , ∀ x , y ∈ Rd .

This inequality provides
1 An upper quadratic approximation of g.
2 A crucial pillar in the development and analysis of many FOM.

However, in many contexts and applications:
the differentiable function g does not have a global L-smooth gradient.

Hence precludes direct use of basic FOM methodology and schemes.
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Starting Point: A Recent Approach for Convex Problems
Recently, in (Bauschke, Bolte and Teboulle (2017)) a simple framework was proposed for the
convex composite minimization

inf
{

Φ (x) := f (x) + g (x) : x ∈ Rd
}
,

f : Rd → (−∞,+∞] is proper and lower semicontniuous.

g : Rd → R is continuously differentiable, but does not have a globally Lipschitz
continuous gradient.

1 The idea of this framework is based on “better capturing the geometry" of the
problem at hand.

2 Allows for a new Descent Lemma: the classical upper quadratic approximation of
Ψ is replaced by a more suitable approximation which can be adapted to the
objective function.

3 The corresponding emerges FOM enjoys guaranteed complexity estimates and
pointwise global convergence results in the convex setting.

Main Goal: Extend BBT framework to analyze nonconvex composite minimiza-
tion problems.
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The Nonconvex Composite Model

We are focusing on the nonconvex and nonsmooth composite problem

(P) inf
{

Ψ (x) ≡ f (x) + g (x) : x ∈ C
}
,

Assumption 1
C is a nonempty, convex and open subset of Rd .

f : Rd → (−∞,+∞] is a proper and lsc function with dom f ∩ C 6= ∅.
g : Rd → (−∞,+∞] is proper and lsc, and C1 on C.

v(P) := inf
{

Ψ (x) : x ∈ C
}
> −∞.
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Smooth Adaptable Functions

First, we need to define a specific class of Kernel functions.

. Let C be a nonempty, convex and open subset of Rd .

. Let h : Rd → (−∞,+∞] be proper, lsc and convex such that

(i) dom h ⊂ C and dom ∂h = C.

(ii) h is C1 on int dom h ≡ C.

We denote this class of functions by G(C).

Definition (L-smooth adaptable)

Let h ∈ G(C), and let g : Rd → (−∞,+∞] be a proper and lsc function with
dom h ⊂ dom g, which is C1 on C ≡ int dom h. The pair (g, h) is called L-smooth
adaptable on C if there exists L > 0 such that Lh − g and Lh + g are convex on C.
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Approximation without Lipschitz Gradient Continuity

Lemma (Fundamental approximation)
The pair of functions (g, h) is L-smooth adaptable on C if and only if:

|g (x)− g (y)− 〈∇g (y) , x − y〉| ≤ LDh (x , y) , ∀ x , y ∈ int dom h.

Dh stands for the Bregman Distance (Bregman (67)) associated to h ∈ G(C):

Dh (x , y) := h (x)− [h (y) + 〈∇h (y) , x − y〉] , ∀ x ∈ dom h, y ∈ int dom h.

Distance-like properties. For all (x , y) ∈ dom h × int dom h we have

(i) h is convex if and only if Dh (x , y) ≥ 0 for all x ∈ dom h and y ∈ int dom h.

(ii) When h is strictly convex, Dh (x , y) = 0 if and only if x = y .

(iii) However, note that Dh is in general not symmetric!

Proof of Lemma. Lh ± g is convex on C = int dom h is equivalent to:

DLh±g (x , y) ≥ 0 ⇐⇒ LDh (x , y)± Dg (x , y) ≥ 0.
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Smooth Adaptable Functions - Few Comments

When C = Rd and h (·) = (1/2) ‖·‖2, we recover the fundamental:

|g (x)− g (y)− 〈∇g (y) , x − y〉| ≤ L
2
‖x − y‖2, ∀ x , y ∈ Rd .

When g is assumed convex, the condition Lh + g is convex, trivially holds!
And we recover the Nolips Descent Lemma of BBT, i.e.,

Dg (x , y) ≤ LDh (x , y) .

The convexity of Lh + g can be written with respect to a different parameter ` ≤ L.

Note 1: Here g is not convex.
Note 2: We can always assume that h is σ-strongly convex:

Lh − g = L
(

h − (σ/2) ‖·‖2
)
−
(

g − (Lσ/2) ‖·‖2
)

:= Lh̄ − ḡ.

For our purposes, it will be enough to consider only the condition that Lh − g
is convex on C.
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The Nonconvex Composite Model

We are focusing on the nonconvex nonsmooth composite problem

(P) inf
{

Ψ (x) ≡ f (x) + g (x) : x ∈ C
}
,

Assumption 1
(i) h ∈ G(C) such that Lh − g convex on C = int dom h

(ii) f : Rd → (−∞,+∞] is a proper and lsc function with dom f ∩ C 6= ∅.
(iii) g : Rd → (−∞,+∞] is proper and lsc with dom h ⊂ dom g, and C1 on C.

(iv) v(P) := inf
{

Ψ (x) : x ∈ C
}
> −∞.

Shoham Sabach (Technion) Smooth Adaptable Nonconvex Composite Optimization 8



Bregman Proximal Gradient Map

For all x ∈ int dom h and any λ > 0, we define

Tλ (x) := argminu

{
f (u) + 〈∇g (x) , u − x〉+

1
λ

Dh (u, x)

}
.

The map emerges from the usual approach:

Linearize the differentiable part g around x and regularize it.

Leave untouched the nonsmooth function f .

Since f is nonconvex, the mapping Tλ is not, in general, single-valued.

Classical case: With h (·) := 1
2 ‖·‖

2 nothing else but the classical proximal gradient
(forward-backward) map:

Tλ (x) := argminu

{
f (u) + 〈∇g (x) , u − x〉+

1
2λ
‖u − x‖2

}
.

Mostly studied in the convex setting: f and g both convex, with Lipschitz ∇g.

Further extended to find the zero of maximal monotone inclusions.

(Bruck (77), Passty (79), Lions-Mercier (79), Fukushima-Milne (81)...)
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Well-Posedness of Tλ

Assumption 2
(i) The function h + λf is supercoercive for all λ > 0, that is,

lim
‖u‖→∞

h (u) + λf (u)

‖u‖ =∞.

(ii) For all x ∈ C we have Tλ (x) ⊂ C, ∀ x ∈ C.

Item (i) is a quite standard coercivity condition, e.g., automatically satisfied when
C is compact.

Item (ii) can be shown to hold under a classical constraint qualification condition:

∂∞f (x) ∩ (−∂∞h (x)) = {0} , ∀ x ∈ Rd .

Item (ii) also holds automatically when C = Rd or f is convex (note: problem (P)
remains nonconvex!).

In later case, Tλ reduces to minimize a strictly convex function, and Tλ is
single-valued from int dom h to int dom h.
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The Bregman Proximal Gradient Algorithm

Bregman Proximal Gradient - BPG
Input. A function h ∈ G(C) with C = int dom h such that Lh − g convex on C.
Initialization. x0 ∈ int dom h and let λ > 0.
General Step. For k = 1, 2, . . ., compute

xk ∈ argmin
{

f (x) +
〈

x − xk−1,∇g
(

xk−1
)〉

+
1
λ

Dh

(
x , xk−1

)
: x ∈ C

}
.

Under our standing Assumption 1 and 2 the algorithm is well-defined.

Main computational step. For any x ∈ C, needs to solve

x+ = Tλ (x) := argminu {λf (u) + h (u) + 〈u, c (x)〉} .
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Properties and Rate of Convergence for NonConvex-BPG Algorithm

Theorem (Properties and rate of Ncvx-BPG)

Let
{

xk}
k∈N be a sequence generated by BPG. Then, with λL ∈ (0, 1) we have

(i) (Sufficient decrease) The sequence
{

Ψ
(
xk)}

k∈N is nonincreasing.

(ii) (Summability)
∑∞

k=1 Dh
(
xk , xk−1) <∞.

(iii) (Rate) min1≤k≤n Dh
(
xk , xk−1) ≤ λ

n

(
Ψ(x0)−Ψ∗

1−λL

)
.

Recall: we can assume that h is σ-strongly convex on C, and we immediately get:

min
1≤k≤n

dist2
(

xk−1,Tλ
(

xk−1
))
≤ min

1≤k≤n

∥∥∥xk − xk−1
∥∥∥2
≤ λ

n
·

Ψ
(
x0)−Ψ∗

σ (1− λL)
.

Special case: h (u) = (1/2) ‖u‖2, the classical O(n−1/2) rate for proximal
gradient in the nonconvex setting is recovered:

γn := min
1≤k≤n

∥∥∥xk − xk−1
∥∥∥ ≤ 1√

n

(
2
(
Ψ
(
x0)−Ψ∗

)
L

)1/2

.
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Global Convergence Analysis of Nonconvex BPG

From now on, we consider the same nonconvex model, but with C ≡ Rd .

(P) inf
{

Ψ (x) ≡ f (x) + g (x) : x ∈ Rd
}
,

Assumption 3

(i) dom h = Rd .

(ii) h is strongly convex on Rd .

(iii) ∇h and ∇g are Lipschitz continuous on any bounded subset of Rd .

In this case, the set of critical points of Ψ is simply given by:

crit Ψ =
{

x ∈ Rd : 0 ∈ ∂Ψ (x) ≡ ∂f (x) +∇g (x)
}
.

Notes: Item (iii) is harmeless. Item (ii) can always be enforced, without impairing the
convexity of Lh − g!.

(Limiting) Subdifferential ∂Ψ (x) (Rockafellar-Wets (93)):
x∗ ∈ ∂Ψ(x) iff (xk , x

∗)→ (x, x∗) s.t. Ψ(xk )→ Ψ(x) and

F (u) ≥ F (xk ) + 〈x∗
k , u − xk 〉 + o(‖u − xk‖)
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Global Convergence of the BPG

(P) inf
{
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Bregman Proximal Gradient - BPG
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General Step. For k = 1, 2, . . ., compute

xk ∈ argmin
{

f (x) +
〈

x − xk−1,∇g
(

xk−1
)〉

+
1
λ

Dh

(
x , xk−1

)
: x ∈ C

}
.

Theorem (Convergence of BPG)

Let
{

xk}
k∈N be a bounded sequence generated by BPG and 0 < λL < 1.

(i) Subsequential convergence. Any limit point of
{

xk}
k∈N is a critical point of Ψ.

(ii) Global convergence. Assume Ψ is real semi-algebraic. Then the sequence{
xk}

k∈N has finite length and converges to a critical point x∗ of Ψ.

Open Question: Convergence when dom h 6= Rd ?
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Application: Quadratic Inverse Problems

Ai ∈ Rd×d , i = 1, 2, . . . ,m symmetric matrices.

b ∈ Rm vector of noisy measurements.

Goal: find x ∈ Rd , that solves the following system

xT Aix ' bi , i = 1, 2, . . . ,m.

Natural extension of classical linear inverse problems.

Includes the class of phase retrieval problems, which is fundamental in
physical/engineering sciences. See Phase retrieval, what’s new ? (Luke (17)).

Nonconvex optimization formulation. Adopting the usual least-squares model:

(QIP) min

{
Ψ (x) :=

1
4

m∑
i=1

(
xT Aix − bi

)2
+ f (x) : x ∈ Rd

}
,

where f (can be nonconvex) describes relevant constraints or is a regularizer
(nonsmooth) to ensure well-posedness.
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Applying Ncvx BPG on Quadratic Inverse Problems

The function g (x) := 1
4

∑m
i=1

(
xT Aix − bi

)2

is nonconvex and C1 on Rd ,

but does not admit a global Lipschitz continuous gradient.

We can activate Ncvx PBG, that is:

find an h and an explicit L in terms of (Ai , bi ) such that Lh − g is convex on Rd .

Explicitly computable Tλ (·) in the following two important cases for QIP:
(a) A convex `1-norm regularization. With f (x) = ‖x‖1.

(b) A nonconvex sparsity constraint. With f (x) = δBs
0

(x):

Bs
0 ≡

{
x : ‖x‖0 ≤ s

}
, (`0 quasi-ball 0 < s < d).

In both cases, the data is semi-algebraic, and the main computational step:

Tλ (x) = argmin
{

f (u) + 〈∇g (x) , u − x〉+
1
λ

Dh (u, x) : u ∈ Rd
}

(λ > 0).

produces a new, simple and explicit schemes, proven to generate globally
convergent sequences (details in (Bolte-Sabach-T.-Vaisbourd (18))).
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A Smooth Adaptable (h,g) for the QIP

Clearly, the nonconvex function g : Rd → (−∞,+∞] defined by

g (x) :=
1
4

m∑
i=1

(
xT Aix − bi

)2
,

is C1 on Rd , but does not admit a global Lipschitz continuous gradient.

Now we need to identify a suitable function h ∈ G(Rd ) such that Lh− g convex holds
for the pair (g, h). Here, we show that the following h : Rd → R does the job:

h (x) =
1
4
‖x‖4

2 +
1
2
‖x‖2

2 .

Lemma

Let g and h as defined above. Then, Lh − g is convex on Rd for any L satisfying

L ≥
m∑

i=1

(
3 ‖Ai‖2 + ‖Ai‖ |bi |

)
.
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Explicit Formula for The case f = ‖·‖1

Proposition (Bregman Proximal Formula for the `1-Norm)

Let x ∈ Rd , let v(x) := Sλθ (λ∇g (x)−∇h (x)). Then, x+ = Tλ (x) is given by

x+ = −t∗v(x) = t∗Sλθ (∇h (x)− λ∇g (x)) ,

where t∗ is the unique positive real root of

t3 ‖v(x)‖2
2 + t − 1 = 0,

which admits an explicit formula (Cardano (1545))

Soft-thresholding (with parameter τ ). For any y ∈ Rd ,

Sτ (y) = argminx∈Rd

{
τ ‖x‖1 +

1
2
‖x − y‖2

}
= max {|y | − τ, 0} sgn(y),

with the absolute value understood to be component-wise.
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Explicit Formula for the Sparsity Constrained Case f = δBs
0

Proposition (Bregman Proximal Formula Tλ for the `0-Ball)

Let x ∈ Rd , λ > 0 and pλ(x) := ∇h (x)− λ∇g (x).Then,

x+ ≡ Tλ(x) = −
√

t∗ ‖Hs (pλ(x))‖−1
2 Hs (pλ(x)) ,

where
√

t∗ ≡ η∗ is the unique positive real root of the cubic equation

η3 + η − ‖Hs (pλ (x))‖2 = 0,

which admits an explicit formula (Cardano (1545)).

Hard-thresholding (with parameter τ ). For any y ∈ Rd ,

Hτ (y) = argminx∈Rd

{
‖x − y‖2 : x ∈ Bτ0

}
=

{
yi , i ≤ τ,
0, otherwise,

where we assumed, without the loss of generality, that |y1| ≥ |y2| ≥ · · · ≥ |yn|.
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More Details/Results

For more information and results see

Bolte, J., Sabach, S., Teboulle, M. and Vaisbourd, Y.: First Order Methods Beyond
Convexity and Lipschitz Gradient Continuity with Applications to Quadratic
Inverse Problems. SIAM J. Optim., 28(3), 2131-2151. (2018).

Thanks for your attention!

Email: ssabach@ie.technion.ac.il

Website: http://ssabach.net.technion.ac.il/
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