Convergence of stochastic first order methods

Ion Necoara University Politehnica Bucharest Romania

Games, Dynamics and Optimization Workshop Cluj, April 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Some results are based on some recent research with:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation

General stochastic optimization problem:

 $\min_{x\in\mathbb{R}^n}\mathbf{E}\left[f(x,\xi)\right]+g(x)$

- Standard assumptions:
 - f (convex) function s.t. $f(x) = \mathbf{E}[f(x,\xi)] \& g$ convex fct.
 - f is Lipschitz function or has Lipschitz gradient
- Many applications computation of parameters for a system designed to make decisions based on yet unseen data (statistics, learning, estimation and control)

"Almost all" learning problems can be formulated as above:

- ▶ loss/fitting function $f(x) = \mathbf{E}[f(x,\xi)]$ with ξ random variable
- Empirical risk minimization (finite sum): $f(x) = \frac{1}{m} \sum_{i=1}^{m} f(x, \xi_i)$
- g regularizer (avoid overfitting, impose sparsity, or constraints)

Solved "almost exclusively" by first order methods

Stochastic (minibatch) first order methods have become de facto algorithmic choice for large-scale learning!

Algorithmic solution - stochastic case

General stochastic optimization problem:

$$\min_{x} f(x) + g(x) \qquad (:= \mathbf{E} [f(x,\xi)] + g(x))$$

Assume g admits a tractable proximal operator:

$$\operatorname{prox}_{\alpha g}(x) = \arg\min_{y \in \mathbb{R}^m} g(y) + \frac{1}{2\alpha} \|y - x\|^2.$$

Basic method - proximal gradient method:

$$(PG): x_{k+1} = \operatorname{prox}_{\alpha_k g}(x_k - \alpha_k \nabla f(x_k))$$

- PG requires access to *full* gradient; e.g. in finite sum case we need to compute a large sum ∇f(x) = 1/m ∑_{i=1}^m ∇f(x, ξ_i)
- ▶ difficult to implement when *m* large or data arrives in streams
 ▶ α_k is *global* stepsize (learning rate) difficult to compute

・ロト・日本・日本・日本・日本

Algorithmic solution - stochastic case cont.

Stochastic convex optimization problem:

$$\min_{x} f(x) + g(x) \qquad (:= \mathbf{E} [f(x,\xi)] + g(x))$$

Standard settings:

- function $f(x) = \mathbf{E}[f(x,\xi)]$ convex (random variable $\xi \in \Omega$)
- access to either unbiased stochastic estimate of gradient of f:

$$abla f(x;\xi)$$
 s.t. $abla f(x) = \mathbb{E}[
abla f(x;\xi)],$

or access to stochastic estimate of proximal operator of f:

$$\operatorname{prox}_{lpha f(\cdot,\xi)}(x) = \arg\min_{y\in \mathbb{R}^m} f(y,\xi) + rac{1}{2lpha} \|y-x\|^2.$$

(assuming each $f(\cdot,\xi)$ admits a tractable proximal operator)

Existing work

Convex optimization problem:

 $F^* = \min_{x \in \mathbb{R}^m} F(x) \quad (= \mathbf{E} [f(x,\xi)] + g(x))$

Since proximal gradient requires full information \rightarrow use simple methods (mixing optimization and statistics):

- Stochastic gradient descent (g indicator function) has bee analyzed separately: for Lipschitz functions (Nedich & Bertsekas '00); for functions with Lipschitz gradient (Moulines & Bach '11) ⇒ no common analysis!
- Stochastic proximal gradient (g general convex function) has been analyzed under more conservative assumptions: e.g. gradient Lipschitz with bounded variance (Rosasco et al '14)
- Stochastic proximal point has been analyzed for g ≡ 0 and gradient Lipschitz (Boyd '16, N'17) ⇒ no general analysis!
- Convergence analysis for general g is partial/missing
- Most convergence results are for variable stepsize $\alpha_k = c/k$.

Algorithmic solution - stochastic case cont.

Stochastic convex optimization problem:

 $F^* = \min_x F(x)$ (:= **E** [f(x, \xi)] + g(x))

▶ Denote X* set of optima and for given x define x* = Π_{X*}(x)
 ▶ We provide unifying analysis under more general assumptions
 Assumption: (restricted) Lipschitz type condition:

$$(RL): \quad M + L(F(x) - F^*) \ge \mathbf{E}_{\xi}[\|\nabla f(x,\xi) + \partial g(x)\|^2] \quad \forall x$$

Assumption: (restricted) strong convexity type condition (N'15):

$$(RSC): F(x) - F^* \ge \frac{\mu}{2} ||x - x^*||^2 \quad \forall x.$$

$$\Downarrow$$

Remark - (RL)/(RSC) covers several important functional classes:

- RL class of Lipschitz functions or with Lipschitz gradients
- ▶ RSC larger class than strong conv. $(f(x) = h(Ax) + c^T x)$

Stochastic first order methods

Stochastic convex optimization problem:

$$F^* = \min_{x} F(x)$$
 (:= **E** [f(x, \xi)] + g(x))

Stochastic proximal gradient (SPG) method (for g = 0 we obtain Stochastic Gradient Descent (SGD) method) - sample ξ :

$$x_{k+1} = \operatorname{prox}_{\alpha_k g} \left(x_k - \alpha_k \nabla f(x_k, \xi_k) \right)$$

Stochastic proximal point (SPP) method - sample ξ :

 $x_{k+1/2} = \operatorname{prox}_{\alpha_k f(\cdot,\xi_k)}(x_k) \text{ and } x_{k+1} = \operatorname{prox}_{\alpha_k g}(x_{k+1/2})$

► SPG/SPP have simple iteration: require evaluation of "partial" $\nabla f(x_k, \xi_k) / \operatorname{prox}_{\alpha_k f(\cdot, \xi_k)}$, not entire gradient ∇f or entire prox operator $\operatorname{prox}_{\alpha_f} \to m$ times cheaper!

SPG/SPP adequate for applications - data arrive in streams
 α_k positive stepsize (learning rate) matters for SPG/SPP

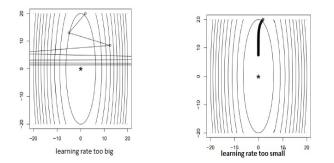
Stochastic first order methods

Stochastic proximal gradient (SPG) - sample ξ :

$$x_{k+1} = \operatorname{prox}_{\gamma_k g}(x_k - \alpha_k \nabla f(x_k, \xi_k))$$

where α_k strictly positive stepsizes (learning rates).

• learning rate α_k matters for SPG



Question: When stochastic first order methods converge linearly?

Convergence rates of stochastic FOM - constant stepsize

Theorem (Descent Inequality)

Assume convexity and Lipschitz-like (sub)gradient condition RL hold. Then, the following recursive inequality holds for SPG/SPP:

Define:
$$R_0 = ||x_0 - x_0^*||$$

Theorem (Constant stepsize)

SPG/SPP with $\alpha_k \equiv \alpha < 2/L$ under RL&RSC has "linear" conv.:

$$\mathsf{E}\left[\|x_k - x_k^*\|^2\right] \leq \left(1 - \mu\alpha + \frac{\mu L \alpha^2}{2}\right)^k R_0^2 + \frac{2M^2}{\mu(2 - L\alpha)}\alpha.$$

▶ linear convergence to noise dominated region whose radius~ α
 ▶ if M = 0 pure linear convergence!

Stochastic FOM - necessary & sufficient cond. linear conv.

Theorem (Sufficient)

SPG/SPP with $\alpha_k \equiv \alpha < 2/L$ under RL & RSC has linear conv.:

$$\mathsf{E}\left[\|x_k - x_k^*\|^2\right] \leq \left(1 - \mu\alpha + \frac{\mu L \alpha^2}{2}\right)^k R_0^2 + \frac{2M^2}{\mu(2 - L\mu)}\alpha.$$

- ► recall RL: $M + L(F(x) F^*) \ge \mathbf{E}_{\xi}[\|\nabla f(x,\xi) + \partial g(x)\|^2]$
- ▶ linear convergence to noise dominated region whose radius∼ α
 ▶ if M = 0 pure linear convergence!

Theorem (Necessary)

Assume $g \equiv 0$ and f has unique minimizer satisfying RSC. Assume further that iterates of SPG/SPP with constant stepsize satisfy:

$$\mathsf{E}_{\xi_k}[\|x_{k+1} - x_{k+1}^*\|^2] \le c \cdot \|x_k - x_k^*\|^2, \quad \textit{with} \quad c < 1.$$

Then, condition RL holds with $M \equiv 0!$ (i.e. f satisfies $L(f(x) - f^*) \ge \mathbf{E}_{\xi}[\|\nabla f(x,\xi)\|^2])$

Convergence rates - variable stepsize

Theorem (Sublinear convergence) SPG/SPP with variable stepsize $\alpha_k = \min\left(\frac{1}{L}, \frac{c}{k+1}\right)$ for some c > 0 under RL & RSC has sublinear convergence $\mathcal{O}(1/k)$:

$$\begin{split} \mathbf{E} \left[\|x_k - x_k^*\|^2 \right] &\leq \frac{C(k_0, c, R_0)}{k} \qquad \text{if } \ c\mu \geq 2\\ \mathbf{E} \left[\|x_k - x_k^*\|^2 \right] &\leq \frac{C(k_0, c, R_0)}{k^{0.5 c\mu}} \qquad \text{if } \ c\mu < 2 \end{split}$$

Remark 1: we can choose a larger stepsize α_k , with $\gamma \in (0, 1)$: $\alpha_k = \min\left(\frac{1}{L}, \frac{c}{(k+1)^{\gamma}}\right) \implies \mathcal{O}\left(\frac{1}{k^{\gamma}}\right)$ convergence rate

Remark 2: Note that algorithm SPG is SPP scheme, but applied to the linearization of function $f(\cdot, \xi)$ at x:

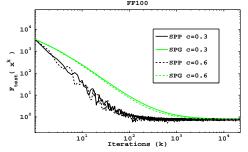
$$l_f(y; x, \xi) = f(x; \xi) + \langle \nabla f(x; \xi), y - x \rangle \quad \leftrightarrow \quad f(y; \xi)$$

Thus, we expect faster convergence and more robustness for SPP! Necoara, On the convergence rates of stochastic first order methods, Tech. Rep., 2018 Dace Markowitz portfolio opt. - real data

$$\min_{x \in \mathbb{R}^m} \mathsf{E}\left[(a_{\xi}^T x - b)^2 \right] + 1_X(x)$$

• $X = \{x : x \ge 0, e^T x = 1\}$ - easy to project $\mathcal{O}(m \log m)$ flops

We compare SPG and SPP for learning rate α_k=min(1/L, c/k), with c = 0.3 & 0.6. Dataset Fama and French (FF100, with 100 portfolios for 23.647 days)



- Plot value of objective function over datapoints in test partition F_{test} along iterations - one pass through data
- SPP is usually faster and more robust w.r.t., c_than_SPG

Application: convex feasibility

- SPG/SPP convergence linearly under restricted Lipschitz (RL with M=0) & restricted strong convexity (RSC)
- ▶ Particular case of *X* represented as intersection of simple sets:

find
$$x \in \cap_{\xi \in \Omega} X_{\xi}$$

reformulated as stochastic convex problems

$$(CFP): \min_{x \in \mathbb{R}^m} \mathbf{E} \left[\|x - \Pi_{X_{\xi}}(x)\|^2 \right] \quad \lor \quad \mathbf{E} \left[\mathbf{1}_{X_{\xi}}(x) \right]$$

▶ SPG (first formulation) \lor SPP (second formulation) with $\alpha = 1$ becomes basic random projection algorithm:

$$(AP): \quad x_{k+1} = \prod_{X_{\xi_k}} (x_k)$$

- ► For $X_{\xi} = \{x : a_{\xi}^T x = b_{\xi}\}$ AP becomes Kaczmarz algorithm
- If sets X_ξ satisfy linear regularity μdist(x, X) ≤ E [dist(x, X_ξ)], then RSC holds for CFP.
- Clearly, RL always holds for CFP, with M = 0 and L = 1.
- Hence, from previous theory recover linear convergence of AP.

N, Richtarik, Patrascu, Randomized projection methods for convex feasibility problems, Siopt, 2018 20.8

General convex feasibility with functional constraints

Consider convex feasibility problem (in functional constraints form):

find $x \in X \equiv \{x \in X_0 : f_-(x,\xi) \le 0 \quad \forall \xi \in \Omega\}$

equivalently written as finite/infinite intersection of sets

find $x \in X \equiv (\cap_{\xi \in \Omega} X_{\xi}) \cap X_0$

where $X_{\xi} = \{x : f_{-}(x,\xi) \leq 0\}$. Note that if X_{ξ} not described by functional constraints we can just define $f_{-}(x,\xi) = \text{dist}^{p}(x,X_{\xi})$, with $p = 1 \lor 2$ and $X_{0} = \mathbb{R}^{n}$. Define a stochastic convex problem:

 $f(x,\xi) = \max^{p}(0, f_{-}(x,\xi)) \implies \min_{x \in \mathbb{R}^{m}} f(x) \ (\equiv \mathsf{E}[f(x,\xi)])$

Lemma 1: if X_0 compact and $f_-(\cdot,\xi)$ are Lipshitz or with gradient Lipschitz, then RL holds with M = 0, i.e. $Lf(x) \ge \mathbf{E}[\|\nabla f(x,\xi)\|^2]$.

Lemma 2: if $f_{-}(\cdot,\xi)$ satisfy linear regularity $\overline{\mu}$ dist² $(x,X) \le f(x)$ for all $\forall x \in X_0$, then RSC holds, i.e. $f(x) \ge \frac{\mu}{2} ||x - x^*||^2$.

Remark: Linear regularity holds e.g. for polyhedral sets $f_{-}(x,\xi) = a_{\xi}^{T}x - b_{\xi}$ or more general under Slater type condition.

Convex feasibility with functional constraints cont.

Consider convex feasibility problem (in functional constraints form): find $x \in X \equiv \{x \in X_0 : f_-(x,\xi) \le 0 \quad \forall \xi \in \Omega\}$ reformulated as a stochastic convex problem:

 $f(x,\xi) = \max^{p}(0, f_{-}(x,\xi)) \implies \min_{x \in \mathbb{R}^{m}} f(x) \ (\equiv \mathsf{E}[f(x,\xi)])$

Consider Polyak's stochastic (sub)gradient algorithm:

$$\mathbf{x}_{k+1} = \mathbf{\Pi}_{X_0} \left[\mathbf{x}_k - \alpha \frac{f(\mathbf{x}_k, \xi_k)}{\|\mathbf{g}_k\|^2} \, \mathbf{g}_k \right]$$

where $g_k \in \partial f(x_k, \xi_k)$ if $f(x_k, \xi_k) > 0$ and $d_k \equiv d \neq 0$, otherwise. Theorem

Assume X_0 compact, $f_-(\cdot,\xi)$ are Lipshitz or with gradient Lipschitz, and satisfying linear regularity, then linear converge:

$$\mathsf{E}\left[\text{dist}^2(x_k,X)\right] \leq (1-q)^k \text{ dist}^2(x_0,X).$$

N, Nedich, Random minibatch subgradient algorithms for convex feasibility problems, CDC, 2019, o c

Convex problems with functional constraints

After investigating feasibility problems, it is also natural to consider on top of intersection of sets some objective function:

$$\min_{x\in X_0} f(x) \quad \text{s.t.} \quad x\in \cap_{\xi\in\Omega} X_{\xi}$$

We assume X_{ξ} have functional representation, thus feasible set is given by finite intersection of convex sets of the form:

$$X = X_0 \cap \left(\cap_{\xi \in \Omega} X_{\xi} \right)$$
, with $X_{\xi} = \{ x : f_-(x,\xi) \leq 0 \}$

- This model have appeared in Facchinei's talk today ("optimization problems with complex geometry").
- Many algorithms for solving this general problem:
 - Lagrangian methods: Hestenes'69,Sabach et al'18,Combettes et al'11,Eckstein'93,Rockafellar'76,...
 - Linearization methods: Nesterov'04, Teboulle et al'10, Drusvyatskiy et al'16, Bolte et al'18, Salzo&Villa'12,...
- Usually work with all $f_{-}(x,\xi) \implies$ subproblem is difficult!

Assumptions

We aim at solving problems with complex geometry (m large):

$$\min_{x\in X_0} f(x)$$
 s.t. $f_-(x,\xi) \leq 0 \ \forall \xi\in \Omega$

- Assume f and constraint functions f₋(·, ξ) convex and nonsmooth
- Objective function f is μ restricted strongly convex (RSC)
- Subgradients of f and $f_{-}(\cdot,\xi)$ uniformly bounded on X_0 :

 $\|g_f(x)\| \leq M_f, \|g_{\xi}(x)\| \leq M \quad \forall x \in X_0$

- ► If X_{ξ} simple for projection, then one may choose an alternative equivalent description of the constraint sets by letting $f_{-}(x,\xi) = \text{dist}(x,X_{\xi})$, then $g_{\xi}(x) = \frac{x \prod_{X_{\xi}}(x)}{||x \prod_{X_{\xi}}(x)||} \in \partial f_{-}(x,\xi)$
- However, our approach allows to tackle "complicated" sets
 Assume linear regularity for sets (f(x, ξ) = max(0, f_-(x, ξ))): μ · dist²(x, X) ≤ E [f(x, ξ)] ≡ f(x) ∀x ∈ X₀

Subgradient with minibatch feasibility updates

Our method takes:

- one subgradient step for the objective function
- ▶ followed by $\tau = |J_k|$ feasibility updates (choose $J_k \subset [m], J_k \sim \mathbf{P}$)
- feasibility updates are taken in parallel or sequential!

$$\begin{aligned} \mathbf{v}_k &= \Pi_{X_0}(x_k - \alpha_k g_f(x_k)) \\ z_k^i &= \mathbf{v}_k - \beta_k \frac{f(\mathbf{v}_k, i)}{\|d_k^i\|^2} d_k^i \quad \forall i \in J_k \\ x_{k+1} &= \Pi_{X_0}(\bar{z}_k), \quad \text{with } \bar{z}_k = \frac{1}{\tau} \sum_{i=1}^{\tau} z_i \end{aligned}$$

- Here, $g_f(x_k) \in \partial f(x_k)$ and $d_k^i \in \partial f(v_k, i)$
- Do not require projections, just subgradient evaluation of g_i
- ▶ Variants of this algorithm for convex case and $|J_k| = 1$ considered in Polyak'69, Nedich'11, Nesterov'15 $\rightarrow O(1/\sqrt{k})!$
- ► Question: minibatch setting influences convergence rate?

Convergence rates

Story is long, but we get some recurrence relation in expectation that allows to obtain convergence rates:

- Consider stepsizes $\alpha_k = \frac{4}{\mu(k+1)}$ and extrapolated β_k
- Define average sequence $\hat{x}_k = 1/S \sum_{j=0}^{k-1} (j+1)^2 x_j$

Theorem (Sublinear convergence O(1/k))

Under above settings, average sequence \hat{x}_k generated by parallel/sequential subgradient method with random minibatch feasibility updates converges as:

$$\mathsf{E}\left[\textit{dist}_X(\hat{x}_k)\right] \leq \mathcal{O}\left(\frac{1}{c_\tau k}\right), \quad \mathsf{E}\left[|f(\hat{x}_k) - f^*|\right] \leq \mathcal{O}\left(\frac{1}{k} + \frac{1}{c_\tau k}\right)$$

feasibility estimate depends explicitly on batchsize τ via c_τ
 suboptimality estimate contains a term not depending on τ

N, Nedich, Random minibatch subgradient algorithms for convex problems with functional constraints, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conclusions

This talk:

- Convergence analysis of stochastic first order methods (SPG & SPP) under general assumptions
- Cover important functional classes: functions with bounded/ Lipschitz (sub)gradients & restricted strong convexity
- Convergence rates for constant/variable stepsizes
- Derive conditions for linear convergence (necessary&sufficient)
- Extension to convex feasibility problems (linear convergence)
- Extension to convex problems with many functional constraints

Future work:

- ▶ More general stochastic models: $\min_{x \in \mathbb{R}^m} \mathbf{E} [f(x, \xi) + g(x, \xi)]$
- Using accelerated gradient schemes/second-order information
- Parallel and asynchronous implementations

References

- Necoara, Richtarik, Patrascu, Randomized projection methods for convex feasibility problems: conditioning and convergence rates, SIOPT, 2019.
- Necoara, Convergence of stochastic first order methods for composite convex optimization, Tech. Rep., 2018.
- Nedich, Necoara, Random minibatch subgradient algorithms for convex problems with functional constraints, Tech. Rep., 2019.
- Necoara, Nedich, Random minibatch subgradient algorithms for convex feasibility problems, CDC, 2019.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00