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Motivation
I General stochastic optimization problem:

min
x∈Rn

E [f (x , ξ)] + g(x)

I Standard assumptions:
I f (convex) function s.t. f (x) = E [f (x , ξ)] & g convex fct.
I f is Lipschitz function or has Lipschitz gradient

I Many applications - computation of parameters for a system
designed to make decisions based on yet unseen data
(statistics, learning, estimation and control)

I “Almost all” learning problems can be formulated as above:
I loss/fitting function f (x) = E [f (x , ξ)] with ξ random variable
I Empirical risk minimization (finite sum): f (x)= 1

m

∑m
i=1f (x , ξi )

I g regularizer (avoid overfitting, impose sparsity, or constraints)

I Solved “almost exclusively” by first order methods

I Stochastic (minibatch) first order methods have become de
facto algorithmic choice for large-scale learning!



Algorithmic solution - stochastic case

General stochastic optimization problem:

min
x

f (x) + g(x) (:= E [f (x , ξ)] + g(x))

Assume g admits a tractable proximal operator :

proxαg (x) = arg min
y∈Rm

g(y) +
1

2α
‖y − x‖2.

Basic method - proximal gradient method:

(PG ) : xk+1 = proxαkg (xk − αk∇f (xk))

I PG requires access to full gradient; e.g. in finite sum case we

need to compute a large sum ∇f (x) = 1
m

m∑
i=1
∇f (x , ξi )

I difficult to implement when m large or data arrives in streams

I αk is global stepsize (learning rate) - difficult to compute



Algorithmic solution - stochastic case cont.

Stochastic convex optimization problem:

min
x

f (x) + g(x) (:= E [f (x , ξ)] + g(x))

Standard settings:

I function f (x) = E [f (x , ξ)] convex (random variable ξ ∈ Ω)

I access to either unbiased stochastic estimate of gradient of f :

∇f (x ; ξ) s.t. ∇f (x) = E[∇f (x ; ξ)],

I or access to stochastic estimate of proximal operator of f :

proxαf (·,ξ)(x) = arg min
y∈Rm

f (y , ξ) +
1

2α
‖y − x‖2.

(assuming each f (·, ξ) admits a tractable proximal operator)



Existing work
Convex optimization problem:

F ∗ = min
x∈Rm

F (x) (= E [f (x , ξ)] + g(x))

Since proximal gradient requires full information → use simple
methods (mixing optimization and statistics):

I Stochastic gradient descent (g indicator function) has bee
analyzed separately: for Lipschitz functions (Nedich &
Bertsekas ’00); for functions with Lipschitz gradient (Moulines
& Bach ’11) ⇒ no common analysis!

I Stochastic proximal gradient (g general convex function) has
been analyzed under more conservative assumptions: e.g.
gradient Lipschitz with bounded variance (Rosasco et al ’14)

I Stochastic proximal point has been analyzed for g ≡ 0 and
gradient Lipschitz (Boyd ’16, N’17) ⇒ no general analysis!

I Convergence analysis for general g is partial/missing

I Most convergence results are for variable stepsize αk = c/k.



Algorithmic solution - stochastic case cont.

Stochastic convex optimization problem:

F ∗ = min
x

F (x) (:= E [f (x , ξ)] + g(x))

I Denote X ∗ set of optima and for given x define x∗ = ΠX∗(x)

I We provide unifying analysis under more general assumptions

Assumption: (restricted) Lipschitz type condition:

(RL) : M + L(F (x)− F ∗) ≥ Eξ[‖∇f (x , ξ) + ∂g(x)‖2] ∀x

Assumption: (restricted) strong convexity type condition (N’15):

(RSC ) : F (x)− F ∗ ≥ µ

2
‖x − x∗‖2 ∀x .

⇓
Remark - (RL)/(RSC) covers several important functional classes:

I RL - class of Lipschitz functions or with Lipschitz gradients

I RSC - larger class than strong conv. (f (x) = h(Ax) + cT x)



Stochastic first order methods

Stochastic convex optimization problem:

F ∗ = min
x

F (x) (:= E [f (x , ξ)] + g(x))

Stochastic proximal gradient (SPG) method (for g = 0 we
obtain Stochastic Gradient Descent (SGD) method) - sample ξ:

xk+1 = proxαkg (xk − αk∇f (xk , ξk))

Stochastic proximal point (SPP) method - sample ξ:

xk+1/2 = proxαk f (·,ξk )(xk) and xk+1 = proxαkg (xk+1/2)

I SPG/SPP have simple iteration: require evaluation of
“partial” ∇f (xk , ξk)/proxαk f (·,ξk ), not entire gradient ∇f or
entire prox operator proxαf → m times cheaper!

I SPG/SPP adequate for applications - data arrive in streams

I αk positive stepsize (learning rate) matters for SPG/SPP



Stochastic first order methods

Stochastic proximal gradient (SPG) - sample ξ:

xk+1 = proxγkg (xk − αk∇f (xk , ξk))

where αk strictly positive stepsizes (learning rates).

I learning rate αk matters for SPG

Question: When stochastic first order methods converge linearly?



Convergence rates of stochastic FOM - constant stepsize

Theorem (Descent Inequality)

Assume convexity and Lipschitz-like (sub)gradient condition RL
hold. Then, the following recursive inequality holds for SPG/SPP:

E
[
‖xk+1 − x∗k+1‖2

]
≤ E

[
‖xk − x∗k‖2

]
− αk(2− αkL)E [F (xk)− F (x∗k )] + α2

kM
2.

Define: R0 = ‖x0 − x∗0‖

Theorem (Constant stepsize)

SPG/SPP with αk≡α<2/L under RL&RSC has “linear” conv.:

E
[
‖xk − x∗k‖2

]
≤
(

1− µα +
µLα2

2

)k

R2
0 +

2M2

µ(2− Lα)
α.

I linear convergence to noise dominated region whose radius∼α
I if M = 0 pure linear convergence!



Stochastic FOM - necessary & sufficient cond. linear conv.

Theorem (Sufficient)

SPG/SPP with αk ≡ α < 2/L under RL & RSC has linear conv.:

E
[
‖xk − x∗k‖2

]
≤
(

1− µα +
µLα2

2

)k

R2
0 +

2M2

µ(2− Lµ)
α.

I recall RL: M + L(F (x)− F ∗) ≥ Eξ[‖∇f (x , ξ) + ∂g(x)‖2]

I linear convergence to noise dominated region whose radius∼ α
I if M = 0 pure linear convergence!

Theorem (Necessary)

Assume g ≡ 0 and f has unique minimizer satisfying RSC. Assume
further that iterates of SPG/SPP with constant stepsize satisfy:

Eξk [‖xk+1 − x∗k+1‖2] ≤ c · ‖xk − x∗k‖2, with c < 1.

Then, condition RL holds with M ≡ 0! (i.e. f satisfies
L(f (x)− f ∗) ≥ Eξ[‖∇f (x , ξ)‖2])



Convergence rates - variable stepsize

Theorem (Sublinear convergence)

SPG/SPP with variable stepsize αk = min
(

1
L ,

c
k+1

)
for some

c > 0 under RL & RSC has sublinear convergence O(1/k):

E
[
‖xk − x∗k‖2

]
≤ C (k0, c ,R0)

k
if cµ ≥ 2

E
[
‖xk − x∗k‖2

]
≤ C (k0, c ,R0)

k0.5cµ
if cµ < 2

Remark 1: we can choose a larger stepsize αk , with γ ∈ (0, 1):

αk = min

(
1

L
,

c

(k + 1)γ

)
=⇒ O

(
1

kγ

)
convergence rate

Remark 2: Note that algorithm SPG is SPP scheme, but applied to
the linearization of function f (·, ξ) at x :

lf (y ; x , ξ) = f (x ; ξ) + 〈∇f (x ; ξ), y − x〉 ↔ f (y ; ξ)

Thus, we expect faster convergence and more robustness for SPP!
Necoara, On the convergence rates of stochastic first order methods, Tech. Rep., 2018



Markowitz portfolio opt. - real data

min
x∈Rm

E
[
(aTξ x − b)2

]
+ 1X (x)

I X = {x : x ≥ 0, eT x = 1} - easy to project O(m logm) flops
I We compare SPG and SPP for learning rate αk=min(1/L, c/k),

with c = 0.3 & 0.6. Dataset Fama and French (FF100, with
100 portfolios for 23.647 days)
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I Plot value of objective function over datapoints in test
partition Ftest along iterations - one pass through data

I SPP is usually faster and more robust w.r.t. c than SPG



Application: convex feasibility
I SPG/SPP convergence linearly under restricted Lipschitz (RL

with M =0) & restricted strong convexity (RSC)
I Particular case of X represented as intersection of simple sets:

find x ∈ ∩ξ∈ΩXξ

reformulated as stochastic convex problems

(CFP) : min
x∈Rm

E
[
‖x − ΠXξ

(x)‖2
]
∨ E

[
1Xξ

(x)
]

I SPG (first formulation) ∨ SPP (second formulation) with
α = 1 becomes basic random projection algorithm:

(AP) : xk+1 = ΠXξk
(xk)

I For Xξ = {x : aTξ x = bξ} AP becomes Kaczmarz algorithm
I If sets Xξ satisfy linear regularity µ̄dist(x ,X ) ≤ E [dist(x ,Xξ)],

then RSC holds for CFP.
I Clearly, RL always holds for CFP, with M = 0 and L = 1.
I Hence, from previous theory recover linear convergence of AP.

N, Richtarik, Patrascu, Randomized projection methods for convex feasibility problems, Siopt, 2018



General convex feasibility with functional constraints
Consider convex feasibility problem (in functional constraints form):

find x ∈ X ≡ {x ∈ X0 : f−(x , ξ) ≤ 0 ∀ξ ∈ Ω}
equivalently written as finite/infinite intersection of sets

find x ∈ X ≡ (∩ξ∈ΩXξ) ∩ X0

where Xξ = {x : f−(x , ξ) ≤ 0}. Note that if Xξ not described by
functional constraints we can just define f−(x , ξ) = distp(x ,Xξ),
with p = 1 ∨ 2 and X0 = Rn. Define a stochastic convex problem:

f (x , ξ) = maxp(0, f−(x , ξ)) =⇒ min
x∈Rm

f (x) (≡ E [f (x , ξ)])

Lemma 1: if X0 compact and f−(·, ξ) are Lipshitz or with gradient
Lipschitz, then RL holds with M = 0, i.e. L f (x) ≥ E[‖∇f (x , ξ)‖2].

Lemma 2: if f−(·,ξ) satisfy linear regularity µ̄dist2(x ,X )≤ f (x) for
all ∀x ∈ X0, then RSC holds, i.e. f (x) ≥ µ

2‖x − x∗‖2.

Remark: Linear regularity holds e.g. for polyhedral sets
f−(x , ξ) = aTξ x − bξ or more general under Slater type condition.



Convex feasibility with functional constraints cont.

Consider convex feasibility problem (in functional constraints form):

find x ∈ X ≡ {x ∈ X0 : f−(x , ξ) ≤ 0 ∀ξ ∈ Ω}
reformulated as a stochastic convex problem:

f (x , ξ) = maxp(0, f−(x , ξ)) =⇒ min
x∈Rm

f (x) (≡ E [f (x , ξ)])

Consider Polyak’s stochastic (sub)gradient algorithm:

xk+1 = ΠX0

[
xk − α

f (xk , ξk)

‖gk‖2
gk

]
where gk ∈ ∂f (xk , ξk) if f (xk , ξk) > 0 and dk ≡ d 6= 0, otherwise.

Theorem
Assume X0 compact, f−(·, ξ) are Lipshitz or with gradient
Lipschitz, and satisfying linear regularity, then linear converge:

E
[
dist2(xk ,X )

]
≤ (1− q)k dist2(x0,X ).

N, Nedich, Random minibatch subgradient algorithms for convex feasibility problems, CDC, 2019



Convex problems with functional constraints
After investigating feasibility problems, it is also natural to
consider on top of intersection of sets some objective function:

min
x∈X0

f (x) s.t. x ∈ ∩ξ∈ΩXξ

We assume Xξ have functional representation, thus feasible set is
given by finite intersection of convex sets of the form:

X = X0 ∩ (∩ξ∈ΩXξ)) , with Xξ = {x : f−(x , ξ) ≤ 0}

I This model have appeared in Facchinei’s talk today
(“optimization problems with complex geometry”).

I Many algorithms for solving this general problem:
I Lagrangian methods: Hestenes’69,Sabach et al’18,Combettes

et al’11,Eckstein’93,Rockafellar’76,...
I Linearization methods: Nesterov’04, Teboulle et al’10,

Drusvyatskiy et al’16, Bolte et al’18, Salzo&Villa’12,...

I Usually work with all f−(x , ξ) =⇒ subproblem is difficult!



Assumptions

We aim at solving problems with complex geometry (m large):

min
x∈X0

f (x) s.t. f−(x , ξ) ≤ 0 ∀ξ ∈ Ω

I Assume f and constraint functions f−(·, ξ) convex and
nonsmooth

I Objective function f is µ restricted strongly convex (RSC)
I Subgradients of f and f−(·, ξ) uniformly bounded on X0:

‖gf (x)‖ ≤ Mf , ‖gξ(x)‖ ≤ M ∀x ∈ X0

I If Xξ simple for projection, then one may choose an alternative
equivalent description of the constraint sets by letting

f−(x , ξ) = dist(x ,Xξ), then gξ(x) =
x−ΠXξ

(x)

‖x−ΠXξ
(x)‖ ∈ ∂f−(x , ξ)

I However, our approach allows to tackle “complicated” sets
I Assume linear regularity for sets (f (x , ξ) = max(0, f−(x , ξ))):

µ · dist2(x ,X ) ≤ E [f (x , ξ)] ≡ f (x) ∀x ∈ X0



Subgradient with minibatch feasibility updates
Our method takes:

I one subgradient step for the objective function

I followed by τ=|Jk | feasibility updates (choose Jk⊂ [m],Jk∼P)

I feasibility updates are taken in parallel or sequential!

vk = ΠX0(xk − αkgf (xk))

z ik = vk − βk
f (vk , i)

‖d i
k‖2

d i
k ∀i ∈ Jk

xk+1 = ΠX0(z̄k), with z̄k =
1

τ

τ∑
i=1

z ik

I Here, gf (xk) ∈ ∂f (xk) and d i
k ∈ ∂f (vk , i)

I Do not require projections, just subgradient evaluation of gi
I Variants of this algorithm for convex case and |Jk | = 1

considered in Polyak’69, Nedich’11, Nesterov’15 → O(1/
√
k)!

I Question: minibatch setting influences convergence rate?



Convergence rates

Story is long, but we get some recurrence relation in expectation
that allows to obtain convergence rates:
I Consider stepsizes αk = 4

µ(k+1) and extrapolated βk

I Define average sequence x̂k = 1/S
∑k−1

j=0 (j + 1)2xj

Theorem (Sublinear convergence O(1/k))

Under above settings, average sequence x̂k generated by
parallel/sequential subgradient method with random minibatch
feasibility updates converges as:

E [distX (x̂k)] ≤ O
(

1

cτk

)
, E [|f (x̂k)− f ∗|] ≤ O

(
1

k
+

1

cτk

)
.

I feasibility estimate depends explicitly on batchsize τ via cτ
I suboptimality estimate contains a term not depending on τ

N, Nedich, Random minibatch subgradient algorithms for convex problems with functional constraints, 2019



Conclusions

This talk:

I Convergence analysis of stochastic first order methods (SPG
& SPP) under general assumptions

I Cover important functional classes: functions with bounded/
Lipschitz (sub)gradients & restricted strong convexity

I Convergence rates for constant/variable stepsizes

I Derive conditions for linear convergence (necessary&sufficient)

I Extension to convex feasibility problems (linear convergence)

I Extension to convex problems with many functional
constraints

Future work:

I More general stochastic models: minx∈Rm E [f (x , ξ) + g(x , ξ)]

I Using accelerated gradient schemes/second-order information

I Parallel and asynchronous implementations
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