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ABSTRACT. In this paper, we axtend the methordology developed for Support
Vector Machines (SVM) using £3-norm (£3-SVM) to the more geeeral case
of £y norma with p 2 1 (£,-SVM). The resulting primal and dual problems
are formulated as mathematical programming problems; namely, in the primal
s, an 3 socond order cone ptimization problem and in the dual cue, au 3

polynemial opti problem imvolving Seal.
iy of the primal peoblom i obaained via gonteal sratuloremations boed
on the expansion of functionals in Schauder spaces. The cncept of Kernel
funetion, widely applied in £3-SVM, is extended o the more general case by
definting 2 new operator called multidimensional Kermel. This object gives rise

g00d behavior in terms of standard indicators such 3 accuracy inder and its
ability b classify pew dita.

1. INTRODUCTION

Tn supervised classification, given a finite sot of ohjects partitioned into classes,
the goal is to build & mechanism, based on current available information, for clas-
sifying new objects into these classes. Due to their successful applications in the
last as for instance in writing recognition [I], insurance compunies (to
determine whether an applicant is a high insurance risk or not) [0, banks (to
decide whether an applicant is  good eredit risk or not) [, medicine (to deter-
mine whether a tumor is benigme or maligne) [32) 28], ete; support vector machines
{SVMs) have become a popular methodology for supervised clusification [I].
Suppart veetor machine (SVM) is a mathematical programming tool, originally
developed by Vapnik [I5 38 and Cortes and Vapnik [TT], which consists in finding
a hyperplano Lo scparate a sot of data into bwo classes, so that the distance from
the hyperplane to the nearcst point of cach class is maximized. In order to do
that, the standard SVM solves an optimization problem that accounts for both

010 Mathematics Subject Classification. 62H30, 500026, 5145, 15A60.
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Optimal arrangements of hyperplanes for multiclass
classification
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ABSTRACT. In this paper, we present a novel approach to construct multi-

lass clasifiers by means of arr of hyperplanes. We propose different
mixed integer non knear programming formulations for the problem by using
extensions of widely used messures for misclassifying observations. We prove
that kernel tools can be extended to these models. Some strategies are de-
tailed that help solving the associated mathematical programming problems
maore efficiently. An extensive battery of experiments has been run which re-
veal the powerfulness of aur proposal in contrast to other previously proposed
methods.

1. INTRODUCTION

Support Vector Machine (SVM) is a widely-used methodology in supervised
binary classification, firstly proposed by Cortes and Vapnik [6]. Given a set of
data together with a label, the general idea under the SVM methodologies is to
find a partition of the feature space and an assignment rule from data to cach
of the cells in the partition that maximizes the separation between the classes
of a training sample and that minimizes certain measure for the misclassifying
errors. At that point, convex optimization tools come into scene and the shape
of the obtained dual problem allows one to project the data out onto a higher
dimensional space where the separation of the classes can be more adequately
performed, but whose problem can be solved with the same computational effort
that the original one. This fact is the so-called kernel frick, and has motivated
the use of this taol with success in a wide range of applications [2| [T, [T, 21, [25].

Most of the SVM praposals and extensions concern instances with only two
different classes. Some extensions have been proposed for this case by means of
choosing different measures for the separation between classes [12, 13 5], incor-
porating feature selection tasks [19], regularization strategies [18], etc. However,
the analysis of SVM-based methods for instances with more than two classes
has been, from our point of view, only partially investigated. To construct a
k-label classification rule for k = 2, one is provided with a training sample of
observations {x1,....2n} C R? and labels for each of the observations in such
a sample, (y m) € {1 k}. The goal is to find a decision rule which is
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This paper presents a family of methods for locatingfitting hyperplanes with respect to a given set of
points. We introduce a general framework for a family of aggregation criteria, based on ordered weighted
operators, of different distance-based errors. The most popular methods found in the specialized liter-
ature, namely least sum of squares, least absolute deviation, least quantile of squares or least trimmed
sum of squares among many others, can be cast within this family as particular choices of the errors and
the aggregation criteria. Unified mathematical programming formulations for these methods are provided
and some interesting cases are analyzed. The most general setting give rise to mixed integer nonlinear
programming problems. For those situations we present inner and outer linear appraximations to as-
sess tractable solution procedures. It is also proposed a new goodness of fitting index which extends the
classical coefficient of determination and allows one to compare different fitting hyperplanes. A series of
illustrative examples and extensive computational experiments implemented in R are provided to show
the applicability of the proposed methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of locating hyperplanes with respect to a given set
of point is well-known in Location Analysis (LA) Schobel (1999).

(30_3‘, , Ed) that minimizes some measure of the deviation of
the data with respect to the hyperplane it induces, 'H{.@):{z e
®A: By + Ty Bz = O} For a given point x « &Y, we define the
residual with respect to a generic x as a mapping &y : B4+ - &,

This problem is closely related to another common question in that maps any set of coefficients 8= (Bq..... Ba) cRH', into a

Data Analysis (DA): to study the behavior of a given set of data measure £y(8) that

the deviation of the given point x
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ARTICLE INFO ABSTRACT
Anticle history: A new combinatorial model for clustering is proposed for all applications in which individual and rela-
Received 18 June 2016 tional data are available. Individual data refer to the intrinsic features of units, they are stored in a matrix
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‘Available online xxx D, and are the typical input of all clustering algorithms proposed so far. Relational data refer to the ob-

served links between units, representing social ties such as friendship, joint participation to social events,

Keywords: and so on. Relational data are stored in the graph G = (V. E). and the data available for clustering are the
Combinatorial optimization triplet G = (V. E. D), called artributed graph. Known clustering algorithms can take advantage of the re-
Clustering lational structure of G to redefine and refine the units membership. For example, uncertain membership
Clique partitioning of units to groups can be resolved using the sociological principle that ties are more likely to form be-
Integer programming tween similar units. The model proposed here shows how to take into account the graph information,

combining the clique partitioning objective function (a known clustering methodology) with connectiv-
ity as the structural constraint of the resulting clusters. The model can be formulated and solved using
Integer Linear Programming and a new family of cutting planes. Moderate size problems are solved, and
heuristic procedures are developed for instances in which the optimal solution can only be approximated.
Finally, tests conducted on simulated data show that the clusters quality is greatly improved through this
methodology.
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Data

5¢

Random sample of size n

"I d predictor variables
neRY i=1,...,n

I One target variable with k& classes

i €{¥i1,. -, Y}t t=1,...















Support Vector Machine (SVM)
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Support vector machines

Given a set of points {z1,...,z,} C R?, each of them labeled with a class
yi € {—1,+1}, find an hyperplane in R? that separates both classes.



Support vector machines

Given a set of points {z1,...,z,} C R?, each of them labeled with a class
yi € {—1,+1}, find an hyperplane in R? that separates both classes.

Find H = {z € R? : w'z + b = 0} such that:

"X -1 Class belongs to {z : w’z + b < 0},
" +1 Class belongs to {z : w'z + b > 0},




Support Vector Machines

SVM (Vapnik & Chervonenkis '63; Vapnik & Cortes '95): Hyperplane such
that the distance between the classes through H is maximized:



Support Vector Machines

SVM (Vapnik & Chervonenkis '63; Vapnik & Cortes '95): Hyperplane such
that the distance between the classes through H is maximized:.




Support Vector Machines

I Consider H and shifted hyperplanes
Hi={z :w'z+b=1} and
Hoy ={z:w'z+b=-1}

I Each observation should verify
yi(w'z; + b) > 1 (Separation).

" Choose a norm || - || to measure the
distances between both hyperplanes,
then (Mangasarian, 99):

2
D(’H1,’H—1) =
lleoll
(where || - ||+ is the dual norm of || - ||).
I Solve
2 _ . 1
max = min Z|lwl.

vwin+5)>1 |[wlls T y(winre>1 2



Support Vector Machines

If points are non-linearly separable case: soft margin constraints:



Support Vector Machines

If points are non-linearly separable case: soft margin constraints:
¢ = max{0,1 — yi(w'z; + b)} (Hinge Loss)

min [|w|. +C) &
=1
s.t. yi(wta:,- +b)>1-¢&,Vi=1,...,n,
&E>0Ve=1,...,n,

w€eRY b ER.

Minimization of the risk incurred applying SVM to outsample
data and the one of classifying the insample data.



Kernel trick

. X — F
2 ) ®
® e ©
°
1 ® ®




Kernels

Let ¢ : R? » R”. Can we manage the dual problem without the explicit
knowledge of $?

L) (d




Kernels

Let ¢ : R? » R”. Can we manage the dual problem without the explicit
knowledge of $? For the Euclidean case, YES:

max — — Za ok Y ye P (%) X’“)+Za’

i=1 k=1

s.t. Zaiyi =0,
=il
0<a;<C, Vi=1,...,n.
Only the products Kj; := ®(x;.)" - $(xz.) are needed! (Kernel trick)

Let K : R x R* — R such that (K(xi.,x]-.)) > 0. Then, there
ij

exists ® : RY —» R” with K(x,.,%;.) = ®(x:.)" - ®(xz.).

(Mercer, 1909)

Also, the optimal £5,-SVM is ZafyiK(xi., z)+b* =0,Vz e R%

1=1
NO NEED TO KNOW & NOT EVEN D.



e £, SVM and Multidimensional kernels



£,-SVM

-
N

Standard SVM = £,-SVM: Successfully applied to classify data of
different nature (Finance, Medicine, Biology, etc).

¢1 and £ explored (Bradley & Mangasarian, 1998; Pedroso & Murata,
2001, Bennet and Bredensteiner 2000).

Geometry under £,-SVMs (Ikeda & Murata; 2005; Liu et. al, 2007).
Different norms for different classes (£,-SVM-£;).
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£,-SVM

-
N

Standard SVM = £,-SVM: Successfully applied to classify data of
different nature (Finance, Medicine, Biology, etc).

¢1 and £ explored (Bradley & Mangasarian, 1998; Pedroso & Murata,
2001, Bennet and Bredensteiner 2000).

Geometry under £,-SVMs (Ikeda & Murata; 2005; Liu et. al, 2007).
Different norms for different classes (£,-SVM-£;).

Our Contirbution:

.
N

-
N

<

I« SOCP Formulations for the primal and dual problems, for £,-SVMs
(p21).

I« Extend the theory under the Kernel Trick through
Multidimensional Kernels.

I Apply £,-SVM to real standard benchmarking problems.



£,-SVMs

Let ¢ = > 1, with ,s € Z, and ged(r, s) = 1.

We are given a set of n points in R, x, and their classes y € {-1,1}".
Let p such that % + % =1 Alg* =1 - llp-

n
p' =min [lwl}+CY &
1—=1
st yi{w'x, +b) >1—¢, Vi=1,...,n,

(¢, — SVM)
¢>0,w eRY,BER



£,-SVMs

min ¢+ Ci&

=il

s.t. yi(wtx,-. +b)>1-¢&,
t > ||wllp,

Vi=1,...,n,
¢>0,w ERYBER
— v <wj; < v, Vy=1,...,4d,
d
p:r1521 t 2 Zujy
>l = s
uj t > vi,

vy =1,...,4d,
vj=1,...,d,

Polynomial constraints in the form w/~° > v/ can be explicitly and
efficiently rewritten as SOC-constraints (B., Puerto, ElHaj, 2014).



The Dual Problem

n
min|jw|} + C Y &
i=1
s.t. yi(wtxi. +b) >1-¢&,
& >0,

Vi=1,...
Vi=1,...,n

3

(PRIMAL)



The Dual Problem

minflwlls + ¢ ¢

i=1

s.t. y,'(wtx,'. +b) >1-¢, Vi=1,..
& >0, Vi=1,..

Conic Dual is also SOCP.

1 1
max —_— —
o,u,8 pq qul

d n
) Z u; + Z a;
j=1 i=1

"nl
ST
Vy =1,
vy =1,

Vi=1,...

(PRIMAL)



The Dual Problem

min|jw|} + C Y &

=1
st oy(w'x,. +b)>1—§&, Yi=1,...,n, (PRIMAL)
& >0, Vi=1,...,n.

Reformulation the Lagrangean Dual is convenient:

q n
+> (LAG-DUAL)
1=1

d
1 1
o (pq - pq1> 5
=1
s.t.Zaiyi =0,
d=i

0<e; <C, Ve=1,...,n.

n
E ;Y Tij
=1




Alternative Dual Formulation

n d
Consider the arrangement { Z Q;YiTij = 0} and subdivide the space

j=1

1=1
into cells, such that each cell C' is univocally defined by the signs of the
expressions Z oYz sj, for g =1,...,d.

i=1



Alternative Dual Formulation

Consider the arrangement { Z QY Ty = 0}

1=1
into cells, such that each cell C' is univocally defined by the signs of the

d

j=1

expressions E oYz sj, for g =1,...,d.

i=1

(+, +

(= =)

and subdivide the space



Alternative Dual Formulation

Consider the arrangement { Z Q;YiTij = 0} and subdivide the space

7j=1
into cells, such that each cell C’ is univocally defined by the signs of the

expressions E oYz sj, for g =1,...,d.
.i:].
For each o in a cell:

r d n r d
= E S E aiyizy | = E ey y” E s;xz
=1 i—1 =1

YEN}

d n
E E Qi YiTis
j=1 |i=1

where ¢, = <(Z:l 1 71)) = M N; :={yeN": ZLI ¥ = a}.

YiyeeeyIn QELEEEE AT

Saj =58 <Za y,a:lj>

NOTE: For even r a single cell is enough.



Alternative Dual Formulation

For p € N, and sign-patterns of the cell, s:

max fi(a) := (plq - p‘71* ) Z c a”yh’Zij -i-Z:ozz

YEN

n
s.t. Zaiyi =0,
i—1

n
S5 Zaiyimﬂ Z 0, Vj = 1,. oo

0<ea; <C, Vi=1,...,n

b

d

(SOCHp

(s)



Optimal hyperplane from duals

Let & optimal for a subdivision:
For 4 such that 0 < &;y < C:

d n
1 - _ r—1
b= Yig — FZS&,J(Zalle‘:l]) 3310]
j=1 i=1
and the induced hyperplane is:
. d
=TT T, _
o1 Zﬂ o'y ZSaEJX_]vz] +b = 0.
7ENT_4 g=1

for all z € RY.



Kernels

"« Let ® : R — R”. Can we manage the dual problem without the
explicit knowledge of &7
I« Is there some extension of Mercer’s theorem to the case of ¢,-norm?



¢,-Kernels

We are given a data set [x] = (z1.,..., Zn.) together with their classification
patterns y = (y1,...,%n) and » € N.

Hy ={a €[0,C]": ) aiy: = 0}
i=1

Sz(R) := {s =(s1,...,8p) € {-1,1}7 :5; = sg(z aiyi®i(x:.)), a € R,Vj}.

=1

Definition

Given a transformation function, ® : R? - R”, a subdivision of Hy,
{Rk}rex, is said a suitable ®-subdivision of Hy if

Sa(Ri) = {sg,} for some sg, € {—1,1}" and for all k € K.



Given a suitable $-subdivision, {Rx}rex C 25, and (v, A) € N7 2,
A € {0, 1}, the operator

D
KX]rea(2) = D sk, j25(x)7#;(2)",Vz € R, Vk € K, (1)

j=1

is called a 7-order Kernel function of €. For k € K, K[X]r,,,A(2) is called
the k-th slice of the kernel function.

The separating hyperplane and the objective function can be rewritten for
the ®-transformed data using the Kernel function.



From Kernels to Tensors...

Given z € R?, and for any k € K, the kernel operator K[x]g, +,» induces a
symmetric r-order (n + 1)-dimensional real tensor namely
K* = (K¥ i, )% =1 With Kf ;. € R such that
Kk - K[X]Rk»’)’oxo(z) if i17'~'1i7“ < n+11
ot K[x]r,,y1,1(2) if there exists s € {1,..., 7} such that s = n + 1.

being (v0,A) = >.,_, &; with A =0and (y1,A) = ) ,_, e; with A =1.



and from Tensors to Kernels...

Let {Ri}rex be a subdivision of Hy and K¥, for k € K, be a r-order
(n + 1)-dimensional symmetric tensor such that each K* can be
decomposed as:

~

D
K'=) dyu® - 8y, VheK,
=1
and satisfying, either

@ r s even and P; ==y > 0, or
® 7 is odd and Y; = |¢ij| and for all k € K:

sg(Wi) =sg( > awi/bvi ), for alla € Re.
=1

Then, there ezists a transformation ®, such that {Rk}keic 15 a P-surtable
subdiviston of Hy and {]Kk}ke;c wnduces a r-order kernel function of ®.



and from Tensors to Kernels...

Let {Ri}rex be a subdivision of Hy and K¥, for k € K, be a r-order
(n + 1)-dimensional symmetric tensor such that each K* can be
decomposed as:

~

D
KF = ijv]@ v, Yk EK,
j=1
and satisfying, either
@ r s even and P; ==y > 0, or
® 7 is odd and Y; = |¢ij| and for all k € K:

sg(Wi) =sg( > awi/bvi ), for alla € Re.
=1

Then, there ezists a transformation ®, such that {Rk}keic 15 a P-surtable
subdiviston of Hy and {]Kk}ke;c wnduces a r-order kernel function of ®.

Yor even r: P tensors, B tensors, By tensors, diagonally dominated tensors,
positive Cauchy tensors, SOS tensors, ... verify the hyphoteses.



Avoiding kernels: Schauder Bases

Theorem (Lindenstrauss & Tzafriri '77)

The Banach space of continuous functions Cro(T) from a compact set
T C R? admits a Schauder basis.

For instance, B={z" : y € Nd}, the standard basis of multidimensional
monomials is a Schauder basis for this space. (also Bernstein or
trigonometric polynomials are Schauder bases).

Any continuous function & : T — R?

B(z) =Y 7z
3=1

with 77, E Rand z; € Bforany 7 =1,..., 0.



Avoiding kernels: Schauder Bases

Theorem (Lindenstrauss & Tzafriri '77)

The Banach space of continuous functions Cro(T) from a compact set
T C R? admits a Schauder basis.

For instance, B={z" : y € Nd}, the standard basis of multidimensional
monomials is a Schauder basis for this space. (also Bernstein or
trigonometric polynomials are Schauder bases).

Any continuous function & : T — R?

B(z) =Y 7z
3=1

with 77, E Rand z; € Bforany 7 =1,..., 0.

Strategy: Fix a truncation degree n and find the best polynomial
with degree up to 1 that separates the classes.




Experiments

Datasets (UCI repository):
cleveland: heart disease (303 obs., 13 features).

5¢

N

T housing: prices of Boston houses (303 obs., 13 features).

« gc: loan defaulters (1000 obs., 21 features)

¢

I colon: cancerous colon tissues (62 obs., 2002 features)
Models were coded in Python 3.6, and solved using Gurobi 7.51.
A 10-fold cross validation scheme is used and the Accuracy is reported.
H B[] R — RV, Its components, $[n],(z) = 27 for v € NZ, are the
monomials (in d variables) up to degree 7.
V207"

-~ d 5 =
B[] : RY — R, with $[n],(z) = eXP(_U”Z”g)ﬁ

, for z € RY,
for'yEN‘f]anda>O.



Experiments (®[7])

La [ L3 [2 L3

ACCT ACC™=* Time|ACC™ ACC™** Time|ACC™ ACC™** Time|ACC™ ACC™* Time

3]

cleveland dataset

85.11% 82.84% 0.01(85.11% 83.16% 0.01(85.15% 83.48% 0.01(85.33% 83.15% 0.01
94.02% 82.57% 0.44(93.58% 81.57% 0.40(93.33% 81.58% 0.04|93.35% 79.61% 0.41
99.34% T74.93% 5.49(99.41% 75.60% 2.87(99.67% 78.53% 0.14(99.67% 80.23% 2.65
99.67% 76.56% 28|99.67% 76.92% 22.5|99.74% 79.21% 0.47| 100% 78.60% 17.56

B W N

housing dataset

88.56% 85.36% 0.01[88.25% 85.16% 0.02]88.10% 84.36% 0.02][87.92% 83.35% 0.04
94.93% 78.85% 0.22(94.14% 80.03% 0.42(92.31% 80.02% 0.14(91.15% 81.38% 0.39
98.60% 80.95% 9.57(98.24% 80.00% 6.13|97.34% 79.81% 0.51|96.07% 78.84% 5.86
99.23% 79.99% 45.09|98.90% 77.78% 31.69|98.37% 78.63% 1.59|97.98% 78.43% 27.42

W R

german credit dataset

-

78.53% 76.20% 0.02(78.53% 76.20% 0.04|78.53% 76.20% 0.05(|78.54% 76.20% 0.04
93.03% 67.50% 0.92(93.04% 67.60% 2.50(92.98% 67.40% 0.50(|93.00% 67.70% 3.32
100% 71.90% 85.86| 100% 70.50% 94.12| 100% 70.20% 3.14| 100% 68.90% 98.58

w N

colon dataset

1| 100% 82.14% 20.3‘ 100% 80.48% 15.73‘ 100% 80.48% 0.05‘ 100% 80.48% 14.61




Experiments ($[n))

La

L3

[2

L3

o A ‘es’ T Test T
ACC™ ACC™* Time|ACC™ ACC™** Time|ACC™ ACCT*** Time[ACC™ ACCT*** Time

cleveland dataset

B W N R

85.15%
88.30%
92.15%
84.38%

83.16%
84.19%
80.87%
83.47%

85.11%
88.05%
92.12%
84.41%

0.01
0.24
4.91
19.57

83.16%
82.55% 0.28
81.54% 2.77
83.46% 12.83

0.01

85.33% 83.48%
86.72% 80.58%
92.41% 81.55%
84.71% 83.46%

85.22%
84.01%
92.59%
85.18%

0.01
0.04
0.13
0.19

83.48%
77.26%
81.20%

83.48%

0.01
0.24
2.54
15.51

housing

dataset

B W

88.56%
89.53%
94.01%
90.80%

85.36%
83.53%
80.03%
82.37%

88.25%
88.84%
93.30%
90.58%

0.01
0.25
4.47
14.43

85.16% 0.02
82.95% 0.48
79.82% 4.29
83.36% 20.98

88.10% 84.36%
87.42% 82.94%
91.50% 80.21%
88.95% 81.59%

87.53%
86.72%
90.36%
86.69%

0.02
0.11
0.25
0.17

84.71%
82.46%
79.95%
82.95%

0.04
0.66
3.05
12.2

german credit dataset

W

78.35%
77.29%
76.72%

79.00%
74.38%
76.75%

78.33%
77.83%
92.78%

0.02
2.96
57.01

78.88% 0.04
75.00% 2.37
79.00% 63.64

78.63%
74.44%
77.88%

78.25%
79.23%
96.36%

78.26%
81.15%
98.24%

0.05
0.45
2.75

78.75%
75.22%
76.57%

0.04
2.13
48.4

colon dataset (C' = 1)

100%

82.14%

20.3] 100%

80.48% 15.73] 100%

80.48%

0.05] 100%

80.48%

14.61
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Multiclass problem




One Vs All




One Vs All




One Vs All




One Vs All




One Vs One




One Vs One




One Vs One




One Vs One




Global: Weston-Watkins

k ) n
. w, Wy ¥
mn{ 382 4 0352 |
r=1 i=1 jZy;
st wy, T + wyo0 > wiTi + wjo + 2 —{i Vi=1,...,n, s €{L,..., kN

wr € R? wro ER Vr=1,...,k



Global: Weston-Watkins

k 7 n k -1 %
min{zw’ém_kcz:z:g?} (ratherthan<z wfw ) +OZZQ>

- . r - .
r=1 1=1 jA£Y; =1 Ay

=

st wy T +wyo > wimitwo+2—¢ Vi=1,...,n j€{l,...,kN\u

¢ >0 Vi=1,...,n 5 €{L,..., kX
wr €ER? w0 ER Vr=1,...,k



Global: Crammer-Singer

min{ wwr—l—C’Zfz}

s.t: w'yzzi+6y1]—w]’vzi21—§i Vi=1,...,n, €{l,...,k}
& >0 Vi=1,...,n
wr ER? wep ER Vr=1,...,k
dy; € {0,1} Vyi,j €4{1,...,k}



MCSVM: The model




Class assignment through cells




Separation between classes

max min {




Separation between classes

. 2 2
maxmind ———,..., ——
llwn ]2 llwm||2

. 1 2 1 2
m1nmax{§||w1||2,---,§||wm||2}



Error functions

max{0, min{1,1 — s.(z)(wiz 4+ wr)} if z is well
classified with
hr (x, y,’H) = respect to H

0 otherwise

1—s(z),(wiz + wr) if z is wrong classified
ho (a:, Y, 'H) _ with respect to H

0 otherwise



Error functions




Continuous variables




Binary variables

1 if w,f:v,- + wpo >0
>I‘tir: ’z:]_’ ,n,:r-_]_’
0 otherwise
1 if ¢ is assigned to
1
oz = Class s ,1=1, ,n’s:]_,

0 otherwise



Binary variables

0 if the class assigned to
coincides with y;

o\ E,‘ = 9
1 otherwise
1 if z; is well classified and
¥ hy = is the representative of z;

0 otherwise



MCSVM formulation

s.a:

1 n m n m
min §||w1||§ + C1 ZZ eir + C2 ZZ dir

i=1 r=1

1 2 2
Slwillz 2 Sllw-llz

L
2
wfrzvi + Wrg Z _T(l - tzr)
wf,zi + wr, < Ty

k

Zzlg:l

s=1

i=1 r=1



MCSVM formulation

|z — zll1 < 2|t — %1

& = 3llz = &l

Zhij:l

JEN:
¥%=y;
& +hy <1
hi =1—¢;

Vi,j €N
VieN

Vie N

Vi,5 € N(yi = yj)
Vie N

(9)
(10)



MCSVM formulation

Wit +wro > 1 — e — T (3 — tir — tyr — hyj)
wizi +wro < —1+ ep + T (1 + tir + tr — i)
dip > 1 —whz; —weo— T (24 iy — tr — hyy)
dir > 1+ whz; +wro — T (2 — tir + tyr — hij)

Vi, EN,r€ M
Vi,jEN,re M
Vi, E N,r€ M
Vi, E N,r €M



MCSVM (left) and OVO (right)




Some MCSVM examples

.
) )
. .
) )
o o o e .
o o
0 [ . e e
)
2 .
. 3
4 .
° )




Kernel trick

Theorem

Let ¢ : R — R? be a transformation of the feature space. Then, one can
obtain a multiclass classifier which only depends on the original data by
means of the inner products o(z;)!p(z;), for i, =1,...,n.



Classification rule

I s(z) the sign-pattern of z with respect to the optimal arrangement of
hyperplanes.

o J={j€{1,...,n}: & =0} (here £* stand for the optimal vector
obtained by solving the model above.

Among all the well-classified observations in the training sample,
J, we assign to z the class of the one whose cell is the closest
(less separated from z).

mmz Z ¥ () z + who|
i€t s(w)r+s( )r=0,

s.t. Z’Y]‘ =1,
JEJ
v €{0,1},Vj € J

where ~; — 1 if z is assigned to the same cell as z;,
W= 0 otherwise.



Computational experiments

synthetic data: Hxample of data
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Computational experiments

oynthetic data: Dataset description

Dataset n k m 7
Data 1 750 10 2 2 4
Data 2 750 10 3 3 6
Data 3 750 10 4 4 8
Data 4 750 10 4 4 8
Data 5 750 10 7 6 15
Data 6 750 10 10 8 20




Computational experiments

synthetic data: Average accuracy results

Dataset | MCSVM ovo WW  CS
Data 1 96.64 61.85 (SVM)

Data 2 85.67 41.94 43.18  39.21
Data 3 87.46 36.53 32.00 28.33
Data 4 92.85 48.88 34.07 35.852
Data 5 90.42 25.92 2053 19.11
Data 6 86.65 29.92 16.88  15.85




Computational experiments

Real data: Dataset description

Dataset nmy NTe p k m movo
Forest 75 448 28 4 3 6
Glass 75 139 10 6 6 15
Iris 75 75 4 3 2 3
Seeds 75 135 7 3 2 3
Wine 75 103 13 3 2 3
Zoo 75 26 17 7 4 21




Computational experiments

Real data: Average accuracy results

Dataset | &4t RL 4 HL ¢, RL ¢ HL OvVO WW  Cs

Forest 80.66 80.12 82.30 81.62 82.10 78.40 78.60
Glass 64.92 6492 65.32 65.32 58.76 56.25 59.26
Iris 95.08 9540 96.44 96.66 93.80 96.44 96.44
Seeds 93.66 93.66 9352  03.52 91.02 9352 93.52
Wine 95.20 9520 96.82 96.82 96.34 96.09 96.17
Zoo 89.75 89.75 89.75 89.75 87.44 87.68 87.68




Computational experiments

Glass detalled experiment

070~

0.65-

accuracy

0.50-

o
=
=1

L1RL L1HL L2RL L2HL ovo
modelo

cs

modelo

EBlur
(=R
Ed 2R
(= eI
oo

Edcs



Thank you for your attention

puertoQus.es
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