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n X n matrix games

Let A be an n X n matrix.
a;; payoff for 7 against j symmetric 2 person game
> iz =iAx  payoff for i against z € A,

& € A, is a (symmetric) NE iff 2Az > zAz Vo € A,



n X n matrix games

Let A be an n X n matrix.

a;; payoff for 7 against j symmetric 2 person game
> @iz =iAx  payoff for i against z € A,

Z € Ay is a (symmetric) NE iff A2 > 2Az Vo € A,

Game Dynamics: ODE on the simplex A,
1. Replicator dynamics

& =z (1Ax —xAz), i=1,...,n (REP)
2. Best response dynamics
t € BR(z) —x (BR)

with BR(z) = {y € A, : yAz = max; iAx}



Special case A = AT
optimization problem
x Az increases along solutions of (REP) and (BR)

For general A the dynamics of (REP) and (BR) can be
complicated (oscillations, chaos).

Can we predict the behaviour somehow?



Equilibria and Supports

& the set of equilibria of the replicator dynamics and S be the
set of their supports.

x €& < iAx = jAz for i,j € I = supp(x) and
zisaNEifz € £ and iAzx > jAz forie I,j ¢ I

€ includes all unit vectors of the standard basis in R™ (the
corners of A,), and S contains all one element sets {i}, with
i€ [n].



Regular games
Assumption (R):

The game A is regular, i.e., all equilibria in £ are regular
equilibria of (REP).

(R) implies (R1): for each support I € S there is a unique
equilibrium p; € £ with supp pr = I.

Let
ri(I) = jApr — prApr (1)
be the invasion rate/excess payoff of strategy j at the

equilibrium p; € £ with supp(p;) = I € S. Note that r;(I) =0
forall ¢ € 1.

(R) implies (R2): r;(I) # 0 whenever j ¢ I.
Note that (R) is equivalent to (R1) N (R2).



The invasion graph

We define the associated digraph G as the directed graph with
vertex set S and a directed edge I — J if I # J (no loops) and

» rj([) >0forall j€J\I, and
» ri(J)<Oforalliel\J.



The invasion graph

We define the associated digraph G as the directed graph with
vertex set S and a directed edge I — J if I # J (no loops) and
» rj([) >0forall j€J\I, and
» ri(J)<Oforalliel\J.

The first condition implies that all strategies in J missing from
I are better replies to py, while the second condition implies
that all strategies in I missing from J are worse against py, i.e.,
ps is a NE in the game restricted to I U J.



The invasion graph

We define the associated digraph G as the directed graph with
vertex set S and a directed edge I — J if I # J (no loops) and

» rj([) >0forall j€J\I, and
» ri(J)<Oforalliel\J.

The first condition implies that all strategies in J missing from
I are better replies to py, while the second condition implies
that all strategies in I missing from J are worse against py, i.e.,
ps is a NE in the game restricted to I U J.

The first condition implies that all the species in J missing from
I can invade I, while the second condition implies that all the
species in I missing from J can not invade J.



Examples/simple observations.

For pure strategies, 7 — j holds iff aj; > a;; and a;; < ajj, ie.,
iff j strictly dominates ¢ in the game reduced to the two
strategies 1, j.



E2

Assume J C I. Then I — J holds iff r;(J) < 0 holds for all

1€ 1\ Jiff pjis a NE in the game restricted to I. This implies
that for the game restricted to I, for (BR) and (REP) there are
orbits starting in A°(I) converging to p.



E3

Assume now I C J. Then I — J holds iff r;(1) > 0 holds for all
jeJ\1I.



E3

Assume now I C J. Then I — J holds iff r;(1) > 0 holds for all
jeJ\1I.

Dynamics of 2 x 2 games is captured by the digraph
1 —=1] 4]
141 — ]



Lemma

If I is a terminal node (absorbing state) of G then pr is a NE
with index +1.

Proof. Suppose py is not a NE. Then there is a j ¢ I with

r;(I) > 0. Consider the game restricted to the strategies in
I'U{j}. Let p;j be a NE of this restricted game: iAp; < psjAp;
for all ¢ € I and by regularity iApy < pyjApy for alli e I\ J.

If J C I then by (E2), there is an arrow I — J, so I is not
terminal, a contradiction. Hence j € J, and we have again the
contradiction I — J.

Now consider any subset J C I. Since there is no arrow I — J,
by (E2), ps is not a NE in the game restricted to I. Hence py is
the unique NE of the game restricted to I and therefore its
index is +1. O



Replicator dynamics

&; = x; [iAx — T Ax] (REP)

Lemma. Let I,J € S with I # J. If there exists a connecting
orbit z € A,, such that lim;_,_ x(t) = pr and
limy_, 4o 2(t) = py then I — J in the invasion graph G.



Replicator dynamics

&; = x; [iAx — T Ax] (REP)

Lemma. Let I,J € S with I # J. If there exists a connecting
orbit z € A,, such that lim;_,_ x(t) = pr and
limy_, 4o 2(t) = py then I — J in the invasion graph G.

Theorem: Assume that G is acyclic, and [n] is the only
absorbing state in G.

Then (REP) is permanent:

30 > 0 s.t. liminf; , () > ¢ for all positive solutions.



Best response dynamics

t € BR(z) —x (BR)
Lemma. If along a (piecewise linear) BR path z(t), for some
times tg < t1 < to, pr € BR(z(t)) for to <t < t; and
pj € BR(x(t)) for t; <t <tg (I # J) then I — J in the
digraph G.



Best response dynamics

t € BR(z) —x (BR)

Lemma. If along a (piecewise linear) BR path z(t), for some
times tg < t1 < to, pr € BR(z(t)) for to <t < t; and

ps € BR(z(t)) for t1 <t <ty (I # J) then I — J in the
digraph G.

Proof. At the turning point z(t;) we have

w(t) = (1 = e)z(to) + epr

with e =1—¢lo™% € (0,1). And
iAx(t)) = max;ecp, iAx(t1) = prAz(t1) = psjAz(t1) for all
ielUlJ.
Hence
iAx(t1) = (1 — e)iAx(to) + ciApr

is the same fori € T U J.



Best response dynamics

iAx(to) = max;ep,) 1Az (to) for i € I and

jAz(to) < maxep, 1Az (to) for j ¢ I. Hence

JjApr > iAp; = prApy for j € J\ I and i € I. By regularity
(R2), jApr > prApy for j € J \ I which show the first claim.

By construction of BR paths, ps is a NE of the game restricted
to the pure best replies at x(¢1), which contains I U J as a
subset. Hence pyjApy > iApy for all i € I'\ J and because of
(R2): pjApy > iApy for all i € I'\ J, i.e., the second claim. [



Result. If the graph G is acyclic, then all orbits of (BR)
converge to a NE.

Proof. Let z(t) be a solution of (BR). Since G has no cycles, by
the Lemma z(t) has only finitely many turning points. Let J be
the final node along z(t), i.e., x(t) approaches p; in a straight

way. Then p; € BR(x(¢)) for all large ¢, hence py € BR(ps) and
hence p; is a NE. O



Examples: 3 x 3 games

How many different graphs modulo symmetry?

33 graphs:

see Mary Lou Zeeman (1989, 1993), based on E.C. Zeeman’s
classification (1980) of (robust) phase portraits of the replicator
dynamics



3 x 3 games: |

no interior equilibrium, a unique NE on the boundary

c




3 x 3 games: 11

no interior equilibrium, several NE on the boundary

A



3 x 3 games: III

an interior equilibrium with index -1 (saddle), hence at least 2
NE on the boundary

19 22




3 x 3 games: [V

a unique interior equilibrium with index + 1




3 X 3 games

so far 31 graphs, acyclic, describe the dynamics (phase portrait)
of (REP) and (BR) well.

2 more cases, with a cyclic graph:



3 x 3 games: Zeeman (1980)

G has three strongly connected classes:
the terminal node 1 (corresponding to a strict NE),

a nonabsorbing class C': 123 — 12 — 2 — 23 — 12,123,
and the node 3 (a repeller).



3 x 3 games: Zeeman (1980)
3 possible phase portraits for (REP)
a) p123 is an attractor
b) p1o3 is a center
¢) pi2s is a repeller, almost all orbits go to 1




3 x 3 games: Zeeman (1980)

The class C' gives rise to a transitive region in the BR dynamics.




3 x 3 games: rock—paper—scissors (RPS)
the digraph is disconnected, it consists of two absorbing strong
components: 1 — 2 — 3 — 1 and 123.




4 x 4 games: ROCK-SCISSORS-PAPER-DUMB

a c b v
b a c v
= 0 0
A . b 0 (c<a<bp>0y>0)
a—p a—pp a—p 0
- (2)
p123:(%7§7§70)
p123a = (T, T, T, T4) exists if ¥ > 0 and
b
arote L g
3
= _ . _ 2a-b—c—38
T = gapme3pry W T4 = 5,50 550y



4 x 4 games: ROCK-PAPER-SCISSORS-DUMB

1234 is an
absorbing state, and the cycle 1 —+ 2 — 3 — 1 is an absorbing
strong component. Along almost all orbits of (REP) and (BR),
the DUMB strategy is eliminated: x4 — 0. p1234 is a NE with
index +1 in agreement with Lemma 1. But it is unstable. There
is no NE with supp C {1, 2, 3}.

[m] [ = =



4 x 4 games: via 3d competitive LV systems

MaryLou Zeeman (1993): in these two acyclic classes there are
Hopf bifurcations and hence periodic orbits, even several

periodic orbits. The unique NE (unique absorbing state of G) is
not stable under (REP).

[m]

=




Examples: anti-coordination games

nodes of G : {I C [n]: I #0}
I—-Jiff IcJ

graph is acyclic, [n] is the unique absorbing state

the positive equilibrium is global attractor for (BR)



Example: 5 x 5 anti-coordination game

0 1 2 2 10
10 0 1 2 2
2 10 0 1 2
2 2 10 0 1
1 2 2 10 O

The positive equilibrium %1 is unstable for (REP): 4 complex
eigenvalues, 2 with positive real part.

stable limit cycle



