Games, Graphs, and Dynamics

Josef Hofbauer

University of Vienna, Austria

$n \times n$ matrix games

Let A be an $n \times n$ matrix.
$a_{i j} \quad$ payoff for i against j symmetric 2 person game $\sum_{j} a_{i j} x_{j}=i A x \quad$ payoff for i against $x \in \Delta_{n}$
$\hat{x} \in \Delta_{n}$ is a (symmetric) NE iff $\hat{x} A \hat{x} \geq x A \hat{x} \quad \forall x \in \Delta_{n}$

$n \times n$ matrix games

Let A be an $n \times n$ matrix.
$a_{i j} \quad$ payoff for i against j symmetric 2 person game $\sum_{j} a_{i j} x_{j}=i A x \quad$ payoff for i against $x \in \Delta_{n}$
$\hat{x} \in \Delta_{n}$ is a (symmetric) NE iff $\hat{x} A \hat{x} \geq x A \hat{x} \quad \forall x \in \Delta_{n}$
Game Dynamics: ODE on the simplex Δ_{n}

1. Replicator dynamics

$$
\begin{equation*}
\dot{x}_{i}=x_{i}(i A x-x A x), \quad i=1, \ldots, n \tag{REP}
\end{equation*}
$$

2. Best response dynamics

$$
\begin{equation*}
\dot{x} \in \mathrm{BR}(x)-x \tag{BR}
\end{equation*}
$$

with $\mathrm{BR}(x)=\left\{y \in \Delta_{n}: y A x=\max _{i} i A x\right\}$

Special case $A=A^{\top}$
optimization problem
$x A x$ increases along solutions of (REP) and (BR)

For general A the dynamics of (REP) and (BR) can be complicated (oscillations, chaos).

Can we predict the behaviour somehow?

Equilibria and Supports

\mathcal{E} the set of equilibria of the replicator dynamics and \mathcal{S} be the set of their supports.
$x \in \mathcal{E} \Leftrightarrow i A x=j A x$ for $i, j \in I=\operatorname{supp}(x)$ and
x is a NE if $x \in \mathcal{E}$ and $i A x \geq j A x$ for $i \in I, j \notin I$
\mathcal{E} includes all unit vectors of the standard basis in \mathbb{R}^{n} (the corners of Δ_{n}), and \mathcal{S} contains all one element sets $\{i\}$, with $i \in[n]$.

Regular games

Assumption (R):
The game A is regular, i.e., all equilibria in \mathcal{E} are regular equilibria of (REP).
(R) implies (R1): for each support $I \in \mathcal{S}$ there is a unique equilibrium $p_{I} \in \mathcal{E}$ with $\operatorname{supp} p_{I}=I$.

Let

$$
\begin{equation*}
r_{j}(I)=j A p_{I}-p_{I} A p_{I} \tag{1}
\end{equation*}
$$

be the invasion rate/excess payoff of strategy j at the equilibrium $p_{I} \in \mathcal{E}$ with $\operatorname{supp}\left(p_{I}\right)=I \in \mathcal{S}$. Note that $r_{i}(I)=0$ for all $i \in I$.
(R) implies (R2): $r_{j}(I) \neq 0$ whenever $j \notin I$. Note that (R) is equivalent to $(R 1) \cap(R 2)$.

The invasion graph

We define the associated digraph \mathcal{G} as the directed graph with vertex set \mathcal{S} and a directed edge $I \rightarrow J$ if $I \neq J$ (no loops) and

- $r_{j}(I)>0$ for all $j \in J \backslash I$, and
- $r_{i}(J)<0$ for all $i \in I \backslash J$.

The invasion graph

We define the associated digraph \mathcal{G} as the directed graph with vertex set \mathcal{S} and a directed edge $I \rightarrow J$ if $I \neq J$ (no loops) and

- $r_{j}(I)>0$ for all $j \in J \backslash I$, and
- $r_{i}(J)<0$ for all $i \in I \backslash J$.

The first condition implies that all strategies in J missing from I are better replies to p_{I}, while the second condition implies that all strategies in I missing from J are worse against p_{J}, i.e., p_{J} is a NE in the game restricted to $I \cup J$.

The invasion graph

We define the associated digraph \mathcal{G} as the directed graph with vertex set \mathcal{S} and a directed edge $I \rightarrow J$ if $I \neq J$ (no loops) and

- $r_{j}(I)>0$ for all $j \in J \backslash I$, and
- $r_{i}(J)<0$ for all $i \in I \backslash J$.

The first condition implies that all strategies in J missing from I are better replies to p_{I}, while the second condition implies that all strategies in I missing from J are worse against p_{J}, i.e., p_{J} is a NE in the game restricted to $I \cup J$.

The first condition implies that all the species in J missing from I can invade I, while the second condition implies that all the species in I missing from J can not invade J.

Examples/simple observations.

For pure strategies, $i \rightarrow j$ holds iff $a_{j i}>a_{i i}$ and $a_{i j}<a_{j j}$, i.e., iff j strictly dominates i in the game reduced to the two strategies i, j.

Assume $J \subset I$. Then $I \rightarrow J$ holds iff $r_{i}(J)<0$ holds for all $i \in I \backslash J$ iff p_{J} is a NE in the game restricted to I. This implies that for the game restricted to I, for (BR) and (REP) there are orbits starting in $\Delta^{\circ}(I)$ converging to p_{J}.

Assume now $I \subset J$. Then $I \rightarrow J$ holds iff $r_{j}(I)>0$ holds for all $j \in J \backslash I$.

Assume now $I \subset J$. Then $I \rightarrow J$ holds iff $r_{j}(I)>0$ holds for all $j \in J \backslash I$.

Dynamics of 2×2 games is captured by the digraph $i \rightarrow i j \leftarrow j$ $i \leftarrow i j \rightarrow j$

Lemma

If I is a terminal node (absorbing state) of \mathcal{G} then p_{I} is a $N E$ with index +1 .

Proof. Suppose p_{I} is not a NE. Then there is a $j \notin I$ with $r_{j}(I)>0$. Consider the game restricted to the strategies in $I \cup\{j\}$. Let p_{J} be a NE of this restricted game: $i A p_{J} \leq p_{J} A p_{J}$ for all $i \in I$ and by regularity $i A p_{J}<p_{J} A p_{J}$ for all $i \in I \backslash J$. If $J \subset I$ then by (E2), there is an arrow $I \rightarrow J$, so I is not terminal, a contradiction. Hence $j \in J$, and we have again the contradiction $I \rightarrow J$.
Now consider any subset $J \subset I$. Since there is no arrow $I \rightarrow J$, by (E2), p_{J} is not a NE in the game restricted to I. Hence p_{I} is the unique NE of the game restricted to I and therefore its index is +1 .

Replicator dynamics

$$
\begin{equation*}
\dot{x}_{i}=x_{i}[i A x-x A x] \tag{REP}
\end{equation*}
$$

Lemma. Let $I, J \in \mathcal{S}$ with $I \neq J$. If there exists a connecting orbit $x \in \Delta_{n}$ such that $\lim _{t \rightarrow-\infty} x(t)=p_{I}$ and $\lim _{t \rightarrow+\infty} x(t)=p_{J}$ then $I \rightarrow J$ in the invasion graph \mathcal{G}.

Replicator dynamics

$$
\begin{equation*}
\dot{x}_{i}=x_{i}[i A x-x A x] \tag{REP}
\end{equation*}
$$

Lemma. Let $I, J \in \mathcal{S}$ with $I \neq J$. If there exists a connecting orbit $x \in \Delta_{n}$ such that $\lim _{t \rightarrow-\infty} x(t)=p_{I}$ and $\lim _{t \rightarrow+\infty} x(t)=p_{J}$ then $I \rightarrow J$ in the invasion graph \mathcal{G}.

Theorem: Assume that \mathcal{G} is acyclic, and $[n]$ is the only absorbing state in \mathcal{G}.
Then (REP) is permanent:
$\exists \delta>0$ s.t. $\liminf _{t \rightarrow \infty} x_{i}(t)>\delta$ for all positive solutions.

Best response dynamics

$$
\begin{equation*}
\dot{x} \in \operatorname{BR}(x)-x \tag{BR}
\end{equation*}
$$

Lemma. If along a (piecewise linear) BR path $x(t)$, for some times $t_{0}<t_{1}<t_{2}, p_{I} \in B R(x(t))$ for $t_{0}<t<t_{1}$ and $p_{J} \in B R(x(t))$ for $t_{1}<t<t_{2}(I \neq J)$ then $I \rightarrow J$ in the digraph \mathcal{G}.

Best response dynamics

$$
\begin{equation*}
\dot{x} \in \mathrm{BR}(x)-x \tag{BR}
\end{equation*}
$$

Lemma. If along a (piecewise linear) BR path $x(t)$, for some times $t_{0}<t_{1}<t_{2}, p_{I} \in B R(x(t))$ for $t_{0}<t<t_{1}$ and $p_{J} \in B R(x(t))$ for $t_{1}<t<t_{2}(I \neq J)$ then $I \rightarrow J$ in the digraph \mathcal{G}.

Proof. At the turning point $x\left(t_{1}\right)$ we have

$$
x\left(t_{1}\right)=(1-\varepsilon) x\left(t_{0}\right)+\varepsilon p_{I}
$$

with $\varepsilon=1-e^{t_{0}-t_{1}} \in(0,1)$. And
$i A x\left(t_{1}\right)=\max _{i \in[n]} i A x\left(t_{1}\right)=p_{I} A x\left(t_{1}\right)=p_{J} A x\left(t_{1}\right)$ for all $i \in I \cup J$.
Hence

$$
i A x\left(t_{1}\right)=(1-\varepsilon) i A x\left(t_{0}\right)+\varepsilon i A p_{I}
$$

is the same for $i \in I \cup J$.

Best response dynamics

$i A x\left(t_{0}\right)=\max _{i \in[n]} i A x\left(t_{0}\right)$ for $i \in I$ and $j A x\left(t_{0}\right) \leq \max _{i \in[n]} i A x\left(t_{0}\right)$ for $j \notin I$. Hence
$j A p_{I} \geq i A p_{I}=p_{I} A p_{I}$ for $j \in J \backslash I$ and $i \in I$. By regularity (R2), $j A p_{I}>p_{I} A p_{I}$ for $j \in J \backslash I$ which show the first claim. By construction of BR paths, p_{J} is a NE of the game restricted to the pure best replies at $x\left(t_{1}\right)$, which contains $I \cup J$ as a subset. Hence $p_{J} A p_{J} \geq i A p_{J}$ for all $i \in I \backslash J$ and because of (R2): $p_{J} A p_{J}>i A p_{J}$ for all $i \in I \backslash J$, i.e., the second claim. \square

Result. If the graph \mathcal{G} is acyclic, then all orbits of (BR) converge to a NE.

Proof. Let $x(t)$ be a solution of (BR). Since \mathcal{G} has no cycles, by the Lemma $x(t)$ has only finitely many turning points. Let J be the final node along $x(t)$, i.e., $x(t)$ approaches p_{J} in a straight way. Then $p_{J} \in \operatorname{BR}(x(t))$ for all large t, hence $p_{J} \in \operatorname{BR}\left(p_{J}\right)$ and hence p_{J} is a NE.

Examples: 3×3 games

How many different graphs modulo symmetry?
33 graphs:
see Mary Lou Zeeman (1989, 1993), based on E.C. Zeeman's classification (1980) of (robust) phase portraits of the replicator dynamics
3×3 games: I
no interior equilibrium, a unique NE on the boundary

3×3 games: II
no interior equilibrium, several NE on the boundary

an interior equilibrium with index -1 (saddle), hence at least 2 NE on the boundary

3×3 games: IV
a unique interior equilibrium with index +1

3×3 games
so far 31 graphs, acyclic, describe the dynamics (phase portrait) of (REP) and (BR) well.

2 more cases, with a cyclic graph:
3×3 games: Zeeman (1980)

\mathcal{G} has three strongly connected classes:
the terminal node 1 (corresponding to a strict NE), a nonabsorbing class $C: 123 \rightarrow 12 \rightarrow 2 \rightarrow 23 \rightarrow 12,123$, and the node 3 (a repeller).
3×3 games: Zeeman (1980)
3 possible phase portraits for (REP)
a) p_{123} is an attractor
b) p_{123} is a center
c) p_{123} is a repeller, almost all orbits go to 1

3×3 games: Zeeman (1980)

The class C gives rise to a transitive region in the BR dynamics.

3×3 games: rock-paper-scissors (RPS)

the digraph is disconnected, it consists of two absorbing strong components: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ and 123 .

4×4 games: ROCK-SCISSORS-PAPER-DUMB

$$
A=\left(\begin{array}{cccc}
a & c & b & \gamma \tag{2}\\
b & a & c & \gamma \\
c & b & a & \gamma \\
a-\beta & a-\beta & a-\beta & 0
\end{array}\right) \quad(c<a<b, \beta>0, \gamma>0)
$$

$$
\begin{aligned}
& p_{123}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0\right) \\
& p_{1234}=\left(\bar{x}, \bar{x}, \bar{x}, \bar{x}_{4}\right) \text { exists if } \gamma>0 \text { and }
\end{aligned}
$$

$$
\frac{a+b+c}{3}<a-\beta
$$

$$
\bar{x}=\frac{\gamma}{2 a-b-c-3 \beta+\gamma} \text { and } \bar{x}_{4}=\frac{2 a-b-c-3 \beta}{2 a-b-c-3 \beta+\gamma}
$$

4×4 games: ROCK-PAPER-SCISSORS-DUMB

1234 is an
absorbing state, and the cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ is an absorbing strong component. Along almost all orbits of (REP) and (BR), the DUMB strategy is eliminated: $x_{4} \rightarrow 0 . p_{1234}$ is a NE with index +1 in agreement with Lemma 1. But it is unstable. There is no NE with supp $\subseteq\{1,2,3\}$.

4×4 games: via 3d competitive LV systems

MaryLou Zeeman (1993): in these two acyclic classes there are Hopf bifurcations and hence periodic orbits, even several periodic orbits. The unique NE (unique absorbing state of \mathcal{G}) is not stable under (REP).

Examples: anti-coordination games

nodes of $\mathcal{G}:\{I \subseteq[n]: I \neq \emptyset\}$
$I \rightarrow J$ iff $I \subset J$
graph is acyclic, $[n]$ is the unique absorbing state the positive equilibrium is global attractor for (BR)

Example: 5×5 anti-coordination game

$$
\left(\begin{array}{ccccc}
0 & 1 & 2 & 2 & 10 \\
10 & 0 & 1 & 2 & 2 \\
2 & 10 & 0 & 1 & 2 \\
2 & 2 & 10 & 0 & 1 \\
1 & 2 & 2 & 10 & 0
\end{array}\right)
$$

The positive equilibrium $\frac{1}{5} 1$ is unstable for (REP): 4 complex eigenvalues, 2 with positive real part.
stable limit cycle

