Solving nonlinear minmax location problems with minimal time functions by means of proximal point methods via conjugate duality

Sorin-Mihai Grad

joint work with Oleg Wilfer (Chemnitz UT)

Games, Dynamics & Optimization - GDO2019, Cluj-Napoca

Motivation Outline

Find the disc with minimal radius that intersects some given sets.

Motivation Outline

Outline

- Preliminaries
- Minmax location problems
- Duality investigations
- Numerical experiments

Notions Parallel Splitting Algorithm

- X Hilbert space
- $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$
- $\blacktriangleright \ \emptyset \neq U \subseteq X$
- $\blacktriangleright \ \emptyset \neq \Omega \subseteq X$
- indicator function: $\delta_U : X \to \overline{\mathbb{R}}, \ \delta_U(x) = 0$ if $x \in U$ and $\delta_U(x) = +\infty$ otherwise
- support function: $\sigma_U : X \to \overline{\mathbb{R}}, \ \sigma_U(y) = \sup_{x \in U} y^\top x$
- gauge: $\gamma_U : X \to \overline{\mathbb{R}}, \ \gamma_U(x) = \inf\{t > 0 : x \in tU\}$
- generalized minimal-time function: $\mathcal{T}_{\Omega,f}^U: X \to \mathbb{R}$, $\mathcal{T}_{\Omega,f}^U(x) := \inf \{ \gamma_U(x-y-z) + f(y) : y \in X, z \in \Omega \}$

Notions Parallel Splitting Algorithm

Theorem. (parallel splitting) [Bauschke & Combettes, 2009] Let $f_i : \mathbb{R}^d \to \overline{\mathbb{R}}$ be proper convex lsc, i = 1, ..., n. When the problem

$$(P^{DR}) \quad \min_{x \in X} \left\{ \sum_{i=1}^n f_i(x) \right\}$$

has at least one solution, dom $f_1 \cap \bigcap_{i=2}^n \operatorname{int} \operatorname{dom} f_i \neq \emptyset$, $(\mu_k)_{k \in \mathbb{N}}$ is a sequence in [0,2] s.t. $\sum_{k \in \mathbb{N}} \mu_k (2-\mu_k) = +\infty$, let $\nu > 0$, and $(x_{i,0})_{i=1}^n \in X \times \ldots \times X$, setting

$$(\forall k \in \mathbb{N}) \quad \begin{vmatrix} r_k = \frac{1}{n} \sum_{i=1}^n x_{i,k}, \\ y_{i,k} = \operatorname{prox}_{\nu f_i} x_{i,k}, \ i = 1, \dots, n, \\ q_k = \frac{1}{n} \sum_{i=1}^n y_{i,k}, \\ x_{i,k+1} = x_{i,k} + \mu_k (2q_k - r_k - y_{i,k}), \ i = 1, \dots, n,$$

then $(r_k)_{k \in \mathbb{N}}$ converges weakly to an optimal solution to (P^{DR}) .

Problem formulation Application: Geometry Application: Economics

 $\begin{array}{ll} \text{Consider the following generalized location problem} \\ (P^S_{h,\mathcal{T}}) & \inf_{x\in S} \max_{1\leq i\leq n} \Big\{ h_i\left(\mathcal{T}^{C_i}_{\Omega_i,f_i}(x)\right) + a_i \Big\}, \end{array}$

where

•
$$\emptyset \neq S \subseteq X$$
 is closed and convex, $n \ge 2$

for
$$i = 1, ..., n$$
 $(n \ge 2)$:
• $a_i \in \mathbb{R}_+ = [0, +\infty)$ (set-up costs)
• $C_i \subseteq X$ is closed and convex with $0 \in \operatorname{int} C_i$
• $\emptyset \ne \Omega_i \subseteq X$ is convex and compact
• $f_i : X \to \overline{\mathbb{R}}$ is proper convex lsc
• $h_i : \mathbb{R} \to \overline{\mathbb{R}}$ with $h_i(x) \begin{cases} \in \mathbb{R}_+, & \text{if } x \in \mathbb{R}_+ \\ = +\infty, & \text{otherwise} \end{cases}$ is convex

and increasing on \mathbb{R}_+

lsc

Problem formulation Application: Geometry Application: Economics

- ▶ take $f_i = \delta_{L_i}$, where $\emptyset \neq L_i \subseteq X$, is closed and convex
- $h_i(x) = x + \delta_{\mathbb{R}_+}(x), x \in \mathbb{R}, i = 1, \dots, n$
- $(P_{h,\mathcal{T}}^S)$ can be equivalently written as

 $(P_{G,\mathcal{T}}^S) \qquad \inf_{\substack{x \in S, \ t \in \mathbb{R}, \\ \inf\{\lambda_i > 0: (x - \lambda_i C_i) \cap (\Omega_i + L_i) \neq \emptyset\} + a_i < t, i = 1, \dots, n}} t$

Geometric interpretation

 $(P^S_{G,\mathcal{T}})$: determine a point $\bar{x} \in S$ and the smallest $\bar{t} > 0$ s.t.

 $(\bar{x} - (\bar{t} - a_i)C_i) \cap (\Omega_i + L_i) \neq \emptyset, \ i = 1, \dots, n$

- approach useful when the target sets are hard to handle, but can be split into Minkowski sums of two simpler sets Ω_i and L_i, i = 1,..., n, (e.g.: rounded rectangles = sums of rectangles and circles)
- ► (P^S_{G,T}) is a generalization of the Sylvester problem (find the smallest circle that encloses finitely many given points)

Problem formulation Application: Geometry Application: Economics

- ▶ take $f_i = \gamma_{G_i}$, where $\emptyset \neq G_i \subseteq X$, is closed and convex
- ▶ take $h_i(x) = x + \delta_{\mathbb{R}_+}(x)$, $x \in \mathbb{R}$, $a_i = 0$, $i = 1, \dots, n$
- $(P^S_{h,\mathcal{T}})$ can be equivalently written as
- $(P_{E,\mathcal{T}}^S) \inf_{\substack{x \in X, z_i \in \Omega_i, \ \alpha_i, \ \beta_i, \ t > 0, \ \alpha_i + \beta_i \leq t, \\ (x + \alpha C_i) \cap (z_i + \beta_i G_i) \neq \emptyset, \ i = 1, \dots, n}} t$

Economic interpretation

• cities: $1, \ldots, n$

for $i = 1, \ldots, n$

- G_i : demand of *i* for product *P* (produced by *W*)
- Ω_i : characterization of the budget of i
- C_i : characterization of the importance of i for W

 $(P^S_{E,\mathcal{T}})$: determine a location $\overline{x}\in S$ for a production facility s.t. the total demand for P can be satisfied in the shortest time $\bar{t}>0$

Dual problem Duality results

The dual problem to $(P_{h,\mathcal{T}}^S)$ we obtain (by means of a "multicomposed" approach (cf. [G, Wanka & Wilfer, 2017]) is

$$(D_{h,\mathcal{T}}^{S}) \sup_{\substack{\lambda_{i}, \ z_{i}^{*} \geq 0, \ w_{i}^{*} \in X, \sum_{i=1}^{n} \lambda_{i} \leq 1, \\ \gamma_{C_{i}^{0}}(w_{i}^{*}) \leq z_{i}^{*}, i = 1, \dots, n}} \left\{ -\sigma_{S} \left(-\sum_{i=1}^{n} w_{i}^{*} \right) - \sum_{i=1}^{n} \left[(\lambda_{i}h_{i})^{*} \left(z_{i}^{*} \right) - \lambda_{i}a_{i} + (z_{i}^{*}f_{i})^{*} \left(w_{i}^{*} \right) + \sigma_{\Omega_{i}}(w_{i}^{*}) \right] \right\}$$

Dual problem Duality results

Theorem. (strong duality) Between $(P_{h,\mathcal{T}}^S)$ and $(D_{h,\mathcal{T}}^S)$ holds strong duality, i.e. their optimal objective values coincide $(v(P_{h,\mathcal{T}}^S) = v(D_{h,\mathcal{T}}^S))$ and the dual problem has an optimal solution $(\bar{\lambda}, \bar{z}^*, \bar{w}) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+ \times X^n$.

- ▶ in general one has $v(P_{h,\mathcal{T}}^S) \ge v(D_{h,\mathcal{T}}^S)$
- the constraint qualification usually needed for strong duality is fulfilled due of the hypotheses
- one can also derive corresponding necessary and sufficient optimality conditions \Rightarrow in some special cases the optimal solution \bar{x} to $(P_{h,\mathcal{T}}^S)$ can be characterized as

$$\overline{x} = \frac{1}{\sum\limits_{i \in \overline{I}} \beta_i \|\overline{w}_i^*\|} \sum\limits_{i \in \overline{I}} \beta_i \|\overline{w}_i^*\| p_i$$

 $\begin{array}{l} \mbox{Problem reformulation}\\ \mbox{Projection formulae}\\ \mbox{Example: 7 sets in \mathbb{R}^2}\\ \mbox{Example: 7 sets in \mathbb{R}^2}\\ \mbox{Example: 50 sets in \mathbb{R}^3}\\ \mbox{Example: 7 sets in \mathbb{R}^3}\\ \mbox{Example: shigh dimensions} \end{array}$

Rewrite the location problem

$$(P_{G, \mathcal{T}}) \qquad \inf_{x \in X} \max_{1 \le i \le n} \left\{ \mathcal{T}_{\Omega_i, \delta_{L_i}}^{C_i}(x) \right\},$$

where C_i , $L_i \subseteq X$ are closed and convex sets with $0 \in \text{int } C_i$ and $\Omega_i \subseteq X$ are convex and compact sets, $i = 1, \ldots, n$, as follows

$$(P_{G, \mathcal{T}}) \\ \inf_{\substack{t \ge 0, x, y_i, z_i \in X, \\ i=1, \dots, n}} \left\{ t + \sum_{i=1}^n \left[\delta_{\operatorname{epi} \gamma_{C_i}}(x - y_i - z_i, t) + \delta_{\Omega_i}(y_i) + \delta_{L_i}(z_i) \right] \right\}$$

 $\begin{array}{l} \mbox{Problem reformulation}\\ \mbox{Projection formulae}\\ \mbox{Example: 7 sets in \mathbb{R}^2}\\ \mbox{Example: 7 sets in \mathbb{R}^2}\\ \mbox{Example: 50 sets in \mathbb{R}^3}\\ \mbox{Example: 7 sets in \mathbb{R}^3}\\ \mbox{Example: shigh dimensions} \end{array}$

The dual problem to $(P_{G, \mathcal{T}})$ can be rewritten as

$$(D_{G, \mathcal{T}}) - \inf_{\substack{w_{i}^{*} \in X, i=1,...,n}} \left\{ \sum_{i=1}^{n} \left[\sigma_{L_{i}} \left(w^{*} \right) + \sigma_{\Omega_{i}} \left(w^{*} \right) \right] + \delta_{F}(w^{*}) + \delta_{E}(w^{*}) \right\},$$

where
$$E = \left\{ w^* = (w_1^*, \dots, w_n^*) \in X \times \dots \times X : \sum_{i=1}^n w_i^* = 0 \right\}$$
 and $F = \left\{ w^* = (w_1^*, \dots, w_n^*) \in X \times \dots \times X : \sum_{i=1}^n \gamma_{C_i^0}(w_i^*) \le 1 \right\}$

Problem reformulation **Projection formulae** Example: 7 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^2 Example: 50 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^3 Examples: high dimensions

Theorem. (epi-projection) Let $\gamma_C : X^n \to \mathbb{R}$ be defined by $\gamma_C(x_1, \ldots, x_n) := \max_{1 \le i \le n} \{ \|x_i\| / w_i \}$. It holds

$$\Pr_{\text{epi}\,\gamma_C}(x_1,\ldots,x_n,\xi) = \begin{cases} (x_1,\ldots,x_n), \text{ if } \max_{1\leq i\leq n}\left\{\frac{1}{w_i}\|x_i\|\right\} \leq \xi, \\ (0,\ldots,0,0), \text{ if } \xi < 0 \text{ and } \sum_{i=1}^n w_i\|x_i\| \leq -\xi \\ (\overline{y}_1,\ldots,\overline{y}_n,\overline{\theta}), \text{ otherwise,} \end{cases}$$

where for $i = 1, \ldots, n$ one has

$$\begin{split} \overline{y}_i &= x_i - \frac{\max\{\|x_i\| - (\overline{\kappa} + \xi)w_i, 0\}}{\|x_i\|} x_i, \text{ and } \overline{\theta} = \frac{\sum_{i=k+1}^n w_i^2 \tau_i + \xi}{\sum_{i=k+1}^n w_i^2 + 1} \\ \text{with } \overline{\kappa} &= (\sum_{i=k+1}^n w_i^2 \tau_i - \xi \sum_{i=k+1}^n w_i^2) / (\sum_{i=k+1}^n w_i^2 + 1) \text{ and } \\ k \in \{0, 1, \dots, n-1\} \text{ is the unique integer such that} \end{split}$$

 $\tau_k + \xi \leq \overline{\kappa} \leq \tau_{k+1} + \xi$, where the values τ_0, \ldots, τ_n are defined by $\tau_0 := 0$ and $\tau_i := ||x_i|| / w_i$, $i = 1, \ldots, n$, and in ascending order.

Problem reformulation Projection formulae Example: 7 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^2 Example: 50 sets in \mathbb{R}^3 Example: β sets in \mathbb{R}^3

Problem reformulation Projection formulae **Example: 7 sets in** \mathbb{R}^2 Example: 7 sets in \mathbb{R}^2 Example: 50 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^3 Examples: high dimensions

Let
$$d = 2$$
, $p_1 = (-8, 8)^T$, $p_2 = (-7, 0)^T$, $p_3 = (-4, -1)^T$, $p_4 = (2, 0)^T$,
 $p_5 = (2, -6)^T$, $p_6 = (7, 1)^T$, $p_7 = (6, 5)^T$,
 $c_1 = 1$, $c_2 = 2$, $c_3 = 3$, $c_4 = 0.5$, $c_5 = 2$, $c_6 = 1$, $c_7 = 1$, $b_1 = 0.5$,
 $b_2 = 2$, $b_3 = 0.6$, $b_4 = 1$, $b_5 = 1.5$, $b_6 = 1$, $b_7 = 0.5$,
 $\Omega_i = \{x \in \mathbb{R}^2 : ||x - p_i||_{\infty} \le c_i\}$, $L_i = \{x \in \mathbb{R}^2 : ||x|| \le b_i\}$ and
 $\gamma_{C_i} = || \cdot ||$, $i = 1, \dots, 7$.

	$\varepsilon = 10^{-4}$		$\varepsilon = 10^{-8}$	
	primal	dual	primal	dual
CPU	0.3786	0.1174	0.7640	0.2973
NI	541	330	1106	830

Performance evaluation for 7 sets in \mathbb{R}^2 (CPU = CPU Time in seconds; NI = Number of iterations, ε =distance from the optimal value of the problem)

Problem reformulation Projection formulae Example: 7 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^2 Example: 50 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^3 Example: high dimensions

Problem reformulation Projection formulae Example: 7 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^2 Example: 50 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^3 Examples: high dimensions

Let
$$d = 2$$
, $p_1 = (-8, 8)^T$, $p_2 = (-7, 0)^T$, $p_3 = (-4, -1)^T$, $p_4 = (2, 0)^T$, $p_5 = (2, -6)^T$, $p_6 = (7, 1)^T$, $p_7 = (6, 5)^T$, $c_1 = 1$, $c_2 = 2$, $c_3 = 3$, $c_4 = 0.5$, $c_5 = 2$, $c_6 = 1$, $c_7 = 1$, $\Omega_i = \{x \in \mathbb{R}^2 : \|x - p_i\|_{\infty} \le c_i\}$, $L_i = \{0_{\mathbb{R}^2}\}$, $\gamma_{C_i} = \|\cdot\|$, $i = 1, \ldots, 7$.

We compare our methods with the subgradient methods of [Mordukhovich & Nam, 2014] and [Nam, An & Salinas, 2015]

	primal	dual	subgrad.(1)	subgrad.(2)
CPU	0.1904	0.0871	0.0416	1.2782
NI	399	181	918	70752
Deutermore a such set in f_{aux} for 7 and in \mathbb{D}^2 with $a = 10-4$				

Performance evaluation for 7 sets in \mathbb{R}^2 with $\varepsilon = 10^-$

	primal	dual	subgrad.(1)	subgrad. (2)
CPU	0.3377	0.1608	0.7016	-
NI	730	453	37854	50000 +
Performance evaluation for 7 sets in \mathbb{R}^2 with $\varepsilon = 10^{-8}$				

Problem reformulation Projection formulae Example: 7 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^2 Example: 50 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^3 Example: high dimensions

We compare our methods with the subgradient methods of [Mordukhovich & Nam, 2014] and [Nam, An & Salinas, 2015]

	primal	dual	subgrad.(1)	subgrad.(2)
CPU Time in sec.	5.6477	0.4292	-	27.1555
Number of It.	2421	735	500000+	383782

Performance evaluation for 50 sets in \mathbb{R}^2 with $\varepsilon = 10^{-4}$

	primal	dual	subgrad.(1)	subgrad.(2)
CPU Time in sec.	16.1011	3.6020	-	32.2530
Number of It.	6983	7207	500000+	436138

Performance evaluation for 50 sets in \mathbb{R}^2 with $\varepsilon = 10^{-8}$ (CPU = CPU Time in seconds; NI = Number of iterations)

Problem reformulation Projection formulae Example: 7 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^2 Example: 50 sets in \mathbb{R}^3 Example: 51 sets in \mathbb{R}^3 Example: high dimensions

Problem reformulation Projection formulae Example: 7 sets in \mathbb{R}^2 Example: 7 sets in \mathbb{R}^2 Example: 50 sets in \mathbb{R}^3 Example: 7 sets in \mathbb{R}^3 Examples: high dimensions

Let
$$d = 3$$
, $p_1 = (-8, 8, 8)^T$, $p_2 = (-7, 0, 0)^T$, $p_3 = (-4, -1, 1)^T$, $p_4 = (2, 0, 2)^T$, $p_5 = (2, -6, 2)^T$, $p_6 = (7, 1, 1)^T$, $p_7 = (6, 5, 4)^T$, $c_1 = 0.5$, $\Omega_i = \{x \in \mathbb{R}^3 : ||x - p_i||_{\infty} \le c_i\}$, $L_i = \{0_{\mathbb{R}^3}\}$, $\gamma_{C_i} = || \cdot ||, i = 1, \ldots, 7$.

We compare our methods with the accelerated log-exponential smoothing technique of [An, Giles, Nam & Rector, 2017]

	$\varepsilon = 10^{-4}$			$\varepsilon = 10^{-8}$		3
	primal	dual	log-exp	primal	dual	log-exp
CPU	0.1871	0.0992	6.9425	0.4234	0.2042	23.6893
NI	357	192	2340	955	523	9983

Performance evaluation for 7 sets in \mathbb{R}^3

(CPU = CPU Time in seconds; NI = Number of iterations)

Let
$$\Omega_i = \{x \in \mathbb{R}^d : \|x - p_i\|_{\infty} \le c_i\}$$
, $L_i = \{0_{\mathbb{R}^d}\}$ and $\gamma_{C_i} = \|\cdot\|$,
 $i = 1, \ldots, n, \varepsilon = 10^{-6}$ (p_i and c_i random, $i = 1, \ldots, n$)
We compare our dual method with the accelerated log-exponential
smoothing technique of [An, Giles, Nam & Rector, 2017]

	dual	log-exp
CPU	0.2889	55.4856
NI	1167	32265

Performance evaluation for 10 sets in \mathbb{R}^{10} , $\varepsilon = 10^{-6}$

(CPU = CPU Time in seconds; NI = Number of iterations)

	dual	log-exp
CPU	7.6268	70.3653
NI	1956	44173

Performance evaluation for 50 sets in \mathbb{R}^{50} , $\varepsilon = 10^{-6}$ (CPU = CPU Time in seconds; NI = Number of iterations)

We compare our dual method with the accelerated log-exponential smoothing technique of [An, Giles, Nam & Rector, 2017]

	dual	log-exp
CPU	104.5634	145.2422
NI	3003	69163

Performance evaluation for 100 sets in \mathbb{R}^{100} , $\varepsilon = 10^{-6}$ (CPU = CPU Time in seconds; NI = Number of iterations)

	dual	log-exp
CPU	5328.3671	7026.1593
NI	4017	691412

Performance evaluation for 100 sets in \mathbb{R}^{1000} , $\varepsilon = 10^{-6}$ (CPU = CPU Time in seconds; NI = Number of iterations)

www.mdpi.com/journal/algorithms/special_issues

an Open Access Journal

Algorithms in Convex Optimization and Applications

Guest Editor Dr. Sorin-Mihai Grad

Deadline 31 July 2019

- (Stochastic) Proximal point methods & Splitting techniques
- Convex & constrained optimization problems // Game theory
- ► Image processing // Machine learning // Location theory

Sorin-Mihai Grad

A proximal method for nonlinear minmax location problems via conjugate duality 23 / 23