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Motivation

Outline

Find the disc with minimal radius that intersects some given sets.
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Preliminaries

Notions

Parallel Splitting Algorithm

» X - Hilbert space

» f: X 5> R=RU{+o0}
» 0 AUCX

» 0 #£QCX

» indicator function: dyy : X = R, dy(x) =0if x € U and
dv(z) = 400 otherwise

» support function: oy : X — R, oy (y) = supyey y' @
» gauge: Yy : X = R, yy(x) =inf{t >0:2 € tU}
» generalized minimal-time function: ’TQUf X - R,

T (@) :=inf{yw(z—y—2)+fly):ye X,z €Q}
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Preliminaries

Notions

Parallel Splitting Algorithm

Theorem. (parallel splitting) [Bauschke & Combettes, 2009] Let
fi : R* — R be proper convex Isc, i = 1,...,n. When the problem

PPR)
( min {Z fi(z }
has at least one solution, dom f; N NI, intdom f; # 0, (uk)keN is

a sequence in [0,2] s.t. Y ey pk(2 — pi) = +o00, let v > 0, and
(i), € X X ... x X, setting

(VkEN) Tk—*z =1k,

Yik = PrOX,f, Tik, 1=1,...,n,
1 n
k= gzi:1 Yik»
i1 = Tig + e(Cqp — 1 —Yik), i=1,...,m,

then (ri)ren converges weakly to an optimal solution to (PPF).

Sorin-Mihai Grad A proximal method for nonlinear minmax location problems via conjugate duality

5/ 23



Minmax location problems Problem formulation
Application: Geometry

Application: Economics

Consider the following generalized location problem

(Br) inf max {hi (75", (@) +a:},

where

» () £S5 C X is closed and convex, n > 2
fori=1,...,n(n>2):

» a; € Ry =[0,+00) (set-up costs)

» (; C X is closed and convex with 0 € int C;

» () £ Q; C X is convex and compact
» f; : X — R is proper convex Isc
= R if Ry .
» h; : R — R with h;(x) €8 TTERE i convex Isc

= +00, otherwise
and increasing on R
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Minmax location problems Problem formulation

Application: Geometry
Application: Economics

> take f; = 0r,, where ) # L; C X, is closed and convex
» hi(z) =z +0r,(z), z2€R,i=1,...,n
> (szT) can be equivalently written as
(Pg’T) mGSi',nthR, ¢
inf{X;>0:(z—X\;Ci)N(Q;+L;)#D}+a; <t,i=1,..,n
Geometric interpretation
(Pé‘g,T): determine a point T € S and the smallest ¢ > 0 s.t.

(i—(f—ai)CZ-)ﬂ(Qi—i—Li);é@, 1=1,....n

» approach useful when the target sets are hard to handle, but
can be split into Minkowski sums of two simpler sets €2; and
L;,i=1,...,n, (e.g.: rounded rectangles = sums of
rectangles and circles)

> (Pg,T) is a generalization of the Sylvester problem (find the
smallest circle that encloses finitely many given points)
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Minmax location problems Problem formulation
Application: Geometry

Application: Economics

> take f; = g, where ) # G; C X, is closed and convex
> take hij(z) =x+0r (z), r€R, a; =0,i=1,...,n
> (P}ET) can be equivalently written as

(Pg ) inf t
> z€X,z; €Q;, oy, B, t>0, a;+8;<t,
(x+aCi)N(z;+6;G;)#0, i=1,...,n

Economic interpretation
> cities: 1,...,n
fori=1,...,n
» G;: demand of i for product P (produced by W)
» ();: characterization of the budget of ¢
» (;: characterization of the importance of ¢ for W

(Pg’fr): determine a location T € S for a production facility s.t.

the total demand for P can be satisfied in the shortest time ¢ > 0
8 /23
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A - Dual |
Duality investigations wEl] prvettem

Duality results

The dual problem to (P;?,T) we obtain (by means of a
“multicomposed” approach (cf. [G, Wanka & Wilfer, 2017]) is

n
3 *
(Dh,T) sup —0og (_ 2le>
1=
Njy 2E20, wEEX, Y A<,
i=1
Yoo (wi)<zFi=1,...,n
7

n

=D Lha)* () = Niai + (2 )" (w) + o, (w]))]
i=1
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- I Dual proble
Duality investigations ual problem

Duality results

Theorem. (strong duality) Between (P,‘?J-) and (D;fﬂ-) holds
strong duality, i.e. their optimal objective values coincide
(v(PffT) = v(D;iT)) and the dual problem has an optimal solution

(A, 2, @) € R x R x X™.

> in general one has v(P;zT) > U(D;S;T)

» the constraint qualification usually needed for strong duality is
fulfilled due of the hypotheses

> one can also derive corresponding necessary and sufficient
optimality conditions = in some special cases the optimal
solution Z to (P;ET) can be characterized as

1
re LS simin
= Bl 2 P I

il
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Problem reformulation
Projection formulae

Numerical experiments

Rewrite the location problem
P, inf max {TCZ x }
(Pa, 7) Inf max \7qs, ()

where (;, L; C X are closed and convex sets with 0 € int C; and
Q; C X are convex and compact sets, ¢ = 1,...,n, as follows

(Pa, T) :
inf {t4 35 e, (o= 3= 2200) + 00, () + 00,020 |

t>0, z,y;,2,€X,
i=1,...,n
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xample

Numerical experiments xample: 5
xample
xamples: h

The dual problem to (Pg, 7) can be rewritten as

(Dg, T)

n
whereE:{w*:(w{,...,w;)eXx...xX:'Zw;":

0
n
F:{w*:(wfj...,w;‘b)EXx...xX:Z’yc_o(w;k)gl}
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Prob\Pm reformulation

Numerical experiments

Examples: high dimensions

Theorem. (epi-projection) Let v : X™ — R be defined by
Yoz, ..., Tpn) = maxi<ij<n{||zi|| /w;}. It holds
(o1, ), i max {3 il } < &
Prepive (1,5 2n,8) = (0,...,0,0), ifE <0and Y willzi|| < —¢,
i=1

(ylﬂ R 7@7},7 9)7 OtherWise,
where fori =1,...,n one has

oy w4 Qui 0y S w4 €

[l Ytk wi +1

with & = (37 jy1 Wit — € i1 w7)/ (Xt wi + 1) and
ke{0,1,....,n— 1} is the unique integer such that

Tk + & <K < 7py1 + &, where the values 1y, ..., T, are defined by
70 := 0 and 7; := ||x;||/wi, i = 1,...,n, and in ascending order.
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Problem reformulation
Projection formula
Example: 7 sets in
Example: 7 sets in R
Examp 50 s in [
Example: 7 sets in

Numerical experiments

Examp high dimensions
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Numerical experiments

Examples: high dimensions

Letd=2, p1 = (—8,8)T, P2 = (—7,0)T, p3 = (—4, —1>T, Pa = (2,0)T,
ps = (2,-6)", ps = (7,1)", pr = (6,5)",

61:1, 62:2, 63:3, 6420.5, 0522, 06:1, 0721, b1:

0.5, bo =2, b3 =0.6, by =1, b5 = 1.5, bg =1, by = 0.5,
Q={reR?: ||z —pillo <ci}, Li = {z € R? : ||z|| < b;} and

vo, =1-Li=1,...,7.
e=10"1 e=10"%
primal dual primal dual
CPU | 0.3786 | 0.1174 | 0.7640 | 0.2973
NI 541 330 1106 830

Performance evaluation for 7 sets in R?
(CPU = CPU Time in seconds; NI = Number of iterations,
e =distance from the optimal value of the problem)

Sorin-Mihai Grad A proximal method for nonlinear minmax location problems via conjugate duality 15 / 23



Problem reformulation
Projection formulae
Example: 7 sets in R
Example: 7 sets in

Numerical experim Example: 50 sets in I
7 .

Example S in
Examples: high dimensions

&l
<
&

ps
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Problem reformulation

Numerical experiments

Examples: high dimensions

Let d=2, p1 = (=8,8)T, po = (=7,0)T, p3 = (=4, -1)7T, py =
(2,07, ps = (2,-6)T, ps = (7. 1)7, pr=(6,5)T, c1 =1, co =
2, c3=3,¢c4=05,¢c5=2,¢c6=1, cr =1, Qi:{SL’GRQZ

|z = pilloc < i}y Li = {02}, vo, = |-, i=1,...,7.

We compare our methods with the subgradient methods of
[Mordukhovich & Nam, 2014] and [Nam, An & Salinas, 2015]

primal | dual | subgrad.(1) | subgrad.(2)
CPU | 0.1904 | 0.0871 0.0416 1.2782
NI 399 181 918 70752
Performance evaluation for 7 sets in R? with ¢ = 10~*

primal | dual | subgrad.(1) | subgrad. (2)
CPU | 0.3377 | 0.1608 0.7016 -

NI 730 453 37854 500000+
Performance evaluation for 7 sets in R? with ¢ = 10~8
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Numerical experiments

Pr

E\:

Problem reformulation

n fol

Example: 50 sets in ]F“2

Example: 7 sets in R”
Examples: high dimensions

We compare our methods with the subgradient methods of
[Mordukhovich & Nam, 2014] and [Nam, An & Salinas, 2015]

primal | dual | subgrad.(1) | subgrad.(2)
CPU Time in sec. | 5.6477 | 0.4292 - 27.1555
Number of It. 2421 735 500000+ 383782

Performance evaluation for 50 sets in R? with ¢ = 104

primal dual | subgrad.(1) | subgrad.(2)
CPU Time in sec. | 16.1011 | 3.6020 - 32.2530
Number of It. 6983 7207 500000+ 436138

Performance evaluation for 50 sets in R2? with ¢ = 108
(CPU = CPU Time in seconds; NI = Number of iterations)
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Projection formula
Example
Example

Numerical experiments Example
Example: 7 sets in
Examples: high dimensions
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Numerical experiments

Examples: high dimensions

Let d =3, p1 = (-8,8,8)T, po = (=7,0,0)T, p3 = (—4,-1,1)T, py =
(2a0’2)T7 ps = (2, _6’2)T7 pe = (7,1, 1)T7 b7 = (67574)T’ 1=

05, i ={z eR®: ||z —pillc <ei}, Li ={0rs}, v, =, i=
1,...,7.

We compare our methods with the accelerated log-exponential
smoothing technique of [An, Giles, Nam & Rector, 2017]

e=10"1 e=10""%
primal dual | log-exp | primal dual log-exp
CPU | 0.1871 | 0.0992 | 6.9425 | 0.4234 | 0.2042 | 23.6893
NI 357 192 2340 955 523 9983

Performance evaluation for 7 sets in R?
(CPU = CPU Time in seconds; NI = Number of iterations)
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Numerical experiments

Example: 7
Examples: high dimensions

Let Q; = {z € RY: ||z — pilloo < i}, Li = {Opa} and 7, = || - ||,
i=1,...,n,e=10"° (p; and ¢; random, i = 1,...,n)

We compare our dual method with the accelerated log-exponential
smoothing technique of [An, Giles, Nam & Rector, 2017]

dual log-exp
CPU | 0.2889 | 55.4856
NI 1167 32265

Performance evaluation for 10 sets in R, ¢ =106
(CPU = CPU Time in seconds; NI = Number of iterations)

dual log-exp
CPU | 7.6268 | 70.3653
NI 1956 44173

Performance evaluation for 50 sets in R%Y, ¢ = 1076
(CPU = CPU Time in seconds; NI = Number of iterations)
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Problem reformulation
Projection formulae

Ex

Numerical experiments X
Ex R
Examples: high dimensions

We compare our dual method with the accelerated log-exponential
smoothing technique of [An, Giles, Nam & Rector, 2017]

dual log-exp
CPU | 104.5634 | 145.2422
NI 3003 69163

Performance evaluation for 100 sets in R0 ¢ =106
(CPU = CPU Time in seconds; NI = Number of iterations)

dual log-exp
CPU | 5328.3671 | 7026.1593
NI 4017 691412

Performance evaluation for 100 sets in R1000 - = 10=6
(CPU = CPU Time in seconds; NI = Number of iterations)
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