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Notions
Parallel Splitting Algorithm

I X - Hilbert space
I f : X → R = R ∪ {±∞}
I ∅ 6= U ⊆ X
I ∅ 6= Ω ⊆ X
I indicator function: δU : X → R, δU (x) = 0 if x ∈ U and
δU (x) = +∞ otherwise

I support function: σU : X → R, σU (y) = supx∈U y>x
I gauge: γU : X → R, γU (x) = inf{t > 0 : x ∈ tU}
I generalized minimal-time function: T UΩ,f : X → R,
T UΩ,f (x) := inf {γU (x− y − z) + f(y) : y ∈ X, z ∈ Ω}
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Notions
Parallel Splitting Algorithm

Theorem. (parallel splitting) [Bauschke & Combettes, 2009] Let
fi : Rd → R be proper convex lsc, i = 1, . . . , n. When the problem

(PDR) min
x∈X

{
n∑
i=1

fi(x)
}

has at least one solution, dom f1 ∩ ∩ni=2 int dom fi 6= ∅, (µk)k∈N is
a sequence in [0, 2] s.t.

∑
k∈N µk(2− µk) = +∞, let ν > 0, and

(xi,0)ni=1 ∈ X × . . .×X, setting

(∀k ∈ N) rk = 1
n

∑n
i=1 xi,k,

yi,k = proxνfi xi,k, i = 1, . . . , n,
qk = 1

n

∑n
i=1 yi,k,

xi,k+1 = xi,k + µk(2qk − rk − yi,k), i = 1, . . . , n,

then (rk)k∈N converges weakly to an optimal solution to (PDR).
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Problem formulation
Application: Geometry
Application: Economics

Consider the following generalized location problem
(PSh,T ) inf

x∈S
max

1≤i≤n

{
hi
(
T CiΩi,fi(x)

)
+ ai

}
,

where
I ∅ 6= S ⊆ X is closed and convex, n ≥ 2

for i = 1, . . . , n (n ≥ 2):
I ai ∈ R+ = [0,+∞) (set-up costs)
I Ci ⊆ X is closed and convex with 0 ∈ intCi
I ∅ 6= Ωi ⊆ X is convex and compact
I fi : X → R is proper convex lsc

I hi : R→ R with hi(x)
{
∈ R+, if x ∈ R+
= +∞, otherwise is convex lsc

and increasing on R+
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I take fi = δLi , where ∅ 6= Li ⊆ X, is closed and convex
I hi(x) = x+ δR+(x), x ∈ R, i = 1, . . . , n
I (PSh,T ) can be equivalently written as

(PSG,T ) inf
x∈S, t∈R,

inf{λi>0:(x−λiCi)∩(Ωi+Li)6=∅}+ai≤t,i=1,...,n

t

Geometric interpretation
(PSG,T ): determine a point x̄ ∈ S and the smallest t̄ > 0 s.t.

(x̄− (t̄− ai)Ci) ∩ (Ωi + Li) 6= ∅, i = 1, . . . , n

I approach useful when the target sets are hard to handle, but
can be split into Minkowski sums of two simpler sets Ωi and
Li, i = 1, . . . , n, (e.g.: rounded rectangles = sums of
rectangles and circles)

I (PSG,T ) is a generalization of the Sylvester problem (find the
smallest circle that encloses finitely many given points)
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Problem formulation
Application: Geometry
Application: Economics

I take fi = γGi , where ∅ 6= Gi ⊆ X, is closed and convex
I take hi(x) = x+ δR+(x), x ∈ R, ai = 0, i = 1, . . . , n
I (PSh,T ) can be equivalently written as

(PSE,T ) inf
x∈X,zi∈Ωi, αi, βi, t>0, αi+βi≤t,

(x+αCi)∩(zi+βiGi)6=∅, i=1,...,n

t

Economic interpretation
I cities: 1, . . . , n

for i = 1, . . . , n
I Gi: demand of i for product P (produced by W )
I Ωi: characterization of the budget of i
I Ci: characterization of the importance of i for W

(PSE,T ): determine a location x ∈ S for a production facility s.t.
the total demand for P can be satisfied in the shortest time t̄ > 0
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Dual problem
Duality results

The dual problem to (PSh,T ) we obtain (by means of a
“multicomposed” approach (cf. [G, Wanka & Wilfer, 2017]) is

(DS
h,T ) sup

λi, z
∗
i
≥0, w∗

i
∈X,

n∑
i=1

λi≤1,

γ
C0
i

(w∗
i

)≤z∗
i
,i=1,...,n

{
− σS

(
−

n∑
i=1

w∗i

)

−
n∑
i=1

[(λihi)∗ (z∗i )− λiai + (z∗i fi)∗ (w∗i ) + σΩi(w∗i )]
}
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Duality results

Theorem. (strong duality) Between (PSh,T ) and (DS
h,T ) holds

strong duality, i.e. their optimal objective values coincide
(v(PSh,T ) = v(DS

h,T )) and the dual problem has an optimal solution
(λ̄, z̄∗, w̄) ∈ Rn+ × Rn+ ×Xn.

I in general one has v(PSh,T ) ≥ v(DS
h,T )

I the constraint qualification usually needed for strong duality is
fulfilled due of the hypotheses

I one can also derive corresponding necessary and sufficient
optimality conditions ⇒ in some special cases the optimal
solution x̄ to (PSh,T ) can be characterized as

x = 1∑
i∈I

βi‖w∗i ‖
∑
i∈I

βi‖w∗i ‖pi
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Problem reformulation
Projection formulae
Example: 7 sets in R2

Example: 7 sets in R2

Example: 50 sets in R2

Example: 7 sets in R3

Examples: high dimensions

Rewrite the location problem

(PG, T ) inf
x∈X

max
1≤i≤n

{
T CiΩi,δLi

(x)
}
,

where Ci, Li ⊆ X are closed and convex sets with 0 ∈ intCi and
Ωi ⊆ X are convex and compact sets, i = 1, . . . , n, as follows

(PG, T )

inf
t≥0, x,yi,zi∈X,

i=1,...,n

{
t+

n∑
i=1

[
δepi γCi (x− yi − zi, t) + δΩi(yi) + δLi(zi)

]}
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Example: 7 sets in R2

Example: 50 sets in R2

Example: 7 sets in R3

Examples: high dimensions

The dual problem to (PG, T ) can be rewritten as

(DG, T )

− inf
w∗i ∈X, i=1,...,n

{
n∑
i=1

[σLi (w∗) + σΩi (w∗)] + δF (w∗) + δE(w∗)
}
,

where E =
{
w∗ = (w∗1, . . . , w∗n) ∈ X × . . .×X :

n∑
i=1

w∗i = 0
}

and

F =
{
w∗ = (w∗1, . . . , w∗n) ∈ X × . . .×X :

n∑
i=1

γC0
i
(w∗i ) ≤ 1

}
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Projection formulae
Example: 7 sets in R2

Example: 7 sets in R2

Example: 50 sets in R2

Example: 7 sets in R3

Examples: high dimensions

Theorem. (epi-projection) Let γC : Xn → R be defined by
γC(x1, . . . , xn) := max1≤i≤n{‖xi‖/wi}. It holds

Prepi γC (x1, . . . , xn, ξ) =


(x1, . . . , xn), if max

1≤i≤n

{
1
wi
‖xi‖

}
≤ ξ,

(0, . . . , 0, 0), if ξ < 0 and
n∑
i=1

wi‖xi‖ ≤ −ξ,

(y1, . . . , yn, θ), otherwise,

where for i = 1, . . . , n one has

yi = xi −
max{‖xi‖ − (κ+ ξ)wi, 0}

‖xi‖
xi, and θ =

∑n
i=k+1w

2
i τi + ξ∑n

i=k+1w
2
i + 1

with κ = (
∑n
i=k+1w

2
i τi − ξ

∑n
i=k+1w

2
i )/(

∑n
i=k+1w

2
i + 1) and

k ∈ {0, 1, . . . , n− 1} is the unique integer such that
τk + ξ ≤ κ ≤ τk+1 + ξ, where the values τ0, . . . , τn are defined by
τ0 := 0 and τi := ‖xi‖/wi, i = 1, . . . , n, and in ascending order.
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Problem reformulation
Projection formulae
Example: 7 sets in R2

Example: 7 sets in R2

Example: 50 sets in R2

Example: 7 sets in R3

Examples: high dimensions

Let d = 2, p1 = (−8, 8)T , p2 = (−7, 0)T , p3 = (−4,−1)T , p4 = (2, 0)T ,
p5 = (2,−6)T , p6 = (7, 1)T , p7 = (6, 5)T ,
c1 = 1, c2 = 2, c3 = 3, c4 = 0.5, c5 = 2, c6 = 1, c7 = 1, b1 =
0.5, b2 = 2, b3 = 0.6, b4 = 1, b5 = 1.5, b6 = 1, b7 = 0.5,
Ωi = {x ∈ R2 : ‖x− pi‖∞ ≤ ci}, Li = {x ∈ R2 : ‖x‖ ≤ bi} and
γCi = ‖ · ‖, i = 1, . . . , 7.

ε = 10−4 ε = 10−8

primal dual primal dual
CPU 0.3786 0.1174 0.7640 0.2973
NI 541 330 1106 830
Performance evaluation for 7 sets in R2

(CPU = CPU Time in seconds; NI = Number of iterations,
ε =distance from the optimal value of the problem)
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Problem reformulation
Projection formulae
Example: 7 sets in R2

Example: 7 sets in R2

Example: 50 sets in R2

Example: 7 sets in R3

Examples: high dimensions

Let d = 2, p1 = (−8, 8)T , p2 = (−7, 0)T , p3 = (−4,−1)T , p4 =
(2, 0)T , p5 = (2,−6)T , p6 = (7, 1)T , p7 = (6, 5)T , c1 = 1, c2 =
2, c3 = 3, c4 = 0.5, c5 = 2, c6 = 1, c7 = 1, Ωi = {x ∈ R2 :
‖x− pi‖∞ ≤ ci}, Li = {0R2}, γCi

= ‖ · ‖, i = 1, . . . , 7.
We compare our methods with the subgradient methods of
[Mordukhovich & Nam, 2014] and [Nam, An & Salinas, 2015]

primal dual subgrad.(1) subgrad.(2)
CPU 0.1904 0.0871 0.0416 1.2782
NI 399 181 918 70752

Performance evaluation for 7 sets in R2 with ε = 10−4

primal dual subgrad.(1) subgrad. (2)
CPU 0.3377 0.1608 0.7016 -
NI 730 453 37854 500000+
Performance evaluation for 7 sets in R2 with ε = 10−8

(CPU = CPU Time in seconds; NI = Number of iterations)Sorin-Mihai Grad A proximal method for nonlinear minmax location problems via conjugate duality 17 / 23
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Projection formulae
Example: 7 sets in R2

Example: 7 sets in R2

Example: 50 sets in R2

Example: 7 sets in R3

Examples: high dimensions

We compare our methods with the subgradient methods of
[Mordukhovich & Nam, 2014] and [Nam, An & Salinas, 2015]

primal dual subgrad.(1) subgrad.(2)
CPU Time in sec. 5.6477 0.4292 - 27.1555
Number of It. 2421 735 500000+ 383782

Performance evaluation for 50 sets in R2 with ε = 10−4

primal dual subgrad.(1) subgrad.(2)
CPU Time in sec. 16.1011 3.6020 - 32.2530
Number of It. 6983 7207 500000+ 436138

Performance evaluation for 50 sets in R2 with ε = 10−8

(CPU = CPU Time in seconds; NI = Number of iterations)
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Problem reformulation
Projection formulae
Example: 7 sets in R2

Example: 7 sets in R2

Example: 50 sets in R2

Example: 7 sets in R3

Examples: high dimensions

Let d = 3, p1 = (−8, 8, 8)T , p2 = (−7, 0, 0)T , p3 = (−4,−1, 1)T , p4 =
(2, 0, 2)T , p5 = (2,−6, 2)T , p6 = (7, 1, 1)T , p7 = (6, 5, 4)T , c1 =
0.5, Ωi = {x ∈ R3 : ‖x− pi‖∞ ≤ ci}, Li = {0R3}, γCi

= ‖ · ‖, i =
1, . . . , 7.
We compare our methods with the accelerated log-exponential
smoothing technique of [An, Giles, Nam & Rector, 2017]

ε = 10−4 ε = 10−8

primal dual log-exp primal dual log-exp
CPU 0.1871 0.0992 6.9425 0.4234 0.2042 23.6893
NI 357 192 2340 955 523 9983

Performance evaluation for 7 sets in R3

(CPU = CPU Time in seconds; NI = Number of iterations)
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Projection formulae
Example: 7 sets in R2

Example: 7 sets in R2

Example: 50 sets in R2

Example: 7 sets in R3

Examples: high dimensions

Let Ωi = {x ∈ Rd : ‖x− pi‖∞ ≤ ci}, Li = {0Rd} and γCi
= ‖ · ‖,

i = 1, . . . , n, ε = 10−6 (pi and ci random, i = 1, . . . , n)
We compare our dual method with the accelerated log-exponential
smoothing technique of [An, Giles, Nam & Rector, 2017]

dual log-exp
CPU 0.2889 55.4856
NI 1167 32265

Performance evaluation for 10 sets in R10, ε = 10−6

(CPU = CPU Time in seconds; NI = Number of iterations)

dual log-exp
CPU 7.6268 70.3653
NI 1956 44173

Performance evaluation for 50 sets in R50, ε = 10−6

(CPU = CPU Time in seconds; NI = Number of iterations)
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Example: 7 sets in R2

Example: 50 sets in R2

Example: 7 sets in R3

Examples: high dimensions

We compare our dual method with the accelerated log-exponential
smoothing technique of [An, Giles, Nam & Rector, 2017]

dual log-exp
CPU 104.5634 145.2422
NI 3003 69163

Performance evaluation for 100 sets in R100, ε = 10−6

(CPU = CPU Time in seconds; NI = Number of iterations)

dual log-exp
CPU 5328.3671 7026.1593
NI 4017 691412

Performance evaluation for 100 sets in R1000, ε = 10−6

(CPU = CPU Time in seconds; NI = Number of iterations)
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