Solving nonlinear minmax location problems with minimal time functions by means of proximal point methods via conjugate duality

Sorin-Mihai Grad

joint work with Oleg Wilfer (Chemnitz UT)

Games, Dynamics \& Optimization - GDO2019, Cluj-Napoca

Find the disc with minimal radius that intersects some given sets.

Outline

- Preliminaries
- Minmax location problems
- Duality investigations
- Numerical experiments
- X - Hilbert space
- $f: X \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}$
- $\emptyset \neq U \subseteq X$
- $\emptyset \neq \Omega \subseteq X$
- indicator function: $\delta_{U}: X \rightarrow \overline{\mathbb{R}}, \delta_{U}(x)=0$ if $x \in U$ and $\delta_{U}(x)=+\infty$ otherwise
- support function: $\sigma_{U}: X \rightarrow \overline{\mathbb{R}}, \sigma_{U}(y)=\sup _{x \in U} y^{\top} x$
- gauge: $\gamma_{U}: X \rightarrow \overline{\mathbb{R}}, \gamma_{U}(x)=\inf \{t>0: x \in t U\}$
- generalized minimal-time function: $\mathcal{T}_{\Omega, f}^{U}: X \rightarrow \mathbb{R}$, $\mathcal{T}_{\Omega, f}^{U}(x):=\inf \left\{\gamma_{U}(x-y-z)+f(y): y \in X, z \in \Omega\right\}$

Theorem. (parallel splitting) [Bauschke \& Combettes, 2009] Let $f_{i}: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ be proper convex Isc, $i=1, \ldots, n$. When the problem

$$
\left(P^{D R}\right) \min _{x \in X}\left\{\sum_{i=1}^{n} f_{i}(x)\right\}
$$

has at least one solution, $\operatorname{dom} f_{1} \cap \cap_{i=2}^{n} \operatorname{int} \operatorname{dom} f_{i} \neq \emptyset,\left(\mu_{k}\right)_{k \in \mathbb{N}}$ is a sequence in $[0,2]$ s.t. $\sum_{k \in \mathbb{N}} \mu_{k}\left(2-\mu_{k}\right)=+\infty$, let $\nu>0$, and $\left(x_{i, 0}\right)_{i=1}^{n} \in X \times \ldots \times X$, setting

$$
\begin{array}{l|l}
(\forall k \in \mathbb{N}) & \begin{array}{l}
r_{k}=\frac{1}{n} \sum_{i=1}^{n} x_{i, k} \\
y_{i, k}=\operatorname{prox}_{\nu f_{i}} x_{i, k}, i=1, \ldots, n \\
q_{k}=\frac{1}{n} \sum_{i=1}^{n} y_{i, k} \\
x_{i, k+1}=x_{i, k}+\mu_{k}\left(2 q_{k}-r_{k}-y_{i, k}\right), i=1, \ldots, n
\end{array}
\end{array}
$$

then $\left(r_{k}\right)_{k \in \mathbb{N}}$ converges weakly to an optimal solution to $\left(P^{D R}\right)$.

Consider the following generalized location problem $\left(P_{h, \mathcal{T}}^{S}\right) \quad \inf _{x \in S} \max _{1 \leq i \leq n}\left\{h_{i}\left(\mathcal{T}_{\Omega_{i}, f_{i}}^{C_{i}}(x)\right)+a_{i}\right\}$,
where

- $\emptyset \neq S \subseteq X$ is closed and convex, $n \geq 2$
for $i=1, \ldots, n(n \geq 2)$:
- $a_{i} \in \mathbb{R}_{+}=[0,+\infty)$ (set-up costs)
- $C_{i} \subseteq X$ is closed and convex with $0 \in \operatorname{int} C_{i}$
- $\emptyset \neq \Omega_{i} \subseteq X$ is convex and compact
- $f_{i}: X \rightarrow \overline{\mathbb{R}}$ is proper convex Isc
- $h_{i}: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ with $h_{i}(x)\left\{\begin{array}{ll}\in \mathbb{R}_{+}, & \text {if } x \in \mathbb{R}_{+} \\ =+\infty, & \text { otherwise }\end{array}\right.$ is convex Isc and increasing on \mathbb{R}_{+}
- take $f_{i}=\delta_{L_{i}}$, where $\emptyset \neq L_{i} \subseteq X$, is closed and convex
- $h_{i}(x)=x+\delta_{\mathbb{R}_{+}}(x), x \in \mathbb{R}, i=1, \ldots, n$
- $\left(P_{h, \mathcal{T}}^{S}\right)$ can be equivalently written as
$\left(P_{G, \mathcal{T}}^{S}\right) \quad \inf _{x \in S,}$

$$
\inf \left\{\lambda_{i}>0:\left(x-\lambda_{i} C_{i}\right) \cap\left(\Omega_{i}+L_{i}\right) \neq \emptyset\right\}+a_{i} \leq t, i=1, \ldots, n
$$

Geometric interpretation
$\left(P_{G, \mathcal{T}}^{S}\right)$: determine a point $\bar{x} \in S$ and the smallest $\bar{t}>0$ s.t.

$$
\left(\bar{x}-\left(\bar{t}-a_{i}\right) C_{i}\right) \cap\left(\Omega_{i}+L_{i}\right) \neq \emptyset, i=1, \ldots, n
$$

- approach useful when the target sets are hard to handle, but can be split into Minkowski sums of two simpler sets Ω_{i} and $L_{i}, i=1, \ldots, n$, (e.g.: rounded rectangles $=$ sums of rectangles and circles)
- $\left(P_{G, \mathcal{T}}^{S}\right)$ is a generalization of the Sylvester problem (find the smallest circle that encloses finitely many given points)
- take $f_{i}=\gamma_{G_{i}}$, where $\emptyset \neq G_{i} \subseteq X$, is closed and convex
- take $h_{i}(x)=x+\delta_{\mathbb{R}_{+}}(x), x \in \mathbb{R}, a_{i}=0, i=1, \ldots, n$
- $\left(P_{h, \mathcal{T}}^{S}\right)$ can be equivalently written as
$\left(P_{E, \mathcal{T}}^{S}\right)$

$$
\begin{gathered}
\inf _{\substack{ \\
x \in X, z_{i} \in \Omega_{i}, \alpha_{i}, \beta_{i}, t>0,\left(x+\alpha C_{i}\right) \cap\left(z_{i}+\beta_{i} G_{i}\right) \neq \emptyset, \beta_{i} \leq t, i=1, \ldots, n}} t .
\end{gathered}
$$

Economic interpretation

- cities: $1, \ldots, n$
for $i=1, \ldots, n$
- G_{i} : demand of i for product P (produced by W)
- Ω_{i} : characterization of the budget of i
- C_{i} : characterization of the importance of i for W
$\left(P_{E, \mathcal{T}}^{S}\right)$: determine a location $\bar{x} \in S$ for a production facility s.t. the total demand for P can be satisfied in the shortest time $\bar{t}>0$

The dual problem to $\left(P_{h, \mathcal{T}}^{S}\right)$ we obtain (by means of a "multicomposed" approach (cf. [G, Wanka \& Wilfer, 2017]) is

$$
\begin{array}{r}
\left(D_{h, \mathcal{T}}^{S}\right) \sup _{\substack{\lambda_{i}, z_{i}^{*} \geq 0, w_{i}^{*} \in X, \sum_{i=1}^{n} \lambda_{i} \leq 1, \gamma_{i}^{0}\left(w_{i}^{*}\right) \leq z_{i}^{*}, i=1, \ldots, n}}\left\{-\sigma_{S}\left(-\sum_{i=1}^{n} w_{i}^{*}\right)\right. \\
\left.-\sum_{i=1}^{n}\left[\left(\lambda_{i} h_{i}\right)^{*}\left(z_{i}^{*}\right)-\lambda_{i} a_{i}+\left(z_{i}^{*} f_{i}\right)^{*}\left(w_{i}^{*}\right)+\sigma_{\Omega_{i}}\left(w_{i}^{*}\right)\right]\right\}
\end{array}
$$

Theorem. (strong duality) Between $\left(P_{h, \mathcal{T}}^{S}\right)$ and $\left(D_{h, \mathcal{T}}^{S}\right)$ holds strong duality, i.e. their optimal objective values coincide $\left(v\left(P_{h, \mathcal{T}}^{S}\right)=v\left(D_{h, \mathcal{T}}^{S}\right)\right)$ and the dual problem has an optimal solution $\left(\bar{\lambda}, \bar{z}^{*}, \bar{w}\right) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n} \times X^{n}$.

- in general one has $v\left(P_{h, \mathcal{T}}^{S}\right) \geq v\left(D_{h, \mathcal{T}}^{S}\right)$
- the constraint qualification usually needed for strong duality is fulfilled due of the hypotheses
- one can also derive corresponding necessary and sufficient optimality conditions \Rightarrow in some special cases the optimal solution \bar{x} to $\left(P_{h, \mathcal{T}}^{S}\right)$ can be characterized as

$$
\bar{x}=\frac{1}{\sum_{i \in \bar{I}} \beta_{i}\left\|\bar{w}_{i}^{*}\right\|} \sum_{i \in \bar{I}} \beta_{i}\left\|\bar{w}_{i}^{*}\right\| p_{i}
$$

Rewrite the location problem
$\left(P_{G, \mathcal{T}}\right) \quad \inf _{x \in X} \max _{1 \leq i \leq n}\left\{\mathcal{T}_{\Omega_{i}, \delta_{L_{i}}}^{C_{i}}(x)\right\}$,
where $C_{i}, L_{i} \subseteq X$ are closed and convex sets with $0 \in \operatorname{int} C_{i}$ and $\Omega_{i} \subseteq X$ are convex and compact sets, $i=1, \ldots, n$, as follows
$\left(P_{G}, \mathcal{T}\right)$
$\inf _{\substack{t \geq 0, x, y_{i}, z_{i} \in X, i=1, \ldots, n}}\left\{t+\sum_{i=1}^{n}\left[\delta_{\text {epi } \gamma_{C_{i}}}\left(x-y_{i}-z_{i}, t\right)+\delta_{\Omega_{i}}\left(y_{i}\right)+\delta_{L_{i}}\left(z_{i}\right)\right]\right\}$

The dual problem to $\left(P_{G}, \mathcal{T}\right)$ can be rewritten as
$\left(D_{G}, \mathcal{T}\right)$
$-\inf _{w_{i}^{*} \in X, i=1, \ldots, n}\left\{\sum_{i=1}^{n}\left[\sigma_{L_{i}}\left(w^{*}\right)+\sigma_{\Omega_{i}}\left(w^{*}\right)\right]+\delta_{F}\left(w^{*}\right)+\delta_{E}\left(w^{*}\right)\right\}$,
where $E=\left\{w^{*}=\left(w_{1}^{*}, \ldots, w_{n}^{*}\right) \in X \times \ldots \times X: \sum_{i=1}^{n} w_{i}^{*}=0\right\}$ and
$F=\left\{w^{*}=\left(w_{1}^{*}, \ldots, w_{n}^{*}\right) \in X \times \ldots \times X: \sum_{i=1}^{n} \gamma_{C_{i}^{0}}\left(w_{i}^{*}\right) \leq 1\right\}$

Theorem. (epi-projection) Let $\gamma_{C}: X^{n} \rightarrow \mathbb{R}$ be defined by $\gamma_{C}\left(x_{1}, \ldots, x_{n}\right):=\max _{1 \leq i \leq n}\left\{\left\|x_{i}\right\| / w_{i}\right\}$. It holds
$\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$, if $\max _{1 \leq i \leq n}\left\{\frac{1}{w_{i}}\left\|x_{i}\right\|\right\} \leq \xi$,
$\operatorname{Pr}_{\text {epi } \gamma_{C}}\left(x_{1}, \ldots, x_{n}, \xi\right)=\left\{(0, \ldots, 0,0)\right.$, if $\xi<0$ and $\sum_{i=1}^{n} w_{i}\left\|x_{i}\right\| \leq-\xi$,
$\left(\bar{y}_{1}, \ldots, \bar{y}_{n}, \bar{\theta}\right)$, otherwise,
where for $i=1, \ldots, n$ one has
$\bar{y}_{i}=x_{i}-\frac{\max \left\{\left\|x_{i}\right\|-(\bar{\kappa}+\xi) w_{i}, 0\right\}}{\left\|x_{i}\right\|} x_{i}$, and $\bar{\theta}=\frac{\sum_{i=k+1}^{n} w_{i}^{2} \tau_{i}+\xi}{\sum_{i=k+1}^{n} w_{i}^{2}+1}$
with $\bar{\kappa}=\left(\sum_{i=k+1}^{n} w_{i}^{2} \tau_{i}-\xi \sum_{i=k+1}^{n} w_{i}^{2}\right) /\left(\sum_{i=k+1}^{n} w_{i}^{2}+1\right)$ and $k \in\{0,1, \ldots, n-1\}$ is the unique integer such that
$\tau_{k}+\xi \leq \bar{\kappa} \leq \tau_{k+1}+\xi$, where the values $\tau_{0}, \ldots, \tau_{n}$ are defined by
$\tau_{0}:=0$ and $\tau_{i}:=\left\|x_{i}\right\| / w_{i}, i=1, \ldots, n$, and in ascending order.

Preliminaries Minmax location problems

Duality investigations
Numerical experiments Algorithms - Special Issue

Problem reformulation
Projection formulae
Example: 7 sets in \mathbb{R}^{2}
Example: 7 sets in \mathbb{R}^{2}
Example: 50 sets in \mathbb{R}^{2}
Example: 7 sets in \mathbb{R}^{3}
Examples: high dimensions

Let $d=2, p_{1}=(-8,8)^{T}, p_{2}=(-7,0)^{T}, p_{3}=(-4,-1)^{T}, p_{4}=(2,0)^{T}$,
$p_{5}=(2,-6)^{T}, p_{6}=(7,1)^{T}, p_{7}=(6,5)^{T}$,
$c_{1}=1, c_{2}=2, c_{3}=3, c_{4}=0.5, c_{5}=2, c_{6}=1, c_{7}=1, b_{1}=$
$0.5, b_{2}=2, b_{3}=0.6, b_{4}=1, b_{5}=1.5, b_{6}=1, b_{7}=0.5$,
$\Omega_{i}=\left\{x \in \mathbb{R}^{2}:\left\|x-p_{i}\right\|_{\infty} \leq c_{i}\right\}, L_{i}=\left\{x \in \mathbb{R}^{2}:\|x\| \leq b_{i}\right\}$ and $\gamma_{C_{i}}=\|\cdot\|, i=1, \ldots, 7$.

	$\varepsilon=10^{-4}$		$\varepsilon=10^{-8}$	
	primal	dual	primal	dual
CPU	0.3786	0.1174	0.7640	0.2973
NI	541	330	1106	830

Performance evaluation for 7 sets in \mathbb{R}^{2}
(CPU = CPU Time in seconds; $\mathrm{NI}=$ Number of iterations,
$\varepsilon=$ distance from the optimal value of the problem)

Preliminaries Minmax location problems

Duality investigations Numerical experiments Algorithms - Special Issue

Problem reformulation
Projection formulae
Example: 7 sets in \mathbb{R}^{2}
Example: 7 sets in \mathbb{R}^{2}
Example: 50 sets in \mathbb{R}^{2}
Example: 7 sets in \mathbb{R}^{3}
Examples: high dimensions

Let $d=2, p_{1}=(-8,8)^{T}, p_{2}=(-7,0)^{T}, p_{3}=(-4,-1)^{T}, p_{4}=$ $(2,0)^{T}, p_{5}=(2,-6)^{T}, p_{6}=(7,1)^{T}, p_{7}=(6,5)^{T}, c_{1}=1, c_{2}=$ $2, c_{3}=3, c_{4}=0.5, c_{5}=2, c_{6}=1, c_{7}=1, \Omega_{i}=\left\{x \in \mathbb{R}^{2}:\right.$
$\left.\left\|x-p_{i}\right\|_{\infty} \leq c_{i}\right\}, L_{i}=\left\{0_{\mathbb{R}^{2}}\right\}, \gamma_{C_{i}}=\|\cdot\|, i=1, \ldots, 7$.
We compare our methods with the subgradient methods of [Mordukhovich \& Nam, 2014] and [Nam, An \& Salinas, 2015]

	primal	dual	subgrad.(1)	subgrad.(2)
CPU	0.1904	0.0871	0.0416	1.2782
NI	399	181	918	70752

Performance evaluation for 7 sets in \mathbb{R}^{2} with $\varepsilon=10^{-4}$

	primal	dual	subgrad.(1)	subgrad. (2)
CPU	0.3377	0.1608	0.7016	-
NI	730	453	37854	$500000+$

Performance evaluation for 7 sets in \mathbb{R}^{2} with $\varepsilon=10^{-8}$

We compare our methods with the subgradient methods of [Mordukhovich \& Nam, 2014] and [Nam, An \& Salinas, 2015]

	primal	dual	subgrad.(1)	subgrad.(2)
CPU Time in sec.	5.6477	0.4292	-	27.1555
Number of It.	2421	735	$500000+$	383782

Performance evaluation for 50 sets in \mathbb{R}^{2} with $\varepsilon=10^{-4}$

	primal	dual	subgrad.(1)	subgrad.(2)
CPU Time in sec.	16.1011	3.6020	-	32.2530
Number of It.	6983	7207	$500000+$	436138

Performance evaluation for 50 sets in \mathbb{R}^{2} with $\varepsilon=10^{-8}$ (CPU $=$ CPU Time in seconds; $\mathrm{NI}=$ Number of iterations)

Preliminaries Minmax location problems

Duality investigations
Numerical experiments
Algorithms - Special Issue

Problem reformulation
Projection formulae
Example: 7 sets in \mathbb{R}^{2}
Example: 7 sets in \mathbb{R}^{2}
Example: 50 sets in \mathbb{R}^{2}
Example: 7 sets in \mathbb{R}^{3}
Examples: high dimensions

Let $d=3, p_{1}=(-8,8,8)^{T}, p_{2}=(-7,0,0)^{T}, p_{3}=(-4,-1,1)^{T}, p_{4}=$ $(2,0,2)^{T}, p_{5}=(2,-6,2)^{T}, p_{6}=(7,1,1)^{T}, p_{7}=(6,5,4)^{T}, c_{1}=$ $0.5, \Omega_{i}=\left\{x \in \mathbb{R}^{3}:\left\|x-p_{i}\right\|_{\infty} \leq c_{i}\right\}, L_{i}=\left\{0_{\mathbb{R}^{3}}\right\}, \gamma_{C_{i}}=\|\cdot\|, i=$ $1, \ldots, 7$.
We compare our methods with the accelerated log-exponential smoothing technique of [An, Giles, Nam \& Rector, 2017]

	$\varepsilon=10^{-4}$			$\varepsilon=10^{-8}$		
	primal	dual	log-exp	primal	dual	log-exp
CPU	0.1871	0.0992	6.9425	0.4234	0.2042	23.6893
NI	357	192	2340	955	523	9983

Performance evaluation for 7 sets in \mathbb{R}^{3}
(CPU $=$ CPU Time in seconds; $\mathrm{NI}=$ Number of iterations)

Let $\Omega_{i}=\left\{x \in \mathbb{R}^{d}:\left\|x-p_{i}\right\|_{\infty} \leq c_{i}\right\}, L_{i}=\left\{0_{\mathbb{R}^{d}}\right\}$ and $\gamma_{C_{i}}=\|\cdot\|$,
$i=1, \ldots, n, \varepsilon=10^{-6}\left(p_{i}\right.$ and c_{i} random, $\left.i=1, \ldots, n\right)$
We compare our dual method with the accelerated log-exponential smoothing technique of [An, Giles, Nam \& Rector, 2017]

	dual	log-exp
CPU	0.2889	55.4856
NI	1167	32265

Performance evaluation for 10 sets in $\mathbb{R}^{10}, \varepsilon=10^{-6}$
(CPU $=$ CPU Time in seconds; $\mathrm{NI}=$ Number of iterations)

	dual	log-exp
CPU	7.6268	70.3653
NI	1956	44173

Performance evaluation for 50 sets in $\mathbb{R}^{50}, \varepsilon=10^{-6}$
(CPU $=$ CPU Time in seconds; $\mathrm{NI}=$ Number of iterations)

We compare our dual method with the accelerated log-exponential smoothing technique of [An, Giles, Nam \& Rector, 2017]

	dual	log-exp
CPU	104.5634	145.2422
NI	3003	69163

Performance evaluation for 100 sets in $\mathbb{R}^{100}, \varepsilon=10^{-6}$ (CPU = CPU Time in seconds; $\mathrm{NI}=$ Number of iterations)

	dual	log-exp
CPU	5328.3671	7026.1593
NI	4017	691412

Performance evaluation for 100 sets in $\mathbb{R}^{1000}, \varepsilon=10^{-6}$
(CPU $=$ CPU Time in seconds; $\mathrm{NI}=$ Number of iterations)

Algorithms in Convex Optimization and Applications

Guest Editor

Dr. Sorin-Mihai Grad

Deadline

31 July 2019

Soecialsue

Invitation to submit

- (Stochastic) Proximal point methods \& Splitting techniques
- Convex \& constrained optimization problems // Game theory
- Image processing // Machine learning // Location theory

