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The problem

minx f(x)

g1(x) ≤ 0

...

gm(x) ≤ 0

x ∈ K

f , g1, . . . gm are C1

K ⊆ <n is closed + convex
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g(x) =

 g1(x)
...

gm(x)



and therefore

minx f(x)

g(x) ≤ 0

x ∈ K
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What are we looking for?
We do not assume constraint qualifications or any other conditions and
show that the algorithm behaves sensibly even in “extreme situations”

Our target are generalized stationary points, i.e a point x that satisfies one
of the three following conditions

It is a stationary point of the feasibility problem min ‖g+(x)‖
It is a Fritz-John point

It is a KKT point

A point satisfying any of the above three conditions is termed a
(generalized) stationary point

Only after this study has been accomplished will we add conditions to
exclude bad cases

a+ , max{0, a}
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Two main results

The first Diminishing Stepsize Method (DSM) for nonconvex
constrained optimization problems

The first iteration complexity result for an SQP-type method, one of
the very few iteration complexity results in nonconvex constrained
optimization

For both results the main tool is the (sometimes) invisible use of some
penalty function
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Diminishing Stepsize Methods

DSMs generate a sequence {xν} by setting

xν+1 = xν + γνdν ,

where dν is a suitable direction and γν is a positive stepsize chosen,
possibly independently of the problem at hand, so that

γν ↓ 0,

∞∑
ν=0

γν = ∞.
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DSM (for smooth problems): pros and cons

Pros Cons

• Very simple • Slow in practice

• Useful when the computation of the

objective function is costly

• Important when there is “noise”

• Effective in distributed and

incremental methods

Recent surge of interest because of Big Data
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DSMs first introduce in the ’60 in connection to nondifferentiable
convex optimization

Convergence based on decrease of iterates’ distance to the solution set

If applied to differentiable problems, alternative arguments available,
based on objective function decrease, and also nonconvex problems
can be tackled

For differentiable problems the situation is (roughly) the following:

Convex Nonconvex

Unconstrained Yes Yes

Constrained Yes No

We aim at filling the right bottom corner



10

The basic idea is to use an SQP-like direction: dν is the solution of

mind f(xν) +∇f(xν)Td+ 1
2‖d‖

2

g(xν) +∇g(xν)Td ≤ 0

xν + d ∈ K

Possible problems:

This subproblem could have an empty feasible set

The subproblem could be a bad approximation of the original problem
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To deal with the feasibility issue, we enlarge the feasible set

mind f(xν) +∇f(xν)Td+ 1
2‖d‖

2

g(xν) +∇g(xν)Td ≤ κ(x)

xν + d ∈ K

where κ(x) ≥ 0 and

to compute κ(x) we must solve a (surely solvable) problem

κ(x) ,
1

2
max
i
{gi(x)+}

+
1

2
min
d

{
max
i
{g̃(d;x)+} | ‖d‖∞ ≤ ρ, x+ d ∈ K

}
where ρ > 0 is any positive constant

if x is feasible we can take κ(x) = 0
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For technical reasons we also add a simple bound on the magnitude of d

mind f(xν) +∇f(xν)Td+ 1
2‖d‖

2

g(xν) +∇g(xν)Td ≤ κ(x)

‖d‖∞ ≤ β

xν + d ∈ K

where β > ρ is a given constant.
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To have a better approximation of the original problem and therefore a
better direction d we can use approximations of f and g different from the
linear/quadratic ones showed before

mind f̃(d;xν)

g̃(d;xν) ≤ κ(x)

‖d‖∞ ≤ β

xν + d ∈ K

f̃(•;x) is strongly convex

∇df̃(0;x) = ∇f(x)

g̃(•;x) is convex

∇dg̃(0;x) = ∇g(x)

g̃(0;x) = g(x)

+ other technical assumptions
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Example 1

Suppose
f(x) = f1(x) + f2(x)

with f1(x) convex.

We might take

f̃(x;xk) = f1(x) +∇f2(xk)T (x− xk) + ‖x− xk‖2

which gives a better approximation than linearizing the whole objective
function

The underlying assumptions is that solving a strongly convex optimization
problem is “easy”
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Example 2

Suppose that we can find g̃i(x;xk) such that

g̃i(x;xk) ≥ g(x), ∀x

If the starting point of the algorithm is feasible, our procedure will
generate only feasible iterates (γk ≤ 1)

If gi has a Lipschitz gradient, we can set

g̃i(x;xk) = gi(x
k) +∇gi(xk)T (x− xk) +

Li
2
‖x− xk‖2 ≥ gi(x)

If gi is a DC function gi = g+i − g
−
i with both g+i and g−i convex, we

can set

g̃i(x;xk) = g+i (x)∇gki (xk)T (x− xk) + ‖x− xk‖2 ≥ gi(x)

Many interesting examples in applcations where structure can be
suitably exploited
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Convergence properties
To present the convergence properties we introduce two conditions

(a) [Positive Linear Independence of most active constraints]
We say that the extended Mangasarian-Fromovitz Constraint Qualification
(eMFCQ) holds at x if

0 ∈ ∇g(x)ξ +NK(x), ξi ≥ 0, ξi[gi(x)−max
i
gi(x)+] = 0 =⇒ ξ = 0

(b) ] [d-Hölder continuity] For every compact set Ω, positive constants α
and θ exist such that

‖d(y)− d(z)‖ ≤ θ‖y − z‖α

eMFCQ is a generalization of the classical Mangasarian-Fromovitz
condition to infeasible point. A point where eMFCQ holds can not be
a FJ point or a stationary point of the violation of the constraints

d-Hölder continuity is rather technical. It is possible to give simple
conditions that guarantee its satisfaction, but since this assumption
has a very ancillary role we skip a detailed discussion
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Convergence properties

In the setting described so far, the algorithm is well-defined and either

(a) the sequence {xν} is unbounded or

(b) at least one limit point x̄ of {xν} is an extended stationary point; if
eMFCQ holds at x̄, then x̄ is a KKT point

In addition

(c) if {xν} is bounded, eMFCQ holds at every limit point of {xν}, and
d-Hölder continuity holds, then every limit point of {xν} is a KKT point

Of course, if K is bounded the sequence {xν} is bounded and only case
(b) can happen
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Example 3

min x2

ex ≤ 0

This (convex) problem is infeasible and therefore no algorithm will ever be
able to find a KKT or FJ point. The only reasonable thing the algorithm
can do is to try to minimize the constraint violation ex. But the constraint
violation has neither minimum nor stationary points and any minimization
method will produce an unbounded sequence.

In other words this problem has no extended stationary points and
generting an unbounded sequence is the natural outcome
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Where are the penalty functions?
They are used in the proofs only and therefore are not seen in the
algorithm description!

We use

P (x; ε) = f(x) +
1

ε
‖g(x)+‖∞

Essentially the proof of convergence boils down to showing that either
there is a sufficiently small ε for which the direction d provides “uniform
sufficient decrease” at each step or this is not the case. In this latter case
it follows that at least one limit point is a Fritz-John point or a stationary
point of the feasibility problem
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• minx f(x) + c(x)

g(x) ≤ 0

x ∈ K

where c is a convex (non necessarily differentiable) continuous function

• Boundedness of the sequence {xν} can be obtained without assuming K
boudned but using “coerciviness condition”
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Iteration Complexity
Complexity results are classical for combinatorial optimization problems
and for convex optimization ones

They are much rarer for nonconvex optimization problems and actually
there is only one real result, in 2016, for nonconvex constrained problems.

Iteration complexity refers to the number of iterations necessary to find a
δ−approximate stationary point

Iteration complexity for gradient method for smooth unconstrained
minimization is “classical” (see Nesterov 2013 book)

Nesterov and Polyak 2006 paper on cubic regularization for
unconstrained optimization sparkled much interest

In the past 10 year Cartis, Gould, and Toint produce a number of
papers on iteration complexity under different settings

Essentially, there is only one paper, by Birgin, Gardenghi, Mart̀ınez,
Santos, and Toint 2016 where iteration complexity for an algorithm
for nonconvex constrained optimization is studied. There, a
complexity of O(δ−3) is established
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The setting

minx f(x)

g(x) ≤ 0

x ∈ K

Assumption We assume that

K is compact

f and g all functions involved have Lipschitz gradients on K

We denote the corresponding Lipschitz constants by Lf , Lgi ....
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A simple case

If the eMFCQ holds at all points of K then

If the stepsize is sufficiently small then a δ-stationary point is reached in
O(δ−2) iterations

Under different assumptions (starting feasible point is know, for example)
we can give further results of this type. These results require the
knowledge of the Lipschitz constants of the problem
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The general case

We give a complexity bound for a “piecewise constant” choice of the
stepsizes. By this we mean that we use the usual iteration

xν+1 = xν + γνdν

and keep γν constant until a certain very simple test is satisfied, in which
case we reduce γν at a prescribed level and keep it constant until the test
is possibly satisfied again and γν reduced once again

This procedure finds a δ−approximate generalized stationary point in
O(δ−4) iterations
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Data: δ > 0, x0, T−1 ∈
(

0,
2maxi{L∇gi}
max{L∇f ,ηc}

]
, γ−1 = T−1ηc

2maxi{L∇gi}
, ν ←− 0;

repeat

(S.1) compute κ(xν), d(xν) and θ(xν) , maxi{gi(x)+} − κ(x);

(S.2) if ‖d(xν)‖ ≤ δ then
stop and return xδ = xν ;

end

(S.3) if ∇f(xν)T d(xν) + ηc‖d(xν)‖2 > 0 and Tν−1 >
θ(xν )

∇f(xν )T d(xν )+ηc‖d(xν )‖2
then

(S.4) if θ(xν) ≤ Lg̃δ then
stop and return xδ = xν ;

else

(S.5) set γν = T νηc
2maxi{L∇gi}

, T ν = 1
2

θ(xν)
∇f(xν)T d(xν)+ηc‖d(xν)‖2 ;

end

else
(S.6) set T ν = T ν−1 and γν = γν−1;

end

(S.7) set xν+1 = xν + γνd(xν), ν ←− ν + 1;

end
Algorithm 1: Piecewise constant stepsizes
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The algorithm stop at a δ−approximate stationary point in at most⌈
16B

(ηc)2
max
i
{L∇gi}

[
fM − fm

δ3
+

2B gM+
δ4

]⌉
iterations

η: a user chosen number in (0,1)

c: a user chosen strong monotonicity constant for f̃

fM : the maximum value of f over K

fm: the minimum value of f over K

gM+ : the maximum value of ‖g+‖∞ over K

B: the maximum value of ‖∇f(x)‖β + ηcβ2 over K
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First it is shown that the stepsize is reduced a finite number of times⌈
log2

T−12B

δ

⌉

Exploiting the fact that at each iteration ‖d(xk)‖ > δ the decrease of
the ghost penalty function with penalty parameter T k in the
iterations where the stepsize is constant can be estimated

Putting together the facts above, taking into account that the
penalty function increases when the penalty parameter decreases and
making appropriate boundings we get the desired result

What is the meaning of the two stopping criteria ‖d(xk)‖ ≤ δ and
θ(xk) ≤ δLg̃ ?

To make a long story short: δ → 0 then the point where the algorithm
stops tends to a generalized stationary point
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Also the algorithm above assumes that we know several Lipschitz
constants and function values. What if we do not know them? An
adaptive version can be devised where by making a sort of
”line-search” at each iteration to determine an appropriate value of
γk the iteration complexity of O(δ−4) can still be mantained

Boundedness of K can be substituted by the coerciveness conditions
discussed previously

[Work in progress] The results can be extended to the case in which
the objective function is f(x) + c(x)

[Work in progress] Using the ghost penalty approach in the
convergence analysis, we are able to prove convergence for the first
distributed method for problems with nonconvex constraints along
with a corresponding complexity analysis
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Thank you!


