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Nonconvex optimization

Find (local) solutions of the optimization problem:

minimize
x∈Rn

f (x) where f is smooth

with f (x) possibly nonconvex and n possibly large.
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Methods for nonconvex optimization

minimize
x∈Rn

f (x) where f is smooth.

• f has gradient vector ∇f (first derivatives) and Hessian matrix
∇2f (second derivatives).

−→ local minimizer x∗ with ∇f (x∗) = 0 (stationarity) and
∇2f (x∗) � 0 (local convexity).

Derivative-based methods:

I user-given x0 ∈ Rn, generate iterates xk , k ≥ 0.

I f (xk + s) ≈ mk(s) simple model of f at xk ;
mk linear or quadratic Taylor approximation of f .
sk → mins mk(s); sk → xk+1 − xk

I terminate within ε of optimality (small gradient values).
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Derivative-based local models

Choices of models

I linear : mk(s) = f (xk) +∇f (xk)T s
−→ sk steepest descent direction.

I quadratic : mk(s) = f (xk) +∇f (xk)T s + 1
2
sT∇2f (xk)s

−→ sk Newton-like direction.

Safeguard sk to ensure method converges: linesearch, Trust-Region (TR).

(TR subproblem) sk −→ (approx.) mins mk(s) subject to ‖s‖ ≤ ∆k.
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Trust-region methods – a convergent framework

I compute sk −→ mins mk(s) subject to ‖s‖ ≤ ∆k (TR)

I set xk+1 = xk + sk if mk and f ‘agree’ at xk + sk
I otherwise set xk+1 = xk and reduce the TR radius ∆k

k �k sk f (xk + sk) �f /�mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (�0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 �0.004 x2

3 2 (1.90, 0.08) �29.392 0.649 x2 + s2
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Models use curvature; go beyond steepest descent for best performance.
Methods are adaptive.
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Worst-case evaluation complexity of methods

Global rates of convergence from any initial guess

Under sufficient smoothness assumptions on f (Lipschitz
continuity), for any ε > 0, the algorithms generate ‖∇f (xk)‖ ≤ ε
(and λmin(∇2f (xk)) ≥ −√ε) in at most kalgε iterations/evaluations:

Criticality SD Newton/TR/LS ARC TR+/ LS+

‖∇f (xk)‖ ≤ ε O(ε−2) O(ε−2) O(ε−
3
2 ) O(ε−

3
2 )

λmin(∇2f (xk)) ≥ −
√
ε – O(ε−

3
2 ) O(ε−

3
2 ) O(ε−

3
2 )

I O(·) contains f (x0)− flow, Lgrad or LHessian and algorithm
parameters, independent of accuracy ε > 0.

I all bounds are sharp, ARC bound is optimal for second-order
methods [C, Gould & Toint,’10,’11, ’17; Carmon et al (’18)]
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Derivative-based optimization algorithms

Competing, sophisticated, mature techniques available: employing
L-BFGS, linesearch, trust-region.

Powerful theoretical guarantees of convergence (from arbitrary
initial guess; fast asymptotically) for large class of nonconvex pbs

Much reliable and efficient software suitable for large-scale
problems (n� 103): KNITRO, GALAHAD, IPOPT, NAG...

Methods/solvers require accurate function and derivative(s) values
to be provided - manually written code, automatic differentiation
or finite-differences.

=⇒ Limitations...
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Modern challenges to derivative-based solvers

Limitations of derivative-based solvers:

I require accurate/exact function values and (at least)
first-derivatives of f to be available to the solver

I use derivative-free optimization methods when derivatives are
unavailable: suitable for noisy/stochastic problems; only
guaranteed to provide local solutions of nonconvex
optimization landscapes, but successful for global optimization

I suitable for O(100) variables

The optimization challenges of modern applications: huge scale,
stochastic, inexact data/problems.
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Optimization in machine learning
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Supervised learning problems

[Scheinberg, 2018; Curtis & Scheinberg, 2017; Bouttou et al, 2018]

Introduction and Motivation

Introduction: Supervised Learning Problem

How do we select the best
classifier?

Min Expected/Empirical Error

Min Expected/Empirical Loss

Max Expected/Empirical AUC

Example: binary classification

Map x 2 X ✓ Rdx to y 2 Y ✓ {0, 1}.

Consider predictors in the form p(x; w) so that

p(·, w) : X ! Y,

If p(x, w) = wT x - linear classifier, more generally p(x, w) is
nonlinear, e.g., neural network.

Katya Scheinberg (Lehigh) Stochastic Framework September 28, 2018 4 / 35

Binary classification: Map w ∈ W ⊆ <dw to y ∈ Y ⊆ {−1, 1}
Choose predictor p(w ; x) :W → Y
If p(w ; x) = wT x - linear classifier; more generally, p(w ; x)
nonlinear (such as neural network).

Selection of the best classifier:
I Minimize Expected/Empirical Error, Loss, AUC
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Finding the best predictor

[Curtis & Scheinberg, 2017; Scheinberg, 2018]

min
x∈X

f (x) :=

∫
W×Y

1[yp(w ; x) ≤ 0]dP(w , y).

−→ intractable due to unknown distribution

Use instead the empirical risk of p(w ; x) over finite training set S,

min
x∈X

fS(x) :=
1

m

m∑
i=1

1[yip(wi ; x) ≤ 0].

−→ hard to solve, nonsmooth.

Use the smooth and ’easy’ empirical loss of p(w ; x) over the finite
training set S,

min
x∈X

f̂S(x) :=
1

m

m∑
i=1

l(p(wi ; x), yi ) =
m∑
i=1

fi (x).

−→ tractable but huge scale in n and m; deterministic formulation.
Care also about expected loss IE(l(p(w ; x), y)) (stochastic).
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Standard stochastic gradient method

At iterate xk ,

I generate predefined mini-batch size |Sk | � m and (random)
components i ∈ Sk , and calculate

∇Sk f (xk) :=
1

|Sk |
∑
i∈Sk

∇fi (xk)

I calculate the next iterate

xk+1 = xk − αk∇Sk f (xk),

where αk is a predefined stepsize (learning rate).

Commonly assumes IE(∇S f (x)) = ∇f (x).

Our work: adaptive methods (for Sk and αk), including curvature
(ie second-order), allowing biased estimates, with complexity
guarantees.
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Methods with probabilistically accurate models

Coralia Cartis (University of Oxford) Optimization algorithms for machine learning



Probabilistic local models and methods

Context/purpose: f still smooth, but derivatives are
inaccurate/impossible/expensive to compute.

I Local models may be “good”/ “sufficiently accurate” only
with certain probability, for example:
−→ models based on random sampling of function values (within a

ball)
−→ finite-difference schemes in parallel, with total probability of any

processor failing less than 0.5

−→ stochastic gradient with varying batch size Sk and stepsize

I Use these probabilistic models inside classical linesearch,
trust-region, ARC methods.

I Expected number of iterations to generate sufficiently small
true gradients?

Connections to model-based derivative-free optimization (Powell; Conn,

Scheinberg & Vicente’06)
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Probabilistic trust region framework

Assume that f is accurate/exact.

I Probabilistically accurate local model:

mk(s) = f (xk) + sTgk + 1
2
sTBks

with gk ≈ ∇f (xk) and Bk ≈ ∇2f (xk) [along the step sk ],
where ≈ holds with a certain probability p ∈ (0, 1]
(conditioned on the past).

−→ Ik occurs : k true iteration; else, k false.

I minsmk(s) s.t. ‖s‖ ≤ ∆k [cf. derivative-based methods!];

I adjust ∆k [cf. derivative-based methods!]
∆k ↗ if f (xk + sk)′ <′ f (xk)
∆k ↘ if f (xk + sk) ≥ f (xk)

Algorithm : stochastic process and its realizations.

Coralia Cartis (University of Oxford) Optimization algorithms for machine learning



Probabilistic Trust Region (P-TR) - complexity guarantees

Assume that f is accurate/exact.

Complexity: If f is sufficiently smooth, then the expected number
of iterations that P-TR takes until ‖∇f (xk)‖ ≤ ε satisfies

IE(Nε) ≤
1

2p − 1
· κp−ls · (f (x0)− flow) · ε−2

provided the probability of sufficiently accurate models is p > 1
2 .

This implies limk→∞ infk ‖∇f (xk)‖ = 0 with probability one.

Expected number of iterations IE(Nε) to reach ε accuracy:
−→ Nε hitting time for stochastic process {‖∇f (X k)‖ ≤ ε}

Coralia Cartis (University of Oxford) Optimization algorithms for machine learning



Probabilistic ARC (P-ARC) - complexity guarantees

Assume that f is accurate/exact. Use the local models

mk(s) = f (xk) + sTgk + 1
2
sTBks + 1

3
σk‖s‖3.

Complexity: If f is sufficiently smooth, then the expected number
of iterations that P-ARC takes until ‖∇f (xk)‖ ≤ ε satisfies

IE(Nε) ≤
1

2p − 1
· κp−arc · (f (x0)− flow) · ε− 3

2

provided the probability of sufficiently accurate models is p > 1
2 .

This implies limk→∞ infk ‖∇f (xk)‖ = 0 with probability one.

These bounds match the deterministic complexity bounds of
corresponding methods (in accuracy order).
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Generating probabilistic models

I Stochastic gradient and batch sampling [Nocedal et al, 2012]

‖∇fSk (xk)−∇f (xk)‖ ≤ µ‖∇fSk (xk)‖

with µ ∈ (0, 1) and fixed, and sufficiently small and constant
αk = α ≤ 1−µ

Lg
.

Then model mk(s) = f (xk) +∇fSk (xk)T (x − xk) is sufficiently
accurate for a given fixed step size α.

I we allow the model to fail with probability less than 0.5,
variable stepsize αk and f nonconvex.

If IE(∇S f (xk)) = ∇f (xk), we can show that ∇Sk f (xk) is
probabilistically sufficiently accurate with prob. p > 0.5 provided
|Sk | is sufficiently large.

−→ generalization of linesearch stochastic gradient methods.
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Generating (p)-accurate models...

Models formed by sampling of function values in a ball B(xk ,∆k)
(model-based dfo) [Conn et al, 2008; Bandeira et al, 2015]

Mk (p)-fully linear model: if the event

I lk = {‖∇f (X k)− G k‖ ≤ κg∆k}

holds at least w.p. p (conditioned on the past).

Linesearch methods: choose ∆k = αkξk . Then mk fully linear
implies mk sufficiently accurate if:

I ξk sufficiently small, of order ε; or

I adjust ξk in the algorithm: accept step when ‖gk‖ ≥ κξk ,
shrink ξk and reject step otherwise.
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Generating (p)-accurate models...

Models formed by sampling of function values in a ball B(xk ,∆k)
(model-based dfo) [Conn et al, 2008; Bandeira et al, 2015]
Mk (p)-fully quadratic model: if the event

I qk = {‖∇f (X k)−G k‖ ≤ κg∆2
k and ‖∇2f (X k)−Bk‖ ≤ κH∆k}

holds at least w.p. p (conditioned on the past).

Cubic regularization methods: choose ∆k = ξk/σk . Then mk fully
quadratic implies mk sufficiently accurate if:

I ξk sufficiently small, of order ε; or

I adjust ξk in the algorithm: accept step when ‖sk‖ ≥ κξk ,
shrink ξk and reject step otherwise.

This framework applies to subsampling gradients and Hessians in
ARC [Kohler & Lucchi (’17), Roosta et al. (’17)]
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Stochastic optimization

Now let us assume that our (observed) function values are also
inaccurate/noisy/random. Still,

minimize
x∈IRn

f (x) where f smooth,

with f (x) possibly nonconvex; but f (x) can only be computed with
some noise, so we observe

f̂ (x) = f (x , ω), where ω is a random variable.

I in trust-region method, use models mk(s) that are
(p)-accurate in B(xk ,∆k) with probability p.

I given ∆k , assume estimates f̂ (xk) ≈ f (xk) and
f̂ (xk + sk) ≈ f (xk + sk) are accurate with probability q:

|f̂ (xk)− f (xk)| ≤ εF∆2
k and |f̂ (xk + sk)− f (xk + sk)| ≤ εF∆2

k
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STORM - a stochastic trust-region method

[Chen, Mineckelly & Scheinberg, 2015]
In P-TR, let f (x) −→ f̂ (x) estimates. Occurs in mk(s) and in
measuring progress f̂ (xk + sk)′ <′ f̂ (xk). Also require ‖gk‖ ≥ κ∆k

for step acceptance.
Six types of iterations (successful, unsuccessful, true and false,
good and bad)

Stochastic Trust Region and Line Search Methods

What can happen?

Katya Scheinberg (Lehigh) Stochastic Framework September 28, 2018 18 / 35
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STORM - a stochastic trust-region method

[Chen, Mineckelly & Scheinberg, 2015]
In P-TR, let f (x) −→ f̂ (x) estimates. Occurs in mk(s) and in
measuring progress f̂ (xk + sk)′ <′ f̂ (xk). Also require ‖gk‖ ≥ κ∆k

for step acceptance.
Six types of iterations (successful, unsuccessful, true and false,
good and bad)

Stochastic Trust Region and Line Search Methods

What else can happen

Katya Scheinberg (Lehigh) Stochastic Framework September 28, 2018 19 / 35
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Probabilistic TR - complexity

If f sufficiently smooth, then the expected number of iterations
that STORM takes until ‖∇f (xk)‖ ≤ ε satisfies

IE(Nε) ≤
1

2pq − 1
· κp−tr ·max{f (x0)− flow,∆0} · ε−2

provided mk and f̂ are (p)-accurate with probabilities p and q
sufficiently large and accuracy εF sufficiently small.

Then also, limk→∞ infk ‖∇f (xk)‖ = 0 with probability one.

Analysis

I Define stochastic process
Φk = τ(f (xk)− f∗) + (1− τ)∆2

k

and analyze joint process {Φk+1 − Φk ,∆k}. A renewal-reward
process, general framework.
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Probabilistic TR - second-order framework

I we also want λmin(∇2f )} ≥ −√ε
I (p)-probabilistically fully accurate quadratic models w.p. p -

as usual for quadratic models

I stronger assumption on evaluations:
IE(|f̂ (xk)− f (xk)|) ≤ εF∆3

k , IE(|f̂ (xk + sk)− f (xk + sk)|) ≤ εF∆3
k

Theorem: in the same conditions as before, the expected number
of iterations that second-order STORM takes until it also satisfies
λmin(∇2f )} ≥ −√ε is at most

IE(Nε) ≤
1

2pq − 1
· κp−tr−2 ·max{f (x0)− flow,∆0} · ε−

3
2
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Probabilistic TR for stochastic optimization

Advantages:

I sampling rate varies according to TR radius; diverse models of
noise, including biased noise;

I encouraging numerical performance for different noise
models[Chen, Mineckelly & Scheinberg (’15); C, Fiala, Marteau, Roberts (’18)]

Constructing (p)-sufficiently accurate models and function values:

I stochastic noise: iid noise, or more generally, unbiased for all
x (IE(f̂ ) = f ; Varf̂ <∞). Use sample averaging of r noisy f̂
values/gradients for r large enough, of order ∆−4k
(in numerics, r ∼ ∆−1k ).

I allows failure in computation of function values.
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Numerical results: STORM vs derivative-free optimization

[C, Fiala, Marteau, Roberts, 2018]
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Numerical results: first-order trust-region vs SG

[Curtis, Scheinberg, Shi, 2017]

Figure 2: Average training loss and accuracy during the first epoch when SG and TRish employed to minimize
the logistic regression function (4.1) using the rcv1.binary dataset.

Figure 3: Average testing loss and accuracy during the first epoch when SG and TRish employed to minimize
the logistic regression function (4.1) using the rcv1.binary dataset.

we considered b 2 {10, 20, 40, 80}, ↵ 2 {10�3, 10�2, 10�1, 1}, �1 2 {2, 4, 6, 8}, and �2 2 {0.5, 0.25, 0.125}.
After tuning, the values that led to the best average testing accuracy for SG were (b,↵) = (40, 10�2) and
those that led to the best average testing accuracy for TRish were (b,↵, �1, �2) = (40, 10�1, 8, 0.5). The
average training losses, training accuracies, testing losses, and testing accuracies obtained by the methods
after one epoch are provided in Table 2 and these quantities after various fractions of the first epoch are
plotted in Figures 4 and 5. Again, these results show that TRish o↵ers better performance throughout the
first epoch, even more noticably than for the convex problem in the previous subsection.

5 Conclusion

An algorithm inspired by a trust region methodology has been proposed, analyzed, and tested for solving
stochastic and finite sum minimization problems. Our proved theoretical guarantees show that our method,
deemed TRish, has convergence properties that are similar to a traditional stochastic gradient method. Our
numerical results, on the other hand, show that TRish can outperform a traditional SG approach. We

15

Average training loss and accuracy

Logistic regression for binary classification (LIBSVM, n = O(104))

Applied a first-order stochastic trust-region variant, with adaptive
trust region and scaling.
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Numerical results: first-order trust-region vs SG

[Curtis, Scheinberg, Shi, 2017]

Average
Training
Loss

Average
Training
Accuracy

Average
Testing Loss

Average
Testing
Accuracy

SG 0.1479 0.9557 0.1415 0.9581
TRish 0.0860 0.9737 0.0793 0.9751

Table 2: Performance measures after 1 epoch for SG and TRish employed to train a convolutional neural
network using the mnist dataset.

Figure 4: Average training loss and accuracy during the first epoch when SG and TRish employed to train
a convolutional neural network using the mnist dataset.

attribute this better behavior to the algorithm’s use of normalized steps, which one can argue lessens its
dependence on problem-specific quantities.

While not considered in this paper, we believe it would be interesting to explore the incorporation
within TRish of various enhancements, such as the use of second-derivative (i.e., Hessian) approximations,
acceleration, and/or momentum. These might further improve the practical performance of the framework
set forth in this paper.
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Conclusions

Going beyond Stochastic Gradient for training NN with second
order methods and adaptivity? Need powerful implementations

Tune your (algorithm) parameters with DFO (derivative-free)
codes; suitable for medium scale (noisy/stochastic) problems;
scaling up model-based DFO methods?
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