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Nonconvex optimization

Find (local) solutions of the optimization problem:

minimize f(x) where f is smooth
xeR"

with f(x) possibly nonconvex and n possibly large.

Ackeley's function Rosenbrock's function

Coralia Cartis (University of Oxford) Optimization algorithms for machine learning



Methods for nonconvex optimization

minimize f(x) where f is smooth.
x€R"

e f has gradient vector Vf (first derivatives) and Hessian matrix
V2f (second derivatives).

— local minimizer x, with Vf(x.) = 0 (stationarity) and
V2f(x) = 0 (local convexity).

Derivative-based methods:
P> user-given xop € R", generate iterates xi, k > 0.

» f(xx+5s)~ my(s) simple model of f at xg;
my linear or quadratic Taylor approximation of f.
Sk — ming mg(S); Sk — Xk+1 — Xk

> terminate within € of optimality (small gradient values).

Coralia Cartis (University of Oxford) Optimization algorithms for machine learning



Derivative-based local models

Choices of models
> linear : my(s) = f(xk) + VF(xk)'s
—> sy steepest descent direction.
> quadratic : mk(s) = f(xk) + VF(xk) s + 1sTV2f(x)s
— s, Newton-like direction.
Safeguard s, to ensure method converges: linesearch, Trust-Region (TR).
(TR subproblem) s — (approx.) mins my(s) subject to [|s|| < Ay.

quadratic TR model about x=(1,-0.5), A=1 linear TR model about x=(1,-0.5), A=1
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Trust-region me s — a convergent framework

» compute sy — mins my(s) subject to [|s|| < Ag (TR)

P> set xx+1 = Xk + Sk if mi and f ‘agree’ at xx + sk

> otherwise set xxt+1 = Xk and reduce the TR radius Ay

r———
/ f(x) = —10x¢ + 10x3 + 4sin(x1x) — 2x1 + X
7
Lk [ A Sk [ fOu+s0) [ A/ Amy | xqa |
0 1 (0.05,0.93) 43.742 0.998 Xo + 8o
1 2 | (—0.62,1.78) 2.306 1.354 x| + 5
2 4 | (321,000) | 6295 | —0.004 | x
3| 2 (1.90,0.08) —29.392 0.649 X2+ 5
Ne———— 7

Models use curvature; go beyond steepest descent for best performance.
Methods are adaptive.
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Worst-case evaluation complexity of methods

Global rates of convergence from any initial guess

Under sufficient smoothness assumptions on f (Lipschitz
continuity), for any € > 0, the algorithms generate ||V f(xk)| < €
(and Amin(V2F(xk)) = —1/€) in at most k™€ iterations/evaluations:

Criticality ) Newton/TR/LS | ARC [ TR+/ LS+
IVF(x)| < e O(™?) O(7?) O 2) | O ?)
Amin(V2F(x)) > —Ve | - O( %) o) | o)

» O(-) contains f(xp) — fiow, Lgrad O LHessian and algorithm
parameters, independent of accuracy € > 0.

» all bounds are sharp, ARC bound is optimal for second-order

methods [C, Gould & Toint,'10,'11, '17; Carmon et al ('18)]

Coralia Cartis (University of Oxford) Optimization algorithms for machine learning



Derivative-based optimization algorithms

Competing, sophisticated, mature techniques available: employing
L-BFGS, linesearch, trust-region.

Powerful theoretical guarantees of convergence (from arbitrary
initial guess; fast asymptotically) for large class of nonconvex pbs

Much reliable and efficient software suitable for large-scale
problems (n > 10%): KNITRO, GALAHAD, IPOPT, NAG...

Methods/solvers require accurate function and derivative(s) values
to be provided - manually written code, automatic differentiation
or finite-differences.

— Limitations...
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Modern challenges to derivative-based solvers

Limitations of derivative-based solvers:

> require accurate/exact function values and (at least)
first-derivatives of f to be available to the solver

» use derivative-free optimization methods when derivatives are
unavailable: suitable for noisy/stochastic problems; only
guaranteed to provide local solutions of nonconvex
optimization landscapes, but successful for global optimization

> suitable for O(100) variables

The optimization challenges of modern applications: huge scale,
stochastic, inexact data/problems.
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Optimization in machine learning
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Supervised learning problems

[Scheinberg, 2018; Curtis & Scheinberg, 2017; Bouttou et al, 2018]

Binary classification: Map w e W C R toy € Y C {—1,1}

Choose predictor p(w; x) : W — Y
If p(w; x) = w'x - linear classifier; more generally, p(w; x)
nonlinear (such as neural network).

Selection of the best classifier:
» Minimize Expected/Empirical Error, Loss, AUC
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Finding the best predictor

[Curtis & Scheinberg, 2017; Scheinberg, 2018]

)r(nei/Q f(x) = /ny 1lyp(w; x) < 0]dP(w,y).

—> intractable due to unknown distribution
Use instead the empirical risk of p(w; x) over finite training set S,

m

) 1
)r(ry)r} fs(x) == - ; 1lyip(wi; x) < 0].

— hard to solve, nonsmooth.

Use the smooth and 'easy’ empirical loss of p(w; x) over the finite
training set S,

m

min fs(x) := %Z I(p(wi; x), yi) = Z fi(x).

Xe
i=1

— tractable but huge scale in n and m; deterministic formulation.
Care also about expected loss IE[/(p(w; x), y)) (stochastic).
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Standard stochastic gradient method

At iterate xX,

> generate predefined mini-batch size |Sx| << m and (random)
components i € Sk, and calculate

Vs, fx) : Z V1i(xk)
IESk

» calculate the next iterate

Xp+1 = Xk — o Vs, f(xk),

where ay is a predefined stepsize (learning rate).
Commonly assumes IH(Vsf(x)) = Vf(x).

Our work: adaptive methods (for Sk and ay), including curvature
(ie second-order), allowing biased estimates, with complexity
guarantees.
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Methods with probabilistically accurate models
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Probabilistic local models and methods

Context/purpose: f still smooth, but derivatives are
inaccurate/impossible/expensive to compute.

» Local models may be “good”/ “sufficiently accurate” only

with certain probability, for example:
— models based on random sampling of function values (within a
ball)
— finite-difference schemes in parallel, with total probability of any
processor failing less than 0.5
— stochastic gradient with varying batch size Sk and stepsize
» Use these probabilistic models inside classical linesearch,

trust-region, ARC methods.

> Expected number of iterations to generate sufficiently small
true gradients?

Connections to model-based derivative-free optimization (Powell; Conn,
Scheinberg & Vicente'06)
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Probabilistic trust region framework

Assume that f is accurate/exact.

» Probabilistically accurate local model:
mk(s) = f(Xk) + STgk + %STB[(S

with g =~ Vf(xx) and By ~ V?f(xx) [along the step si],
where & holds with a certain probability p € (0, 1]
(conditioned on the past).

— I occurs : k true iteration; else, k false.

» minsmy(s) s.t. ||s|| < Ak [cf. derivative-based methods!];

> adjust Ay [cf. derivative-based methods!]
Ay Nif f(Xk + Sk)/ < f(Xk)
Ak \‘ if f(Xk + Sk) > f(Xk)
Algorithm : stochastic process and its realizations.
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Probabilistic Trust Region (P-TR) - complexity guarantees

Assume that f is accurate/exact.

Complexity: If f is sufficiently smooth, then the expected number
of iterations that P-TR takes until |V f(x¥)|| < e satisfies

1
B(Ne) < 5—

p— 1 *Rp—lIs * (f(XO) - ﬁow) : 672

provided the probability of sufficiently accurate models is p > %

This implies limg_ infy ||V f(xk)|| = 0 with probability one.

Expected number of iterations IE(N,) to reach € accuracy:
— N, hitting time for stochastic process {||Vf(X¥)| < ¢}
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Probabilistic ARC (P-ARC) - complexity guarantees

Assume that f is accurate/exact. Use the local models
mi(s) = f(xk) + 5" gk + 1s” Bis + Lokl|s|>.

Complexity: If f is sufficiently smooth, then the expected number
of iterations that P-ARC takes until || Vf(x¥)|| < € satisfies

NIw

() <

=2p—1 * Kp—arc - (f(XO) - ﬁow) “€

provided the probability of sufficiently accurate models is p > %

This implies limy_,o infy ||Vf(xk)|| = 0 with probability one.

These bounds match the deterministic complexity bounds of
corresponding methods (in accuracy order).
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Generating probabilistic models

» Stochastic gradient and batch sampling [Nocedal et al, 2012
IV 15, (x*) = V()| < ul| Vs, (<)l

with p € (0 ,1) and fixed, and sufficiently small and constant
o =« < M

Then model mk(s) = f(x¥) + Vs, (x*) T (x — x¥) is sufficiently
accurate for a given fixed step size a.

> we allow the model to fail with probability less than 0.5,
variable stepsize aj and f nonconvex.

If IT(Vsf(xk)) = V£(x¥), we can show that Vg, f(x*) is

probabilistically sufficiently accurate with prob. p > 0.5 provided
|Sk| is sufficiently large.

— generalization of linesearch stochastic gradient methods.
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Generating (p)-accurate models...

Models formed by sampling of function values in a ball B(xx, A)
(model—based dfo) [Conn et al, 2008; Bandeira et al, 2015]

My (p)-fully linear model: if the event
Ik = {IVF(XY) = GX|| < mgk}
holds at least w.p. p (conditioned on the past).

Linesearch methods: choose Ay = ax&k. Then my fully linear
implies my sufficiently accurate if:

> £, sufficiently small, of order ¢€; or

> adjust & in the algorithm: accept step when [|g¥|| > r&x,
shrink &, and reject step otherwise.
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Generating (p)-accurate models...

Models formed by sampling of function values in a ball B(xk, A)
(model-based dfo) [Conn et al, 2008; Bandeira et al, 2015]
My (p)-fully quadratic model: if the event

W= {IVA(X*)=G¥| < kgA} and [ V*F(X*)=B¥|| < kuli}
holds at least w.p. p (conditioned on the past).

Cubic regularization methods: choose Ay = & /ok. Then my fully
quadratic implies my sufficiently accurate if:

> £, sufficiently small, of order ¢€; or
» adjust & in the algorithm: accept step when [|s¥| > k&,
shrink &, and reject step otherwise.

This framework applies to subsampling gradients and Hessians in
ARC [Kohler & Lucchi ('17), Roosta et al. ('17)]

Coralia Cartis (University of Oxford) Optimization algorithms for machine learning



Stochastic optimization

Now let us assume that our (observed) function values are also
inaccurate/noisy/random. Still,

minimize f(x) where f smooth,
x€ER"

with f(x) possibly nonconvex; but f(x) can only be computed with
some noise, so we observe
f(x) = f(x,w), where w is a random variable.

» in trust-region method, use models my(s) that are
(p)-accurate in B(xk, Ag) with probability p.

> given Ay, assume estimates f(x;) ~ f(x;) and

~

f(xk + sk) =~ f(xx + sk) are accurate with probability g:
1F(xk) — F(xi)| < erA2 and |F(xx + si) — F(xk + sx)| < eFA?
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STORM - a stochastic trust-region method

[Chen, Mineckelly & Scheinberg, 2015]
In P-TR, let f(x) — f(x) estimates. Occurs in m(s) and in
measuring progress f(xi + si) <’ f(xi). Also require ||gx|| > KAk
for step acceptance.
Six types of iterations (successful, unsuccessful, true and false,
good and bad)

1(x) ; mix)
1(x); mix)

(a) Good model; good estimates. (b) Bad model; good estimates.
True successful steps. Unsuccessful steps.
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STORM - a stochastic trust-region method

[Chen, Mineckelly & Scheinberg, 2015]
In P-TR, let f(x) — f(x) estimates. Occurs in my(s) and in
measuring progress f(xi + si) <’ f(xi). Also require ||gx|| > KAk
for step acceptance.
Six types of iterations (successful, unsuccessful, true and false,
good and bad)

#(x) ; mix)
1(x) ; m(x)

(c) Good model; bad estimates. (d) Bad model; bad estimates.
Unsuccessful steps. False successful steps: f can increase!
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Probabilistic TR - complexity

If f sufficiently smooth, then the expected number of iterations
that STORM takes until | V£ (x¥)|| < e satisfies

*Kp—tr - max{f(x0) — fiow, Do} - €’

Ne) <
(NG < 5001

provided my and f are (p)-accurate with probabilities p and g
sufficiently large and accuracy eg sufficiently small.

Then also, limy_,« infx [|[VF(xk)|| = 0 with probability one.

Analysis
» Define stochastic process
&y =7(F(xx) — fi) + (1 — T)Ai
and analyze joint process {®x11 — Pk, Ak}. A renewal-reward
process, general framework.
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Probabilistic TR - second-order framework

> we also want Amin(V2f)} > —/e

» (p)-probabilistically fully accurate quadratic models w.p. p -
as usual for quadratic models

P stronger assumption on evaluations:
E(IF (xk) — F(xi)l) < erAF, T(IF (xk + sk) — F(x + s6)l) < erAf

Theorem: in the same conditions as before, the expected number
of iterations that second-order STORM takes until it also satisfies
Amin(V2f)} > —4/€ is at most

1 3
2

ENe) < 2;)(77—1 *Kp—tr—2 ° max{f(xo) — fow, AO} CE€
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Probabilistic TR for stochastic optimization

Advantages:

» sampling rate varies according to TR radius; diverse models of
noise, including biased noise;

» encouraging numerical performance for different noise

modeIS[Chen, Mineckelly & Scheinberg ('15); C, Fiala, Marteau, Roberts (’18)]

Constructing (p)-sufficiently accurate models and function values:
» stochastic noise: iid noise, or more generally, unbiased for all
x (IH(f) = f; Varf < c0). Use sample averaging of r noisy f
values/gradients for r large enough, of order A;“
(in numerics, r ~ A;l).

» allows failure in computation of function values.
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Numerical results: STORM vs derivative-free optimization

[C, Fiala, Marteau, Roberts, 2018]
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Standard optimization test set (Moré-Wild), data profiles.
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Numerical results: first-order trust-region vs SG

[Curtis, Scheinberg, Shi, 2017]
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Average training loss and accuracy

Logistic regression for binary classification (LIBSVM, n = O(10%))

Applied a first-order stochastic trust-region variant, with adaptive
trust region and scaling.
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Numerical results: first-order trust-region vs SG

[Curtis, Scheinberg, Shi, 2017]
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Two-layer CNN, MNIST data set (n = O(10°)).

Applied a first-order stochastic trust-region variant, with adaptive
trust region and scaling.
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Conclusions

Going beyond Stochastic Gradient for training NN with second
order methods and adaptivity? Need powerful implementations

Tune your (algorithm) parameters with DFO (derivative-free)
codes; suitable for medium scale (noisy/stochastic) problems;
scaling up model-based DFO methods?

References

P C, Scheinberg, Global convergence rate analysis of unconstrained
optimization methods based on probabilistic models, Mathematical
Programming, 2017

» Blanchet, C, Menickelly, Scheinberg, Convergence rate analysis of a
stochastic trust region via submartingales, INFORMS J Optimization,

Special Issue on Optimization for Machine Learning, 2019

Coralia Cartis (University of Oxford) Optimization algorithms for machine learning



Overview articles

Suggested reading (review articles):

» F. E. Curtis and K. Scheinberg. Optimization Methods
for Supervised Machine Learning: From Linear Models
to Deep Learning. In INFORMS Tutorials in Operations Research,
chapter 5, page 89-114. Institute for Operations Research and the
Management Sciences (INFORMS), 2017.

> L. Bottou, F. E. Curtis, and J. Nocedal. Optimization
Methods for Large-Scale Machine Learning. SIAM Review,
60(2):223-311, 2018.

Further reading (monographs, edited volumes):

» P. Jain and P. Kar. Non-convex optimization for
machine learning, IEEE 2018. (available on ArXiv)

> A. Beck. First order methods in optimization.
MOS-SIAM Series on Optimization, SIAM 2017.

> S. Sra, S. Nowozin, and S.J. Wright. Optimization for
machine learning. MIT Press, 2012. [A classic reference,

cediled olume
Coralia Cartis (University of Oxford) Optimization algorithms for machine learning




