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f(x) with ∆ =
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∑
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xi = 1





and f ∈ C2. Line search starting in x along d:

ϕ(α) = f(x + αd) , α ∈ [0,1] .

Assumption: curvature of ϕ has constant sign:

sign ϕ̈(α) = const . in α ∈ [0,1] ,

and moreover in the strictly convex descent case ϕ̇(0) < 0 < ϕ̈(0)

for some η > 0 , ϕ̈(α) ≥ η for all α ∈ [0,1] .

Holds for all (also non-convex) quadratic f and many more.
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Point x ∈∆ is (KKT) stationary if and only if

∇rf(x∗) ≥ ∇f(x∗)>x∗ for all r with equality if x∗r > 0 .

Frank-Wolfe direction at x:

dFW (x) = êı − x , ı̂ ∈ Argmin {∇if(x) : 1 ≤ i ≤ n}

where ei is ith column of n× n identity matrix.

Away direction at x:

dA(x) = x− ê , ̂ ∈ Argmax{∇jf(x) : xj > 0} .



Theorem 1. Let x ∈ ∆ be a strategy. Then the following statements are equivalent:
(a) Υ(x) = ∅: there is no infective strategy for x;
(b) x is a Nash strategy;
(c) x is a fixed point under dynamics (7).

Proof. A strategy x is a Nash strategy if and only if π(y − x|x) ≤ 0 for all y ∈ ∆. This
is true if and only if Υ(x) = ∅. Further, δ = 0 implies S(x) = x. Conversely, if S(x)
returns x, then we are in a fixed point. By construction of S(x) this happens only if
there is no infective strategy for x.

If x is not fixed under (7), i.e., no Nash strategy, straightforward intuition renders
selection of an infective strategy in a way easier than it could seem at first glance. Let x
be the current population and let y be a strategy. The co-strategy of y with respect to
x is given by

yx = (1 + ε̄)x− ε̄y ,

where
ε̄ = max{ε ∈ R : (1 + ε)x− εy ∈ ∆} ≥ 0 .

For any strategy y, if both π(y − x|x) and ε̄ are not zero, then either y ∈ Υ(x) or
yx ∈ Υ(x) in an exclusive sense.

e1 e2

e3

x
e1

x

Figure 1: Example of co-strategy of the pure strategy e1 with respect to x.

In Figure 1 we can see that the co-strategy of ei with respect to x is the intersection
between the simplex boundary and the half line originated in ei and passing through x.
In this case, ε̄ = xi/(1− xi).

The next section introduces a particular instance of our new class of dynamics, where
the strategy selection function returns only infective pure strategies or their relative
co-strategies.

3.3. A pure strategy selection function
Depending on how we choose the function S(x) in (7), we may obtain different dynam-

ics. One in particular, which is simple and leads to nice properties, consists in allowing
only infective pure strategies or their respective co-strategies. This way, our equilibrium
selection process closely resembles a vertex-pivoting method, as opposed to interior-point
approaches like replicator dynamics or best-response dynamics [14].
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Frank-Wolfe and away directions

Point x ∈∆ is (KKT) stationary if and only if

∇rf(x∗) ≥ ∇f(x∗)>x∗ for all r with equality if x∗r > 0 .

Frank-Wolfe direction at x:

dFW (x) = êı − x , ı̂ ∈ Argmin {∇if(x) : 1 ≤ i ≤ n}

where ei is ith column of n× n identity matrix.

Away direction at x:

dA(x) = x− ê , ̂ ∈ Argmax{∇jf(x) : xj > 0} .

Both are feasible descent directions unless x is stationary.
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Based upon (̂ı, ̂), i.e., on dFW (x) and dA(x),

we consider two variants.

Away-step Frank-Wolfe (AFW) direction:

dAFW (x) =


dFW (x) , if dFW (x)>∇f(x) ≤ dA(x)>∇f(x) ,

x̂

1− x̂
dA(x) , otherwise;

and the Pairwise Frank-Wolfe (PFW) direction

dPFW (x) = x̂ [dFW (x) + dA(x)] = x̂
[
êı − ê

]
.

Both discontinuous in x, as with gradient projection.
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αexact(d,x) := maxArgmin {ϕ(α) : α ∈ [0,1]} ,

which satisfies, if 0 < αexact(d,x) < 1,

αexact(d,x) = −
ϕ̇(0)

ϕ̈(α̃)

for some α̃ ∈ (0,1).

Happens only in strictly convex case ϕ̇(0) < 0 < ϕ̈(0).
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Select δ ∈ (0,1) and γ ∈ (0, 1
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m(d,x) := min
{
m ∈ N : f(x + δm d) ≤ f(x) + γδm d>∇f(x)

}
and put

αArmijo(d,x) := δm(d,x) .

Iteration for both line search variants:

Starting point x0 ∈∆,

xk+1 = T (xk) := xk + α(d(xk),xk)d(xk) , k = 0,1, . . .

Have T (x) = x if and only if x is stationary.

Note that T is discontinuous in x if d is so.
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Monotonicity and slope convergence

Proposition:

For d ∈ {dAFW ,dPFW } and α ∈
{
αexact , αArmijo

}
, we have

(a) if xk+1 6= xk, then f(xk+1) < f(xk);

(b) if xk+1 6= xk for all k ∈ N, then

d(xk)>∇f(xk)→ 0 as k →∞ .

Key argument in proof: for K = max
x∈∆

‖∇2f(x)‖spec have

[d(xk)>∇f(xk)]2 = [ϕ̇(0)]2 ≤
4K

η
[f(xk)− f(xk+1)] .
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Global convergence

Theorem:

For d ∈ {dAFW ,dPFW } and α ∈
{
αexact , αArmijo

}
, we have that

either xk̄ is stationary for some k̄ ∈ N and iteration stops;

or else any accumulation point x∗ of iterates (xk)k is stationary.

Key arguments in proof: previous proposition; show that along

subsequences stepsize αk = 1 eventually in difficult subcase.

Good proof of concept but still not proved: iterates convergence

(only one accumulation point x∗).
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Recently discussed: 2nd-order optimality conditions (saddles);

related more general result here: any attracting x∗ is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that
f(xk+1) ≤ f(xk) for all k. If all acc. points of (xk)k are stationary,
the following statements are equivalent for any stationary x∗ and
neighbourhoods U ⊆∆ or V ⊆∆ of x∗:

(a) every sequence xk → x∗ as k →∞, if x0 ∈ U ;

(b) f(x) > f(x∗) for all x ∈ V \ {x∗} . . . contains no KKT point.

So no negative curvature feasible direction of ∇2f(x∗).

Implies that all strict local solutions are isolated KKT points.

Applies to all f considered here, including nonconvex quadratic.
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only finitely many stationary points.

Then previous results imply only finitely many acc. points.

Needed in:

Theorem:

For α ∈
{
αexact , αArmijo

}
and d = dAFW , suppose that

(xk)k has finitely many accumulation points. Then

xk → x∗ as k →∞, only one such accumulation point.

Proof would be easy if T were continuous, since a finite

connected set is a singleton; but T isn’t continuous !
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Theorem:

For d ∈ {dAFW ,dPFW } and α ∈
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}
, suppose that

iterates xk → x∗ as k →∞. Then there is a finite k̄ such that

S(x∗) ⊆ S(xk) ⊆ S∗0 for all k ≥ k̄ .

So under strict complementarity S(xk) = S∗0 =S(x∗) if k ≥ k̄.



Not true for classical Frank-Wolfe !

Example: f(x) = x>Qx (convex!) quadratic with αArmijo where

Q =




6 0 6

0 3 3

6 3 10


.
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where Q ∈ R3×3 is the following symmetric and positive definite matrix

Q =



3 0 3
0 3/2 3/2
3 3/2 5


 .

It is easy to verify that x∗ = (1/3, 2/3, 0)T is the optimal solution of the problem
and together with µ∗ = (0, 0, 1)T and λ∗ = 1 satisfies the strict complementarity
conditions. The starting point for both algorithms was x0 = (0.1, 0.3, 0.6)T and we
asked for a tolerance of 10−5 (in other words, we stopped each algorithm as soon as
an iteration k such that ∇f(xk)T dk ≥ −10−5 was reached). We used an Armijo line
search for both algorithms. After 105 iterations, the standard Frank-Wolfe method
is not able to stop, while its active-set version stops after 12 iterations. The optimal
active set, namely Ā(x∗) = {3}, is identified by Algorithm 1 after the first iteration.
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Fig. 1. Performance of AS-FW (blue line) and FW (red line) on a 3D example. Strict com-
plementarity holds at the solution.

7.2. Comparison on convex quadratic instances. In the following, we re-
port our numerical experience on convex quadratic instances whose solutions satisfy
the strict complementarity conditions. Taking inspiration from [21], we built instances
of the following problem

(36)

min
x∈Rn

1
2x

TQx− cTx

s.t. eTx = 1
x ≥ 0,

where Q ≻ 0 is randomly generated and c ∈ Rn is chosen so that the randomly
generated solution x∗ satisfies the strict complementarity condition.

More specifically, we generated artificial problems with
• dimension n = 213;
• number of nonzero components in the optimal solution T = round(ρ n), with
ρ ∈ {0.01, 0.03, 0.05, 0.07, 0.1}.

We then defined c = Qx∗ − r, where r ∈ Rn is such that ri = 1 if x∗
i > 0 and ri > 1

if x∗
i = 0. In this way, we ensured the satisfaction of the strict complementarity

conditions at x∗.
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A fresh reference

[B./Rinaldi/Rota Bulò ’18] First-order methods for the impatient:

support identification in finite time with convergent Frank-Wolfe variants

Optimization online 2018/07/6694 (3 July 2018).
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Figure 2: Example of trajectories of FP, RD and Pure InfImmDyn on the partnership game with payoff
matrix A1. See text for color codes in the simplex partitions.
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Figure 3: Example of trajectories of FP, RD and Pure InfImmDyn on the partnership game with payoff
matrix A2. See text for color codes in the simplex partitions.

C = 0. Figures 2 and 3 show the trajectories that have been generated for the partnership
games A1 and A2, respectively. In the illustrations for Pure InfImmDyn and FP, the
simplices have been partitioned into colored regions according to the values of SPure(x)
and β(x), respectively. Yellow, red, and blue regions correspond to e1, e2, and e3, while
dotted yellow and blue ones correspond to co-strategies e1

x and e3
x. Further, since RD

is face-invariant, we pictured on the simplex’ boundary the direction of evolution along
the face.

Although there are infinitely many Nash equilibria, it can be proved that for both
games the ω-limits of every trajectory are finite sets and therefore, by Theorem 6, Pure
InfImmDyn converges. In particular, Pure InfImmDyn is always able to converge in
finitely many steps, namely in one (!) step for game A1 and in at most four steps for
game A2. We chose this worst case among all possible trajectories for illustration. Note
that in contrast to our dynamics, RD and FP need infinitely many steps to converge
starting from any non-fixed point. It should be remarked, however, that there are special
cases (where a pure strategy is a Nash equilibrium) for which FP may converge in finite
time, too. As RD is an interior-point method, this never happens with RD, unless one
by chance already starts in a fixed point (which is even worse if this is not a Nash
equilibrium).

19



Infection and
Immunization
Dynamics for
Evolutionary

Games

Samuel Rota
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Computational Results



Experiments: image segmentation

Berkeley database; objects = pixels, Gaussian similarity

aij = exp(−‖c(i)− c(j)‖/σ2)

where c(i) ∈ R3 is (Lab) color code and σ > 0.

Different sampling rates: different n ≈ 200,600,1200,2000.

Comparison with Nyström method [Fowlkes et al:04] (spectral

clustering; number of clusters determined by preprocessing) and

with RD: stopping criterion: t ≤ tmax or Nash error function

ε(xt) =
∑
i∈N

[
min

{
xi,

(
Axt

)
i
− π(xt)

}]2
≤ 10−10 .

Results: recall/precision identical, but Inf.Imm.Dyn much faster.
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Figure 3: Average execution times (in logarithmic scale) for image segmentation over the
Berkeley dataset at varying pixel sampling rates.

dominant set approach, needs as input the desired number of clusters, we
selected an optimal one after a careful tuning phase.

In Figure 3 we report (in logarithmic scale) the average computational
times (in seconds) per image obtained with the three approaches as a function
of the sampling rate. Although RD have been stopped before converging,
the computational gain of InImDyn over them is remarkable and it clearly
increases at larger sampling rates.

As for the quality of the segmentation results, we report in Figure 4
the average precision/recall obtained in the experiment with the different
sampling rates. As can be seen, all the approaches perform equivalently,
in particular RD and InImDyn achieved precisely the same results as ex-
pected. Of course, better results might be obtained by incorporating more
information (e.g., texture and contours [24]), but achieving state-of-the-art
segmentation results was not a primary concern of this work.

6.4. Region-based hierarchical image matching

In [42] the authors present an approach to region-based hierarchical im-
age matching, aimed at identifying the most similar regions in two images,
according to a similarity measure defined in terms of geometric and photo-
metric properties. To this end, each image is mapped into a tree of recursively
embedded regions, obtained by a multiscale segmentation algorithm. In this
way the image matching problem is cast into a tree matching problem, that
is solved recursively through a set of sub-matching problems, each of which
is then attacked using replicator dynamics (see [42] for details). Given that
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Experiments: Region-based image matching

Data from [Todorovic/Ahuja:08] lead to subproblems of tree

matching (≥ 100 per image), similarities are adjacencies in asso-

ciation graph G = (Vass, Eass) of two trees Ti = (Vi, Ei), i = 1,2:

Vass = V1 × V2 , Eass =
{
{(i, h), (j, k)} : dT1

(i, j) = dT2
(h, k)

}
,

where dT (i, j) is tree distance of two vertices i, j in T .

This yields instances with n up to 3000, grouped according to

their size across images, to obtain error bars.

Compared to RD, Inf.Imm.Dyn is orders of magnitude faster.
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Figure 5: Average execution times (in logarithmic scale) at varying instance sizes for
solving sub-matching problems, which arise in hierarchical image matching.

approximately the same size together. We plotted the average running time
within each group (in logarithmic scale) as a function of the instance sizes
and reported the standard deviations as error bars. Again, as can be seen,
InImDyn turned out to be orders of magnitude faster than RD, although
RD were advantaged from the fact of being stopped after exceeding 1000
iterations.

7. Conclusions

We presented a new population game dynamics for finding dominant sets
and, more generally, for optimizing (standard) quadratic programs. Our dy-
namics are inspired by evolutionary game theoretic principles and exhibit
linear space and time complexity per iteration, as opposed to the quadratic
one of the replicator dynamics. We proved that, under symmetric affinities,
the asymptotically stable point of our dynamics are in one-to-one correspon-
dence with dominant sets. Experimentally, on two computer vision applica-
tions (image segmentation and hierarchical image matching), the proposed
algorithm was found to be dramatically faster than standard approaches,
while preserving the quality of the solution found.

[1] Albarelli, A., Torsello, A., Rota Bulò, S., Pelillo, M., 2009. Matching as
a non-cooperative game. In: Int. Conf. Comp. Vision (ICCV).

[2] Barrow, H., Burstall, R. M., 1976. Subgraph isomorphism, matching
relational structures and maximal cliques. Inf. Process. Lett. 4 (4), 83–
84.
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Convergence of iterates

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points.

Needed in:

Theorem:

For α ∈
{
αexact , αArmijo

}
and d ∈ {dAFW ,dPFW }, suppose that

(xk)k has finitely many accumulation points. Then

xk → x∗ as k →∞, only one such accumulation point.

Proof would be easy if T were continuous, since a finite

connected set is a singleton; but T isn’t continuous !




