First-order methods for the impatient:
support identification in finite time
with convergent Frank-Wolfe variants

Immanuel Bomze, University of Vienna
joint work with:
Francesco Rinaldi and Samuel Rota Bulò

GDO 2019 @ UBB
Cluj-Napoca, 10 April 2019

Overview

1. Simplex-constrained smooth optimization

Overview

1. Simplex-constrained smooth optimization
2. Frank-Wolfe method with away steps

Overview

1. Simplex-constrained smooth optimization
2. Frank-Wolfe method with away steps
3. Global convergence of iterates

Overview

1. Simplex-constrained smooth optimization
2. Frank-Wolfe method with away steps
3. Global convergence of iterates
4. Support identification in finite time

A simple optimization model ...

 and $f \in \mathcal{C}^{2}$.

A simple optimization model ...

$$
\ldots \text { is } \min _{\mathbf{x} \in \Delta} f(\mathrm{x}) \quad \text { with } \quad \Delta=\left\{\mathrm{x} \in \mathbb{R}_{+}^{n}: \sum_{i} x_{i}=1\right\}
$$

and $f \in \mathcal{C}^{2}$. Line search starting in \mathbf{x} along d :

$$
\varphi(\alpha)=f(\mathrm{x}+\alpha \mathbf{d}), \quad \alpha \in[0,1] .
$$

A simple optimization model ...

\ldots is $\min _{\mathbf{x} \in \Delta} f(\mathbf{x}) \quad$ with $\quad \Delta=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: \sum_{i} x_{i}=1\right\}$
and $f \in \mathcal{C}^{2}$. Line search starting in \mathbf{x} along \mathbf{d} :

$$
\varphi(\alpha)=f(\mathbf{x}+\alpha \mathbf{d}), \quad \alpha \in[0,1]
$$

Assumption: curvature of φ has constant sign:

A simple optimization model ...

$$
\ldots \text { is } \min _{\mathbf{x} \in \Delta} f(\mathbf{x}) \quad \text { with } \quad \Delta=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: \sum_{i} x_{i}=1\right\}
$$

and $f \in \mathcal{C}^{2}$. Line search starting in \mathbf{x} along d :

$$
\varphi(\alpha)=f(\mathrm{x}+\alpha \mathbf{d}), \quad \alpha \in[0,1] .
$$

Assumption: curvature of φ has constant sign:

$$
\operatorname{sign} \ddot{\varphi}(\alpha)=\text { const. } \quad \text { in } \alpha \in[0,1],
$$

A simple optimization model ...

\ldots is $\min _{\mathbf{x} \in \Delta} f(\mathbf{x}) \quad$ with $\quad \Delta=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: \sum_{i} x_{i}=1\right\}$
and $f \in \mathcal{C}^{2}$. Line search starting in \mathbf{x} along d :

$$
\varphi(\alpha)=f(\mathrm{x}+\alpha \mathbf{d}), \quad \alpha \in[0,1] .
$$

Assumption: curvature of φ has constant sign:

$$
\operatorname{sign} \ddot{\varphi}(\alpha)=\text { const. } \quad \text { in } \alpha \in[0,1]
$$

and moreover in the strictly convex descent case $\dot{\varphi}(0)<0<\ddot{\varphi}(0)$

A simple optimization model ...

\ldots is $\min _{\mathbf{x} \in \Delta} f(\mathbf{x}) \quad$ with $\quad \Delta=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: \sum_{i} x_{i}=1\right\}$
and $f \in \mathcal{C}^{2}$. Line search starting in \mathbf{x} along d :

$$
\varphi(\alpha)=f(\mathrm{x}+\alpha \mathbf{d}), \quad \alpha \in[0,1] .
$$

Assumption: curvature of φ has constant sign:

$$
\operatorname{sign} \ddot{\varphi}(\alpha)=\text { const. } \quad \text { in } \alpha \in[0,1]
$$

and moreover in the strictly convex descent case $\dot{\varphi}(0)<0<\ddot{\varphi}(0)$ for some $\eta>0, \quad \ddot{\varphi}(\alpha) \geq \eta \quad$ for all $\alpha \in[0,1]$.

A simple optimization model ...

\ldots is $\min _{\mathrm{x} \in \Delta} f(\mathrm{x}) \quad$ with $\quad \Delta=\left\{\mathrm{x} \in \mathbb{R}_{+}^{n}: \sum_{i} x_{i}=1\right\}$
and $f \in \mathcal{C}^{2}$. Line search starting in \mathbf{x} along \mathbf{d} :

$$
\varphi(\alpha)=f(\mathrm{x}+\alpha \mathbf{d}), \quad \alpha \in[0,1] .
$$

Assumption: curvature of φ has constant sign:

$$
\operatorname{sign} \ddot{\varphi}(\alpha)=\text { const. } \quad \text { in } \alpha \in[0,1]
$$

and moreover in the strictly convex descent case $\dot{\varphi}(0)<0<\ddot{\varphi}(0)$

$$
\text { for some } \eta>0, \quad \ddot{\varphi}(\alpha) \geq \eta \quad \text { for all } \alpha \in[0,1] .
$$

Holds for all (also non-convex) quadratic f and many more.

Frank-Wolfe and away directions

Point $x \in \Delta$ is (KKT) stationary if and only if

$$
\nabla_{r} f\left(\mathbf{x}^{*}\right) \geq \nabla f\left(\mathbf{x}^{*}\right)^{\top} \mathbf{x}^{*} \quad \text { for all } r \text { with equality if } x_{r}^{*}>0
$$

Frank-Wolfe and away directions

Point $x \in \Delta$ is (KKT) stationary if and only if

$$
\nabla_{r} f\left(\mathrm{x}^{*}\right) \geq \nabla f\left(\mathrm{x}^{*}\right)^{\top} \mathrm{x}^{*} \quad \text { for all } r \text { with equality if } x_{r}^{*}>0
$$

Frank-Wolfe direction at x :

$$
\mathbf{d}_{F W}(\mathbf{x})=\mathbf{e}_{\imath}-\mathbf{x}, \quad \hat{\imath} \in \operatorname{Argmin}\left\{\nabla_{i} f(\mathbf{x}): 1 \leq i \leq n\right\}
$$

where \mathbf{e}_{i} is i th column of $n \times n$ identity matrix.

Frank-Wolfe and away directions

Point $x \in \Delta$ is (KKT) stationary if and only if

$$
\nabla_{r} f\left(\mathrm{x}^{*}\right) \geq \nabla f\left(\mathrm{x}^{*}\right)^{\top} \mathrm{x}^{*} \quad \text { for all } r \text { with equality if } x_{r}^{*}>0
$$

Frank-Wolfe direction at x :

$$
\mathbf{d}_{F W}(\mathbf{x})=\mathbf{e}_{\hat{\imath}}-\mathbf{x}, \quad \widehat{\imath} \in \operatorname{Argmin}\left\{\nabla_{i} f(\mathbf{x}): 1 \leq i \leq n\right\}
$$

where \mathbf{e}_{i} is i th column of $n \times n$ identity matrix.

Away direction at x :

$$
\mathbf{d}_{A}(\mathbf{x})=\mathbf{x}-\mathbf{e}_{\hat{\jmath}}, \quad \hat{\jmath} \in \operatorname{Argmax}\left\{\nabla_{j} f(\mathbf{x}): x_{j}>0\right\}
$$

Frank-Wolfe and away directions

Point $x \in \Delta$ is (KKT) stationary if and only if

$$
\nabla_{r} f\left(\mathrm{x}^{*}\right) \geq \nabla f\left(\mathrm{x}^{*}\right)^{\top} \mathrm{x}^{*} \quad \text { for all } r \text { with equality if } x_{r}^{*}>0
$$

Frank-Wolfe direction at x :

$$
\mathbf{d}_{F W}(\mathbf{x})=\mathbf{e}_{\hat{\imath}}-\mathbf{x}, \quad \widehat{\imath} \in \operatorname{Argmin}\left\{\nabla_{i} f(\mathbf{x}): 1 \leq i \leq n\right\}
$$

where \mathbf{e}_{i} is i th column of $n \times n$ identity matrix.

Away direction at x :

$$
\mathbf{d}_{A}(\mathbf{x})=\mathbf{x}-\mathbf{e}_{\hat{\jmath}}, \quad \hat{\jmath} \in \operatorname{Argmax}\left\{\nabla_{j} f(\mathbf{x}): x_{j}>0\right\} .
$$

Both are feasible descent directions unless \mathbf{x} is stationary.

Two variants of search directions

Based upon $(\hat{\imath}, \hat{\jmath})$, i.e., on $\mathbf{d}_{F W}(\mathbf{x})$ and $\mathbf{d}_{A}(\mathbf{x})$,
we consider two variants.

Two variants of search directions

Based upon $(\hat{\imath}, \hat{\jmath})$, i.e., on $\mathbf{d}_{F W}(\mathbf{x})$ and $\mathbf{d}_{A}(\mathbf{x})$,
we consider two variants.

Away-step Frank-Wolfe (AFW) direction:
$\mathbf{d}_{A F W}(\mathbf{x})= \begin{cases}\mathbf{d}_{F W}(\mathbf{x}), & \text { if } \mathbf{d}_{F W}(\mathbf{x})^{\top} \nabla f(\mathbf{x}) \leq \mathbf{d}_{A}(\mathbf{x})^{\top} \nabla f(\mathbf{x}), \\ \end{cases}$

Two variants of search directions

Based upon $(\hat{\imath}, \hat{\jmath})$, i.e., on $\mathbf{d}_{F W}(\mathbf{x})$ and $\mathbf{d}_{A}(\mathbf{x})$,
we consider two variants.

Away-step Frank-Wolfe (AFW) direction:
$\mathbf{d}_{A F W}(\mathbf{x})=\left\{\begin{array}{cl}\mathbf{d}_{F W}(\mathbf{x}), & \text { if } \mathbf{d}_{F W}(\mathbf{x})^{\top} \nabla f(\mathbf{x}) \leq \mathbf{d}_{A}(\mathbf{x})^{\top} \nabla f(\mathbf{x}), \\ \frac{x_{\hat{\jmath}}}{1-x_{\hat{\jmath}}} \mathbf{d}_{A}(\mathbf{x}), & \text { otherwise; }\end{array}\right.$

Two variants of search directions

Based upon ($\hat{\imath}, \hat{\jmath}$), i.e., on $\mathbf{d}_{F W}(\mathrm{x})$ and $\mathbf{d}_{A}(\mathrm{x})$,
we consider two variants.
Away-step Frank-Wolfe (AFW) direction:
$\mathbf{d}_{A F W}(\mathrm{x})=\left\{\begin{array}{cl}\mathbf{d}_{F W}(\mathrm{x}), & \text { if } \mathbf{d}_{F W}(\mathrm{x})^{\top} \nabla f(\mathrm{x}) \leq \mathbf{d}_{A}(\mathrm{x})^{\top} \nabla f(\mathrm{x}), \\ \frac{x_{\hat{\jmath}}}{1-x_{\hat{\jmath}}} \mathbf{d}_{A}(\mathrm{x}), & \text { otherwise; }\end{array}\right.$
and the Pairwise Frank-Wolfe (PFW) direction

$$
\mathbf{d}_{P F W}(\mathbf{x})=x_{\hat{\jmath}}\left[\mathbf{d}_{F W}(\mathbf{x})+\mathbf{d}_{A}(\mathbf{x})\right]=x_{\hat{\jmath}}\left[\mathbf{e}_{\imath}-\mathbf{e}_{\hat{\imath}}\right] .
$$

Two variants of search directions

Based upon ($\hat{\imath}, \hat{\jmath}$), i.e., on $\mathbf{d}_{F W}(\mathrm{x})$ and $\mathbf{d}_{A}(\mathrm{x})$,
we consider two variants.
Away-step Frank-Wolfe (AFW) direction:
$\mathbf{d}_{A F W}(\mathrm{x})=\left\{\begin{array}{cl}\mathbf{d}_{F W}(\mathrm{x}), & \text { if } \mathbf{d}_{F W}(\mathrm{x})^{\top} \nabla f(\mathrm{x}) \leq \mathbf{d}_{A}(\mathrm{x})^{\top} \nabla f(\mathrm{x}), \\ \frac{x_{\hat{\jmath}}}{1-x_{\hat{\jmath}}} \mathbf{d}_{A}(\mathrm{x}), & \text { otherwise; }\end{array}\right.$
and the Pairwise Frank-Wolfe (PFW) direction

$$
\mathbf{d}_{P F W}(\mathbf{x})=x_{\hat{\jmath}}\left[\mathbf{d}_{F W}(\mathbf{x})+\mathbf{d}_{A}(\mathbf{x})\right]=x_{\hat{\jmath}}\left[\mathbf{e}_{\imath}-\mathbf{e}_{\hat{\imath}}\right] .
$$

Both discontinuous in \mathbf{x}, as with gradient projection.

Exact line search

Have rescaled so that feasible step lengths are $\alpha \in[0,1]$.

Exact line search

Have rescaled so that feasible step lengths are $\alpha \in[0,1]$.
Exact line search: largest α minimizing φ,

Exact line search

Have rescaled so that feasible step lengths are $\alpha \in[0,1]$.
Exact line search: largest α minimizing φ,

$$
\alpha_{\text {exact }}(\mathbf{d}, \mathbf{x}):=\max \operatorname{Argmin}\{\varphi(\alpha): \alpha \in[0,1]\}
$$

Exact line search

Have rescaled so that feasible step lengths are $\alpha \in[0,1]$.
Exact line search: largest α minimizing φ,

$$
\alpha_{\text {exact }}(\mathbf{d}, \mathbf{x}):=\max \operatorname{Argmin}\{\varphi(\alpha): \alpha \in[0,1]\}
$$

which satisfies, if $0<\alpha_{\text {exact }}(\mathbf{d}, \mathbf{x})<1$,

$$
\alpha_{\text {exact }}(\mathbf{d}, \mathrm{x})=-\frac{\dot{\varphi}(0)}{\ddot{\varphi}(\tilde{\alpha})}
$$

for some $\tilde{\alpha} \in(0,1)$.

Exact line search

Have rescaled so that feasible step lengths are $\alpha \in[0,1]$.

Exact line search: largest α minimizing φ,

$$
\alpha_{\text {exact }}(\mathbf{d}, \mathbf{x}):=\max \operatorname{Argmin}\{\varphi(\alpha): \alpha \in[0,1]\}
$$

which satisfies, if $0<\alpha_{\text {exact }}(\mathbf{d}, \mathbf{x})<1$,

$$
\alpha_{e x a c t}(\mathbf{d}, \mathbf{x})=-\frac{\dot{\varphi}(0)}{\ddot{\varphi}(\tilde{\alpha})}
$$

for some $\tilde{\alpha} \in(0,1)$.
Happens only in strictly convex case $\dot{\varphi}(0)<0<\ddot{\varphi}(0)$.

Inexact line search à la Armijo; iteration
Select $\delta \in(0,1)$ and $\gamma \in\left(0, \frac{1}{2}\right)$; sufficient decrease:

Inexact line search à la Armijo; iteration

Select $\delta \in(0,1)$ and $\gamma \in\left(0, \frac{1}{2}\right)$; sufficient decrease:

$$
m(\mathbf{d}, \mathbf{x}):=\min \left\{m \in \mathbb{N}: f\left(\mathbf{x}+\delta^{m} \mathbf{d}\right) \leq f(\mathbf{x})+\gamma \delta^{m} \mathbf{d}^{\top} \nabla f(\mathbf{x})\right\}
$$

Inexact line search à la Armijo; iteration

Select $\delta \in(0,1)$ and $\gamma \in\left(0, \frac{1}{2}\right)$; sufficient decrease:
$m(\mathbf{d}, \mathbf{x}):=\min \left\{m \in \mathbb{N}: f\left(\mathbf{x}+\delta^{m} \mathbf{d}\right) \leq f(\mathbf{x})+\gamma \delta^{m} \mathbf{d}^{\top} \nabla f(\mathbf{x})\right\}$ and put

$$
\alpha_{A r m i j o}(\mathbf{d}, \mathbf{x}):=\delta^{m(\mathbf{d}, \mathbf{x})}
$$

Inexact line search à la Armijo; iteration

Select $\delta \in(0,1)$ and $\gamma \in\left(0, \frac{1}{2}\right)$; sufficient decrease:

$$
m(\mathbf{d}, \mathbf{x}):=\min \left\{m \in \mathbb{N}: f\left(\mathbf{x}+\delta^{m} \mathbf{d}\right) \leq f(\mathbf{x})+\gamma \delta^{m} \mathbf{d}^{\top} \nabla f(\mathbf{x})\right\}
$$

and put

$$
\alpha_{A r m i j o}(\mathbf{d}, \mathbf{x}):=\delta^{m(\mathbf{d}, \mathbf{x})} .
$$

Iteration for both line search variants:
Starting point $\mathrm{x}^{0} \in \Delta$,

Inexact line search à la Armijo; iteration

Select $\delta \in(0,1)$ and $\gamma \in\left(0, \frac{1}{2}\right)$; sufficient decrease:

$$
m(\mathbf{d}, \mathbf{x}):=\min \left\{m \in \mathbb{N}: f\left(\mathbf{x}+\delta^{m} \mathbf{d}\right) \leq f(\mathbf{x})+\gamma \delta^{m} \mathbf{d}^{\top} \nabla f(\mathbf{x})\right\}
$$

and put

$$
\alpha_{A r m i j o}(\mathbf{d}, \mathbf{x}):=\delta^{m(\mathbf{d}, \mathbf{x})}
$$

Iteration for both line search variants:
Starting point $\mathrm{x}^{0} \in \Delta$,

$$
\mathbf{x}^{k+1}=T\left(\mathbf{x}^{k}\right):=\mathbf{x}^{k}+\alpha\left(\mathbf{d}\left(\mathbf{x}^{k}\right), \mathbf{x}^{k}\right) \mathbf{d}\left(\mathrm{x}^{k}\right), \quad k=0,1, \ldots
$$

Inexact line search à la Armijo; iteration

Select $\delta \in(0,1)$ and $\gamma \in\left(0, \frac{1}{2}\right)$; sufficient decrease:

$$
m(\mathbf{d}, \mathbf{x}):=\min \left\{m \in \mathbb{N}: f\left(\mathbf{x}+\delta^{m} \mathbf{d}\right) \leq f(\mathbf{x})+\gamma \delta^{m} \mathbf{d}^{\top} \nabla f(\mathbf{x})\right\}
$$

and put

$$
\alpha_{A r m i j o}(\mathbf{d}, \mathbf{x}):=\delta^{m(\mathbf{d}, \mathbf{x})}
$$

Iteration for both line search variants:
Starting point $\mathrm{x}^{0} \in \Delta$,

$$
\mathbf{x}^{k+1}=T\left(\mathbf{x}^{k}\right):=\mathbf{x}^{k}+\alpha\left(\mathbf{d}\left(\mathbf{x}^{k}\right), \mathbf{x}^{k}\right) \mathbf{d}\left(\mathrm{x}^{k}\right), \quad k=0,1, \ldots
$$

Have $T(\mathrm{x})=\mathrm{x}$ if and only if x is stationary.

Inexact line search à la Armijo; iteration

Select $\delta \in(0,1)$ and $\gamma \in\left(0, \frac{1}{2}\right)$; sufficient decrease:

$$
m(\mathbf{d}, \mathbf{x}):=\min \left\{m \in \mathbb{N}: f\left(\mathbf{x}+\delta^{m} \mathbf{d}\right) \leq f(\mathbf{x})+\gamma \delta^{m} \mathbf{d}^{\top} \nabla f(\mathbf{x})\right\}
$$

and put

$$
\alpha_{A r m i j o}(\mathbf{d}, \mathbf{x}):=\delta^{m(\mathbf{d}, \mathbf{x})}
$$

Iteration for both line search variants:
Starting point $\mathrm{x}^{0} \in \Delta$,

$$
\mathbf{x}^{k+1}=T\left(\mathbf{x}^{k}\right):=\mathbf{x}^{k}+\alpha\left(\mathbf{d}\left(\mathbf{x}^{k}\right), \mathbf{x}^{k}\right) \mathbf{d}\left(\mathrm{x}^{k}\right), \quad k=0,1, \ldots
$$

Have $T(\mathrm{x})=\mathrm{x}$ if and only if x is stationary.
Note that T is discontinuous in \mathbf{x} if \mathbf{d} is so.

Monotonicity and slope convergence

Proposition:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have

Monotonicity and slope convergence

Proposition:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have (a) if $\mathrm{x}^{k+1} \neq \mathrm{x}^{k}$, then $f\left(\mathrm{x}^{k+1}\right)<f\left(\mathrm{x}^{k}\right)$;

Monotonicity and slope convergence

Proposition:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have
(a) if $\mathrm{x}^{k+1} \neq \mathrm{x}^{k}$, then $f\left(\mathrm{x}^{k+1}\right)<f\left(\mathrm{x}^{k}\right)$;
(b) if $\mathrm{x}^{k+1} \neq \mathrm{x}^{k}$ for all $k \in \mathbb{N}$, then

$$
\mathrm{d}\left(\mathrm{x}^{k}\right)^{\top} \nabla f\left(\mathrm{x}^{k}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Monotonicity and slope convergence

Proposition:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have (a) if $\mathrm{x}^{k+1} \neq \mathrm{x}^{k}$, then $f\left(\mathrm{x}^{k+1}\right)<f\left(\mathrm{x}^{k}\right)$;
(b) if $\mathrm{x}^{k+1} \neq \mathrm{x}^{k}$ for all $k \in \mathbb{N}$, then

$$
\mathrm{d}\left(\mathrm{x}^{k}\right)^{\top} \nabla f\left(\mathrm{x}^{k}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Key argument in proof: for $K=\max _{\mathrm{x} \in \Delta}\left\|\nabla^{2} f(\mathrm{x})\right\|_{\text {spec }}$

Monotonicity and slope convergence

Proposition:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have
(a) if $\mathrm{x}^{k+1} \neq \mathrm{x}^{k}$, then $f\left(\mathrm{x}^{k+1}\right)<f\left(\mathrm{x}^{k}\right)$;
(b) if $\mathrm{x}^{k+1} \neq \mathrm{x}^{k}$ for all $k \in \mathbb{N}$, then

$$
\mathrm{d}\left(\mathrm{x}^{k}\right)^{\top} \nabla f\left(\mathrm{x}^{k}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Key argument in proof: for $K=\max _{\mathbf{x} \in \Delta}\left\|\nabla^{2} f(\mathrm{x})\right\|_{\text {spec }}$ have

$$
\left[\mathrm{d}\left(\mathrm{x}^{k}\right)^{\top} \nabla f\left(\mathrm{x}^{k}\right)\right]^{2}=[\dot{\varphi}(0)]^{2} \leq \frac{4 K}{\eta}\left[f\left(\mathrm{x}^{k}\right)-f\left(\mathrm{x}^{k+1}\right)\right] .
$$

Global convergence

Theorem:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have that either $\mathrm{x}^{\bar{k}}$ is stationary for some $\bar{k} \in \mathbb{N}$ and iteration stops;

Global convergence

Theorem:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have that either $\mathrm{x}^{\bar{k}}$ is stationary for some $\bar{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point x^{*} of iterates $\left(\mathrm{x}^{k}\right)_{k}$ is stationary.

Global convergence

Theorem:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have that either $\mathrm{x}^{\bar{k}}$ is stationary for some $\bar{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point x^{*} of iterates $\left(\mathrm{x}^{k}\right)_{k}$ is stationary.

Key arguments in proof: previous proposition; show that along subsequences stepsize $\alpha_{k}=1$ eventually in difficult subcase.

Global convergence

Theorem:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have that either $\mathrm{x}^{\bar{k}}$ is stationary for some $\bar{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point x^{*} of iterates $\left(\mathrm{x}^{k}\right)_{k}$ is stationary.

Key arguments in proof: previous proposition; show that along subsequences stepsize $\alpha_{k}=1$ eventually in difficult subcase.

Good proof of concept

Global convergence

Theorem:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have that either $\mathrm{x}^{\bar{k}}$ is stationary for some $\bar{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point x^{*} of iterates $\left(\mathrm{x}^{k}\right)_{k}$ is stationary.

Key arguments in proof: previous proposition; show that along subsequences stepsize $\alpha_{k}=1$ eventually in difficult subcase.

Good proof of concept but still not proved: iterates convergence

Global convergence

Theorem:

For $\mathbf{d} \in\left\{\mathbf{d}_{\text {AFW }}, \mathrm{d}_{\text {PFW }}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, we have that either $\mathrm{x}^{\bar{k}}$ is stationary for some $\bar{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point x^{*} of iterates $\left(\mathrm{x}^{k}\right)_{k}$ is stationary.

Key arguments in proof: previous proposition; show that along subsequences stepsize $\alpha_{k}=1$ eventually in difficult subcase.

Good proof of concept but still not proved: iterates convergence (only one accumulation point x^{*}).

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles);

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.! Theorem:
Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k.

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k. If all acc. points of $\left(\mathrm{x}^{k}\right)_{k}$ are stationary,

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k. If all acc. points of $\left(\mathrm{x}^{k}\right)_{k}$ are stationary, the following statements are equivalent

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k. If all acc. points of $\left(\mathrm{x}^{k}\right)_{k}$ are stationary, the following statements are equivalent for any stationary x^{*} and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of x^{*} :

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k. If all acc. points of $\left(\mathrm{x}^{k}\right)_{k}$ are stationary, the following statements are equivalent for any stationary x^{*} and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of x^{*} :
(a) every sequence $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, if $\mathrm{x}^{0} \in U$;

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k. If all acc. points of $\left(\mathrm{x}^{k}\right)_{k}$ are stationary, the following statements are equivalent for any stationary x^{*} and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of x^{*} :
(a) every sequence $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, if $\mathrm{x}^{0} \in U$;
(b) $f(\mathrm{x})>f\left(\mathrm{x}^{*}\right)$ for all $\mathrm{x} \in V \backslash\left\{\mathrm{x}^{*}\right\} \ldots$ contains no $K K T$ point.

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k. If all acc. points of $\left(\mathrm{x}^{k}\right)_{k}$ are stationary, the following statements are equivalent for any stationary x^{*} and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of x^{*} :
(a) every sequence $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, if $\mathrm{x}^{0} \in U$;
(b) $f(\mathrm{x})>f\left(\mathrm{x}^{*}\right)$ for all $\mathrm{x} \in V \backslash\left\{\mathrm{x}^{*}\right\} \ldots$ contains no $K K T$ point.

So no negative curvature feasible direction of $\nabla^{2} f\left(\mathrm{x}^{*}\right)$.

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k. If all acc. points of $\left(\mathrm{x}^{k}\right)_{k}$ are stationary, the following statements are equivalent for any stationary x^{*} and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of x^{*} :
(a) every sequence $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, if $\mathrm{x}^{0} \in U$;
(b) $f(\mathrm{x})>f\left(\mathrm{x}^{*}\right)$ for all $\mathrm{x} \in V \backslash\left\{\mathrm{x}^{*}\right\} \ldots$ contains no $K K T$ point.

So no negative curvature feasible direction of $\nabla^{2} f\left(\mathrm{x}^{*}\right)$.
Implies that all strict local solutions are isolated KKT points.

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k. If all acc. points of $\left(\mathrm{x}^{k}\right)_{k}$ are stationary, the following statements are equivalent for any stationary x^{*} and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of x^{*} :
(a) every sequence $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, if $\mathrm{x}^{0} \in U$;
(b) $f(\mathrm{x})>f\left(\mathrm{x}^{*}\right)$ for all $\mathrm{x} \in V \backslash\left\{\mathrm{x}^{*}\right\} \ldots$ contains no $K K T$ point.

So no negative curvature feasible direction of $\nabla^{2} f\left(\mathrm{x}^{*}\right)$.
Implies that all strict local solutions are isolated KKT points.
Applies to all f considered here

Saddle points are avoided almost surely

Recently discussed: $2^{\text {nd }}$-order optimality conditions (saddles); related more general result here: any attracting x^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$ for all k. If all acc. points of $\left(\mathrm{x}^{k}\right)_{k}$ are stationary, the following statements are equivalent for any stationary x^{*} and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of x^{*} :
(a) every sequence $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, if $\mathrm{x}^{0} \in U$;
(b) $f(\mathrm{x})>f\left(\mathrm{x}^{*}\right)$ for all $\mathrm{x} \in V \backslash\left\{\mathrm{x}^{*}\right\} \ldots$ contains no $K K T$ point.

So no negative curvature feasible direction of $\nabla^{2} f\left(\mathrm{x}^{*}\right)$.
Implies that all strict local solutions are isolated KKT points.
Applies to all f considered here, including nonconvex quadratic.

Convergence of iterates

Generic property for objective functions:
only finitely many stationary points.

Convergence of iterates

Generic property for objective functions:
only finitely many stationary points.
Then previous results imply only finitely many acc. points.

Convergence of iterates

Generic property for objective functions:
only finitely many stationary points.
Then previous results imply only finitely many acc. points.
Needed in:

Theorem:

For $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$ and $\mathbf{d}=\mathbf{d}_{A F W}$, suppose that $\left(\mathrm{x}^{k}\right)_{k}$ has finitely many accumulation points. Then

Convergence of iterates

Generic property for objective functions:
only finitely many stationary points.
Then previous results imply only finitely many acc. points.
Needed in:

Theorem:

For $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$ and $\mathbf{d}=\mathbf{d}_{A F W}$, suppose that $\left(\mathrm{x}^{k}\right)_{k}$ has finitely many accumulation points. Then $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$,

Convergence of iterates

Generic property for objective functions:
only finitely many stationary points.
Then previous results imply only finitely many acc. points.
Needed in:

Theorem:

For $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$ and $\mathbf{d}=\mathbf{d}_{A F W}$, suppose that $\left(\mathrm{x}^{k}\right)_{k}$ has finitely many accumulation points. Then $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, only one such accumulation point.

Convergence of iterates

Generic property for objective functions:
only finitely many stationary points.
Then previous results imply only finitely many acc. points.
Needed in:

Theorem:

For $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$ and $\mathbf{d}=\mathbf{d}_{A F W}$, suppose that $\left(\mathrm{x}^{k}\right)_{k}$ has finitely many accumulation points. Then $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, only one such accumulation point.

Proof would be easy if T were continuous

Convergence of iterates

Generic property for objective functions:
only finitely many stationary points.
Then previous results imply only finitely many acc. points.
Needed in:

Theorem:

For $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$ and $\mathbf{d}=\mathbf{d}_{A F W}$, suppose that $\left(\mathrm{x}^{k}\right)_{k}$ has finitely many accumulation points. Then $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, only one such accumulation point.

Proof would be easy if T were continuous, since a finite connected set is a singleton

Convergence of iterates

Generic property for objective functions:
only finitely many stationary points.
Then previous results imply only finitely many acc. points.
Needed in:

Theorem:

For $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$ and $\mathbf{d}=\mathbf{d}_{\text {AFW }}$, suppose that $\left(\mathrm{x}^{k}\right)_{k}$ has finitely many accumulation points. Then $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, only one such accumulation point.

Proof would be easy if T were continuous, since a finite connected set is a singleton; but T isn't continuous !

Support identification in finite time

Let $S_{k}=S\left(\mathrm{x}^{k}\right)$ be supports of iterates x^{k}

Support identification in finite time

Let $S_{k}=S\left(\mathrm{x}^{k}\right)$ be supports of iterates $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$.

Support identification in finite time

Let $S_{k}=S\left(\mathrm{x}^{k}\right)$ be supports of iterates $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$. By continuity, $S\left(\mathrm{x}^{*}\right) \subseteq S\left(\mathrm{x}^{k}\right) \quad$ for all large enough k.

Support identification in finite time

Let $S_{k}=S\left(\mathrm{x}^{k}\right)$ be supports of iterates $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$. By continuity,

$$
S\left(\mathrm{x}^{*}\right) \subseteq S\left(\mathrm{x}^{k}\right) \quad \text { for all large enough } k .
$$

Furthermore, stationarity of x^{*} implies

$$
S\left(\mathrm{x}^{*}\right) \subseteq S_{0}^{*}:=\left\{i: \nabla_{i} f\left(\mathrm{x}^{*}\right)=\nabla f\left(\mathrm{x}^{*}\right)^{\top} \mathrm{x}^{*}\right\}
$$

Support identification in finite time

Let $S_{k}=S\left(\mathrm{x}^{k}\right)$ be supports of iterates $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$. By continuity, $S\left(\mathrm{x}^{*}\right) \subseteq S\left(\mathrm{x}^{k}\right) \quad$ for all large enough k.
Furthermore, stationarity of x^{*} implies

$$
S\left(\mathrm{x}^{*}\right) \subseteq S_{0}^{*}:=\left\{i: \nabla_{i} f\left(\mathrm{x}^{*}\right)=\nabla f\left(\mathrm{x}^{*}\right)^{\top} \mathrm{x}^{*}\right\}
$$

and strict complementarity is equivalent to $S\left(\mathrm{x}^{*}\right)=S_{0}^{*}$.

Support identification in finite time

Let $S_{k}=S\left(\mathrm{x}^{k}\right)$ be supports of iterates $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$. By continuity, $S\left(\mathrm{x}^{*}\right) \subseteq S\left(\mathrm{x}^{k}\right) \quad$ for all large enough k.
Furthermore, stationarity of x^{*} implies

$$
S\left(\mathrm{x}^{*}\right) \subseteq S_{0}^{*}:=\left\{i: \nabla_{i} f\left(\mathrm{x}^{*}\right)=\nabla f\left(\mathrm{x}^{*}\right)^{\top} \mathrm{x}^{*}\right\}
$$

and strict complementarity is equivalent to $S\left(\mathrm{x}^{*}\right)=S_{0}^{*}$.

Theorem:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, suppose that iterates $\mathbf{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$.

Support identification in finite time

Let $S_{k}=S\left(\mathrm{x}^{k}\right)$ be supports of iterates $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$. By continuity, $S\left(\mathrm{x}^{*}\right) \subseteq S\left(\mathrm{x}^{k}\right) \quad$ for all large enough k.
Furthermore, stationarity of x^{*} implies

$$
S\left(\mathrm{x}^{*}\right) \subseteq S_{0}^{*}:=\left\{i: \nabla_{i} f\left(\mathrm{x}^{*}\right)=\nabla f\left(\mathrm{x}^{*}\right)^{\top} \mathrm{x}^{*}\right\}
$$

and strict complementarity is equivalent to $S\left(\mathrm{x}^{*}\right)=S_{0}^{*}$.

Theorem:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, suppose that iterates $\mathbf{x}^{k} \rightarrow \mathbf{x}^{*}$ as $k \rightarrow \infty$. Then there is a finite \bar{k} such that

$$
S\left(\mathrm{x}^{*}\right) \subseteq S\left(\mathrm{x}^{k}\right) \subseteq S_{0}^{*} \quad \text { for all } k \geq \bar{k} .
$$

Support identification in finite time

Let $S_{k}=S\left(\mathrm{x}^{k}\right)$ be supports of iterates $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$. By continuity, $S\left(\mathrm{x}^{*}\right) \subseteq S\left(\mathrm{x}^{k}\right) \quad$ for all large enough k.
Furthermore, stationarity of x^{*} implies

$$
S\left(\mathrm{x}^{*}\right) \subseteq S_{0}^{*}:=\left\{i: \nabla_{i} f\left(\mathrm{x}^{*}\right)=\nabla f\left(\mathrm{x}^{*}\right)^{\top} \mathrm{x}^{*}\right\}
$$

and strict complementarity is equivalent to $S\left(\mathrm{x}^{*}\right)=S_{0}^{*}$.

Theorem:

For $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{P F W}\right\}$ and $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$, suppose that iterates $\mathbf{x}^{k} \rightarrow \mathbf{x}^{*}$ as $k \rightarrow \infty$. Then there is a finite \bar{k} such that

$$
S\left(\mathrm{x}^{*}\right) \subseteq S\left(\mathrm{x}^{k}\right) \subseteq S_{0}^{*} \quad \text { for all } k \geq \bar{k}
$$

So under strict complementarity $S\left(\mathrm{x}^{k}\right)=S_{0}^{*}=S\left(\mathrm{x}^{*}\right)$ if $k \geq \bar{k}$.

Not true for classical Frank-Wolfe!

Example: $f(\mathrm{x})=\mathbf{x}^{\top} Q \mathbf{x}$ (convex!) quadratic with $\alpha_{\text {Armijo }}$ where

$$
Q=\left[\begin{array}{ccc}
6 & 0 & 6 \\
0 & 3 & 3 \\
6 & 3 & 10
\end{array}\right]
$$

Cristofari \& al. (2017), arXiv:1703.07761

A fresh reference

[B./Rinaldi/Rota Bulò '18] First-order methods for the impatient: support identification in finite time with convergent Frank-Wolfe variants Optimization online 2018/07/6694 (3 July 2018).

Computational Results

Experiments: image segmentation

Berkeley database; objects $=$ pixels, Gaussian similarity

$$
a_{i j}=\exp \left(-\|\mathbf{c}(i)-\mathbf{c}(j)\| / \sigma^{2}\right)
$$

where $\mathbf{c}(i) \in \mathbb{R}^{3}$ is (Lab) color code and $\sigma>0$.

Different sampling rates: different $n \approx 200,600,1200,2000$.

Comparison with Nyström method [Fowlkes et al:04] (spectral clustering; number of clusters determined by preprocessing) and with RD: stopping criterion: $t \leq t_{\text {max }}$ or Nash error function

$$
\varepsilon\left(\mathrm{x}^{t}\right)=\sum_{i \in N}\left[\min \left\{x_{i},\left(A \mathbf{x}^{t}\right)_{i}-\pi\left(\mathrm{x}^{t}\right)\right\}\right]^{2} \leq 10^{-10}
$$

Results: recall/precision identical, but Inf.Imm.Dyn much faster.

Experiments: Region-based image matching

Data from [Todorovic/Ahuja:08] lead to subproblems of tree matching (≥ 100 per image), similarities are adjacencies in association graph $G=\left(V\right.$ ass, $E_{\text {ass }}$) of two trees $T_{i}=\left(V_{i}, E_{i}\right), i=1,2$:

$$
V_{\mathrm{ass}}=V_{1} \times V_{2}, \quad E_{\text {ass }}=\left\{\{(i, h),(j, k)\}: d_{T_{1}}(i, j)=d_{T_{2}}(h, k)\right\},
$$

where $d_{T}(i, j)$ is tree distance of two vertices i, j in T.

This yields instances with n up to 3000, grouped according to their size across images, to obtain error bars.

Compared to RD, Inf.Imm.Dyn is orders of magnitude faster.

Convergence of iterates

Generic property for objective functions:
only finitely many stationary points.
Then previous results imply only finitely many acc. points.
Needed in:

Theorem:

For $\alpha \in\left\{\alpha_{\text {exact }}, \alpha_{\text {Armijo }}\right\}$ and $\mathbf{d} \in\left\{\mathbf{d}_{A F W}, \mathbf{d}_{\text {PFW }}\right\}$, suppose that $\left(\mathrm{x}^{k}\right)_{k}$ has finitely many accumulation points. Then $\mathrm{x}^{k} \rightarrow \mathrm{x}^{*}$ as $k \rightarrow \infty$, only one such accumulation point.

Proof would be easy if T were continuous, since a finite connected set is a singleton; but T isn't continuous !

