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A simple optimization model ...

. IS min with A = R™ =1
x€A f(x) {X © Ry ;m’t }
and f € C2. Line search starting in x along d:

pla) = f(x+ad), a€l0,1].
Assumption: curvature of ¢ has constant sign:

sign ¢(a) = const. in a € [0,1],

and moreover in the strictly convex descent case ©(0) < 0 < ¢(0)

for somen >0, ¢(a)>n forall aec|0,1].

Holds for all (also non-convex) quadratic f and many more.
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Frank-Wolfe and away directions

Point x € A is (KKT) stationary if and only if
Vrf(x*) > Vf(x*)'x* for all » with equality if z¥ > 0.

Frank-Wolfe direction at x:
driy(x) =e;—x, 7€ Argmin{V,;f(x) : 1 <i<n}

where e¢; is 1th column of n x n identity matrix.

Away direction at x:

dy(x) =x—e;, j&€ Argmaz{V,;f(x): z; > 0}.

Both are feasible descent directions unless x is stationary.
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Two variants of search directions

Based upon (7,7), i.e., on dpy(x) and d4(x),

we consider two variants.

Away-step Frank-Wolfe (AFW) direction:

[ dpy(x),  if dpyx)'Vf(x) <ds(x)'VFx),
dypy(x) =« 5

X 1—:65

d,(x), otherwise;

and the Pairwise Frank-Wolfe (PFW) direction

dprw (x) = z5[dpw (x) + dg(x)] = z; [ea — ej} :

Both discontinuous in x, as with gradient projection.
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Exact line search
Have rescaled so that feasible step lengths are a € [0, 1].

Exact line search: largest a minimizing o,
Aepact(d, x) 1= max Argmin {p(a) : a € [0,1]}
which satisfies, if 0 < appget(d, x) < 1,

#(0)
p(a)

Qepact(d, xX) = —
for some a € (0,1).

Happens only in strictly convex case ¢(0) < 0 < $(0).
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Inexact line search a la Armijo; iteration

Select § € (0,1) and ~ € (O,%); sufficient decrease:

m(d,x) :=min{m eN: f(x+6"d) < f(x) +75"d VFf(x)}
and put

O‘Armijo(da X) 1= gmdx)

Iteration for both line search variants:
Starting point x0 € A,

<Pt = 7(xF) = xF + a(d(xF),x*)d(x*), k=0,1,...
Have T'(x) = x if and only if x is stationary.

Note that T is discontinuous in x if d is so.
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Monotonicity and slope convergence

Proposition:

Ford € {d pw,dprw} and a € {aewactva’Armijo}r we have
(a) if xFT1 £ xk then f(xF+1) < f(xF);
(b) if xkT1 £ xk for all k € N, then

dx"'ViEF) -0 ask— oo.

Key argument in proof: for K = manHVQf(x)Hspec have
X€

[d(") "V ()17 = [£(0)]° < % [F () — Fx*TD)].
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Global convergence

T heorem:

For d e {dpr,dpF[/[/} and a € {aexactaaArmijo}r we have that

either x¥ is stationary for some k € N and iteration stops;

or else any accumulation point x* of iterates (xk)k is stationary.

Key arguments in proof: previous proposition; show that along
subsequences stepsize ap = 1 eventually in difficult subcase.

Good proof of concept but still not proved: iterates convergence
(only one accumulation point x*).
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Recently discussed: oNd_order optimality conditions (saddles);
related more general result here: any attracting x* is local soln.!

T heorem:

Suppose f is either convex or concave along lines and that
f(xkT1Y < f(xF) for all k. If all acc. points of (x*),. are stationary,
the following statements are equivalent for any stationary x* and
neighbourhoods U C A or V C A of x*:

(a) every sequence x¥ — x* as k — oo, ifx0 € U;

(b) f(x) > f(x*) for all x € V \ {x*} ... contains no KKT point.
So no negative curvature feasible direction of V2f(x*).

Implies that all strict local solutions are isolated KK'T points.

Applies to all f considered here, including nonconvex quadratic.
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Convergence of iterates

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points.
Needed in:

Theorem:
For o € {aemct, aATijO} and d = d py, suppose that

(xF),. has finitely many accumulation points. Then

k

x® = x* as k — oo, only one such accumulation point.

Proof would be easy if T' were continuous, since a finite
connected set is a singleton; but T isn't continuous !
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Support identification in finite time

Let S = S(x*) be supports of iterates x* — x*. By continuity,
S(x*) C S(x¥) for all large enough k.
Furthermore, stationarity of x* implies
S(x") € 85 = {i: Vif () = Vi (x*) <"} |
and strict complementarity is equivalent to S(x*) = S5;.
Theorem:

Ford € {djprw,dprw} and a € {aemct, O‘Armzjo}r suppose that
iterates x*¥ — x* as k — oo. Then there is a finite k such that

S(x*) C S(xF)C S forallk>k.
So under strict complementarity S(xF) = S§=S(x*) if k > k.



Not true for classical Frank-Wolfe !

Example: f(x) = x'Qx (convex!) quadratic With o ., where

Cristofari& al. (2017),arXiv:1703.0776
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A fresh reference

[B./Rinaldi/Rota Buld '18] First-order methods for the impatient:
support identification in finite time with convergent Frank-Wolfe variants
Optimization online 2018/07 /6694 (3 July 2018).







1000

1500

2000

2500
[Rota Bulo/Pelillo '17]

3000


Bomze
Schreibmaschinentext

Bomze
Schreibmaschinentext

Bomze
Schreibmaschinentext
[Rota Bulò/Pelillo '17]


20

40

60

80

100

120

140 160 180
[Rota Bulo/Pelillo '17]


Bomze
Schreibmaschinentext
[Rota Bulò/Pelillo '17]


COMPUTATIONAL RESULTS



Experiments: image segmentation

Berkeley database; objects = pixels, Gaussian similarity

aij = exp(—|lc(i) — c(j)/o?)
where ¢(i) € R3 is (Lab) color code and ¢ > O.

Different sampling rates: different n = 200, 600, 1200, 2000.

Comparison with Nystrom method [Fowlkes et al:04] (spectral
clustering; number of clusters determined by preprocessing) and
with RD: stopping criterion: t < tmax or Nash error function

2
e(x!) = > [min {xi, <Axt>, — W(Xt)H < 10719,
iEN ’
Results: recall/precision identical, but Inf.Imm.Dyn much faster.
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Experiments: Region-based image matching

Data from [Todorovic/Ahuja:08] lead to subproblems of tree
matching (> 100 per image), similarities are adjacencies in asso-
ciation graph G = (Vass, Fass) of two trees T; = (V;, E;), i = 1, 2:

Vass = V1 x Vo,  Bass = {{(i,h), (G, k)} : dq, (i,5) = dp,(h, k) } ,

where dp(i,7) is tree distance of two vertices ,5 in T.

This yields instances with n up to 3000, grouped according to
their size across images, to obtain error bars.

Compared to RD, Inf.Imm.Dyn is orders of magnitude faster.
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Convergence of iterates

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points.
Needed in:

T heorem:

For a € {aemct,ammzjo} and d € {dypw,dprw}, Ssuppose that

(xF),. has finitely many accumulation points. Then

k

x® = x* as k — oo, only one such accumulation point.

Proof would be easy if T' were continuous, since a finite
connected set is a singleton; but 7' isn't continuous !





