First-order methods for the impatient:

support identification in finite time with convergent Frank-Wolfe variants

Immanuel Bomze, University of Vienna

joint work with:

Francesco Rinaldi and Samuel Rota Bulò

GDO 2019 @ UBB

Cluj-Napoca, 10 April 2019

1. Simplex-constrained smooth optimization

Overview

- 1. Simplex-constrained smooth optimization
 - 2. Frank-Wolfe method with away steps

Overview

- 1. Simplex-constrained smooth optimization
 - 2. Frank-Wolfe method with away steps
 - 3. Global convergence of iterates

Overview

- 1. Simplex-constrained smooth optimization
 - 2. Frank-Wolfe method with away steps
 - 3. Global convergence of iterates
 - 4. Support identification in finite time

... is
$$\min_{\mathbf{x}\in\Delta}f(\mathbf{x})$$
 with $\Delta = \left\{\mathbf{x}\in\mathbb{R}^n_+:\sum_i x_i=1\right\}$
and $f\in\mathcal{C}^2$.

... is
$$\min_{\mathbf{x}\in\Delta} f(\mathbf{x})$$
 with $\Delta = \left\{ \mathbf{x}\in\mathbb{R}^n_+ : \sum_i x_i = 1 \right\}$

and $f \in C^2$. Line search starting in x along d:

$$\varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{d}), \quad \alpha \in [0, 1].$$

... is
$$\min_{\mathbf{x}\in\Delta} f(\mathbf{x})$$
 with $\Delta = \left\{ \mathbf{x}\in\mathbb{R}^n_+ : \sum_i x_i = 1 \right\}$

and $f \in C^2$. Line search starting in x along d:

$$\varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{d}), \quad \alpha \in [0, 1].$$

Assumption: curvature of φ has constant sign:

... is
$$\min_{\mathbf{x}\in\Delta} f(\mathbf{x})$$
 with $\Delta = \left\{ \mathbf{x}\in\mathbb{R}^n_+ : \sum_i x_i = 1 \right\}$

and $f \in C^2$. Line search starting in x along d:

$$\varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{d}), \quad \alpha \in [0, 1].$$

Assumption: curvature of φ has constant sign:

sign
$$\ddot{\varphi}(\alpha) = const.$$
 in $\alpha \in [0, 1]$,

... is
$$\min_{\mathbf{x}\in\Delta} f(\mathbf{x})$$
 with $\Delta = \left\{ \mathbf{x}\in\mathbb{R}^n_+ : \sum_i x_i = 1 \right\}$

and $f \in C^2$. Line search starting in x along d:

$$\varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{d}), \quad \alpha \in [0, 1].$$

Assumption: curvature of φ has constant sign:

sign
$$\ddot{\varphi}(\alpha) = const.$$
 in $\alpha \in [0, 1]$,

and moreover in the strictly convex descent case $\dot{\varphi}(0) < 0 < \ddot{\varphi}(0)$

... is
$$\min_{\mathbf{x}\in\Delta} f(\mathbf{x})$$
 with $\Delta = \left\{ \mathbf{x}\in\mathbb{R}^n_+ : \sum_i x_i = 1 \right\}$

and $f \in C^2$. Line search starting in x along d:

$$\varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{d}), \quad \alpha \in [0, 1].$$

Assumption: curvature of φ has constant sign:

sign
$$\ddot{\varphi}(\alpha) = const.$$
 in $\alpha \in [0, 1]$,

and moreover in the strictly convex descent case $\dot{\varphi}(0) < 0 < \ddot{\varphi}(0)$

for some $\eta > 0$, $\ddot{\varphi}(\alpha) \ge \eta$ for all $\alpha \in [0, 1]$.

... is
$$\min_{\mathbf{x}\in\Delta} f(\mathbf{x})$$
 with $\Delta = \left\{ \mathbf{x}\in\mathbb{R}^n_+ : \sum_i x_i = 1 \right\}$

and $f \in C^2$. Line search starting in x along d:

$$\varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{d}), \quad \alpha \in [0, 1].$$

Assumption: curvature of φ has constant sign:

sign
$$\ddot{\varphi}(\alpha) = const.$$
 in $\alpha \in [0, 1]$,

and moreover in the strictly convex descent case $\dot{\varphi}(0) < 0 < \ddot{\varphi}(0)$

for some
$$\eta > 0$$
, $\ddot{\varphi}(\alpha) \ge \eta$ for all $\alpha \in [0, 1]$.

Holds for all (also non-convex) quadratic f and many more.

Point $\mathbf{x} \in \Delta$ is (KKT) stationary if and only if $\nabla_r f(\mathbf{x}^*) \ge \nabla f(\mathbf{x}^*)^\top \mathbf{x}^*$ for all r with equality if $x_r^* > 0$.

Point $\mathbf{x} \in \Delta$ is (KKT) stationary if and only if $\nabla_r f(\mathbf{x}^*) \ge \nabla f(\mathbf{x}^*)^\top \mathbf{x}^*$ for all r with equality if $x_r^* > 0$.

Frank-Wolfe direction at \mathbf{x} :

 $\mathbf{d}_{FW}(\mathbf{x}) = \mathbf{e}_{\hat{\imath}} - \mathbf{x}, \quad \hat{\imath} \in Argmin \{\nabla_i f(\mathbf{x}) : 1 \le i \le n\}$

where \mathbf{e}_i is *i*th column of $n \times n$ identity matrix.

Point $\mathbf{x} \in \Delta$ is (KKT) stationary if and only if $\nabla_r f(\mathbf{x}^*) \ge \nabla f(\mathbf{x}^*)^\top \mathbf{x}^*$ for all r with equality if $x_r^* > 0$.

Frank-Wolfe direction at \mathbf{x} :

 $\mathbf{d}_{FW}(\mathbf{x}) = \mathbf{e}_{\hat{\imath}} - \mathbf{x}, \quad \hat{\imath} \in Argmin \{\nabla_i f(\mathbf{x}) : 1 \le i \le n\}$ where \mathbf{e}_i is *i*th column of $n \times n$ identity matrix.

Away direction at \mathbf{x} :

 $\mathbf{d}_A(\mathbf{x}) = \mathbf{x} - \mathbf{e}_{\hat{j}}, \quad \hat{j} \in Argmax\{\nabla_j f(\mathbf{x}) : x_j > 0\}.$

Point $\mathbf{x} \in \Delta$ is (KKT) stationary if and only if $\nabla_r f(\mathbf{x}^*) \ge \nabla f(\mathbf{x}^*)^\top \mathbf{x}^*$ for all r with equality if $x_r^* > 0$.

Frank-Wolfe direction at \mathbf{x} :

 $\mathbf{d}_{FW}(\mathbf{x}) = \mathbf{e}_{\hat{\imath}} - \mathbf{x}, \quad \hat{\imath} \in Argmin \{\nabla_i f(\mathbf{x}) : 1 \le i \le n\}$ where \mathbf{e}_i is *i*th column of $n \times n$ identity matrix.

Away direction at \mathbf{x} :

 $\mathbf{d}_A(\mathbf{x}) = \mathbf{x} - \mathbf{e}_{\hat{j}}, \quad \hat{j} \in Argmax\{\nabla_j f(\mathbf{x}) : x_j > 0\}.$

Both are feasible descent directions unless \mathbf{x} is stationary.

Based upon $(\hat{\imath}, \hat{\jmath})$, i.e., on $\mathbf{d}_{FW}(\mathbf{x})$ and $\mathbf{d}_A(\mathbf{x})$, we consider two variants.

Based upon $(\hat{\imath}, \hat{\jmath})$, i.e., on $\mathbf{d}_{FW}(\mathbf{x})$ and $\mathbf{d}_A(\mathbf{x})$, we consider two variants.

Away-step Frank-Wolfe (AFW) direction:

$$\mathbf{d}_{AFW}(\mathbf{x}) = \left\{egin{array}{ccc} \mathbf{d}_{FW}(\mathbf{x})\,, & ext{if } \mathbf{d}_{FW}(\mathbf{x})^{ op}
abla f(\mathbf{x}) \leq \mathbf{d}_{A}(\mathbf{x})^{ op}
abla f(\mathbf{x})\,, \ & ext{if } \mathbf{d}_{FW}(\mathbf{x}) \leq \mathbf{d}_{A}(\mathbf{x})^{ op}
abla f(\mathbf{x})\,, \end{array}
ight.$$

Based upon $(\hat{\imath}, \hat{\jmath})$, i.e., on $\mathbf{d}_{FW}(\mathbf{x})$ and $\mathbf{d}_A(\mathbf{x})$, we consider two variants.

Away-step Frank-Wolfe (AFW) direction:

$$\mathbf{d}_{AFW}(\mathbf{x}) = \begin{cases} \mathbf{d}_{FW}(\mathbf{x}), & \text{if } \mathbf{d}_{FW}(\mathbf{x})^\top \nabla f(\mathbf{x}) \leq \mathbf{d}_A(\mathbf{x})^\top \nabla f(\mathbf{x}), \\ \\ \frac{x_{\widehat{\jmath}}}{1 - x_{\widehat{\jmath}}} \mathbf{d}_A(\mathbf{x}), & \text{otherwise;} \end{cases}$$

Based upon $(\hat{\imath}, \hat{\jmath})$, i.e., on $d_{FW}(\mathbf{x})$ and $d_A(\mathbf{x})$, we consider two variants.

Away-step Frank-Wolfe (AFW) direction:

$$\mathbf{d}_{AFW}(\mathbf{x}) = \begin{cases} \mathbf{d}_{FW}(\mathbf{x}), & \text{if } \mathbf{d}_{FW}(\mathbf{x})^\top \nabla f(\mathbf{x}) \leq \mathbf{d}_A(\mathbf{x})^\top \nabla f(\mathbf{x}), \\ \frac{x_{\hat{\jmath}}}{1 - x_{\hat{\jmath}}} \mathbf{d}_A(\mathbf{x}), & \text{otherwise;} \end{cases}$$

and the Pairwise Frank-Wolfe (PFW) direction

$$\mathbf{d}_{PFW}(\mathbf{x}) = x_{\hat{\jmath}} \left[\mathbf{d}_{FW}(\mathbf{x}) + \mathbf{d}_{A}(\mathbf{x}) \right] = x_{\hat{\jmath}} \left[\mathbf{e}_{\hat{\imath}} - \mathbf{e}_{\hat{\jmath}} \right]$$

Based upon $(\hat{\imath}, \hat{\jmath})$, i.e., on $\mathbf{d}_{FW}(\mathbf{x})$ and $\mathbf{d}_A(\mathbf{x})$, we consider two variants.

Away-step Frank-Wolfe (AFW) direction:

$$\mathbf{d}_{AFW}(\mathbf{x}) = \begin{cases} \mathbf{d}_{FW}(\mathbf{x}), & \text{if } \mathbf{d}_{FW}(\mathbf{x})^\top \nabla f(\mathbf{x}) \leq \mathbf{d}_A(\mathbf{x})^\top \nabla f(\mathbf{x}), \\ \frac{x_{\hat{\jmath}}}{1 - x_{\hat{\jmath}}} \mathbf{d}_A(\mathbf{x}), & \text{otherwise;} \end{cases}$$

and the Pairwise Frank-Wolfe (PFW) direction

$$\mathbf{d}_{PFW}(\mathbf{x}) = x_{\hat{\jmath}} \left[\mathbf{d}_{FW}(\mathbf{x}) + \mathbf{d}_{A}(\mathbf{x}) \right] = x_{\hat{\jmath}} \left[\mathbf{e}_{\hat{\imath}} - \mathbf{e}_{\hat{\jmath}} \right]$$

Both discontinuous in \mathbf{x} , as with gradient projection.

Have rescaled so that feasible step lengths are $\alpha \in [0, 1]$.

Have rescaled so that feasible step lengths are $\alpha \in [0, 1]$.

Exact line search: largest α minimizing φ ,

Have rescaled so that feasible step lengths are $\alpha \in [0, 1]$.

Exact line search: largest α minimizing φ ,

$$\alpha_{exact}(\mathbf{d}, \mathbf{x}) := \max \operatorname{Argmin} \{\varphi(\alpha) : \alpha \in [0, 1]\},\$$

Have rescaled so that feasible step lengths are $\alpha \in [0, 1]$.

Exact line search: largest α minimizing φ ,

 $\alpha_{exact}(\mathbf{d}, \mathbf{x}) := \max \operatorname{Argmin} \left\{ \varphi(\alpha) : \alpha \in [0, 1] \right\},$ which satisfies, if $0 < \alpha_{exact}(\mathbf{d}, \mathbf{x}) < 1$,

$$\alpha_{exact}(\mathbf{d}, \mathbf{x}) = -\frac{\hat{\varphi}(\mathbf{0})}{\ddot{\varphi}(\tilde{\alpha})}$$

for some $\tilde{\alpha} \in (0, 1)$.

Have rescaled so that feasible step lengths are $\alpha \in [0, 1]$.

Exact line search: largest α minimizing φ ,

 $\alpha_{exact}(\mathbf{d}, \mathbf{x}) := \max \operatorname{Argmin} \{\varphi(\alpha) : \alpha \in [0, 1]\},\$

which satisfies, if $0 < \alpha_{exact}(\mathbf{d}, \mathbf{x}) < 1$,

$$\alpha_{exact}(\mathbf{d}, \mathbf{x}) = -\frac{\dot{\varphi}(\mathbf{0})}{\ddot{\varphi}(\tilde{\alpha})}$$

for some $\tilde{\alpha} \in (0, 1)$.

Happens only in strictly convex case $\dot{\varphi}(0) < 0 < \ddot{\varphi}(0)$.

Select $\delta \in (0, 1)$ and $\gamma \in (0, \frac{1}{2})$; sufficient decrease:

Select $\delta \in (0, 1)$ and $\gamma \in (0, \frac{1}{2})$; sufficient decrease: $m(\mathbf{d}, \mathbf{x}) := \min \left\{ m \in \mathbb{N} : f(\mathbf{x} + \delta^m \mathbf{d}) \le f(\mathbf{x}) + \gamma \delta^m \mathbf{d}^\top \nabla f(\mathbf{x}) \right\}$

Select $\delta \in (0, 1)$ and $\gamma \in (0, \frac{1}{2})$; sufficient decrease:

 $m(\mathbf{d},\mathbf{x}) := \min\left\{m \in \mathbb{N} : f(\mathbf{x} + \delta^m \mathbf{d}) \leq f(\mathbf{x}) + \gamma \delta^m \mathbf{d}^\top \nabla f(\mathbf{x})\right\}$ and put

$$\alpha_{Armijo}(\mathbf{d}, \mathbf{x}) := \delta^{m(\mathbf{d}, \mathbf{x})}$$

Select $\delta \in (0, 1)$ and $\gamma \in (0, \frac{1}{2})$; sufficient decrease:

 $m(\mathbf{d}, \mathbf{x}) := \min \left\{ m \in \mathbb{N} : f(\mathbf{x} + \delta^m \mathbf{d}) \le f(\mathbf{x}) + \gamma \delta^m \mathbf{d}^\top \nabla f(\mathbf{x}) \right\}$ and put

$$\alpha_{Armijo}(\mathbf{d}, \mathbf{x}) := \delta^{m(\mathbf{d}, \mathbf{x})}$$

Iteration for both line search variants:

Starting point $\mathbf{x}^0 \in \Delta$,

Select $\delta \in (0, 1)$ and $\gamma \in (0, \frac{1}{2})$; sufficient decrease:

 $m(\mathbf{d}, \mathbf{x}) := \min \left\{ m \in \mathbb{N} : f(\mathbf{x} + \delta^m \mathbf{d}) \le f(\mathbf{x}) + \gamma \delta^m \mathbf{d}^\top \nabla f(\mathbf{x}) \right\}$ and put

$$\alpha_{Armijo}(\mathbf{d}, \mathbf{x}) := \delta^{m(\mathbf{d}, \mathbf{x})}$$

Iteration for both line search variants:

Starting point $\mathbf{x}^0 \in \Delta$,

$$\mathbf{x}^{k+1} = T(\mathbf{x}^k) := \mathbf{x}^k + \alpha(\mathbf{d}(\mathbf{x}^k), \mathbf{x}^k) \mathbf{d}(\mathbf{x}^k), \quad k = 0, 1, \dots$$

Select $\delta \in (0, 1)$ and $\gamma \in (0, \frac{1}{2})$; sufficient decrease:

 $m(\mathbf{d}, \mathbf{x}) := \min \left\{ m \in \mathbb{N} : f(\mathbf{x} + \delta^m \mathbf{d}) \le f(\mathbf{x}) + \gamma \delta^m \mathbf{d}^\top \nabla f(\mathbf{x}) \right\}$ and put

$$\alpha_{Armijo}(\mathbf{d}, \mathbf{x}) := \delta^{m(\mathbf{d}, \mathbf{x})}$$

Iteration for both line search variants:

Starting point $\mathbf{x}^0 \in \Delta$,

$$\mathbf{x}^{k+1} = T(\mathbf{x}^k) := \mathbf{x}^k + \alpha(\mathbf{d}(\mathbf{x}^k), \mathbf{x}^k) \mathbf{d}(\mathbf{x}^k), \quad k = 0, 1, \dots$$

Have $T(\mathbf{x}) = \mathbf{x}$ if and only if \mathbf{x} is stationary.

Select $\delta \in (0, 1)$ and $\gamma \in (0, \frac{1}{2})$; sufficient decrease:

 $m(\mathbf{d}, \mathbf{x}) := \min \left\{ m \in \mathbb{N} : f(\mathbf{x} + \delta^m \mathbf{d}) \le f(\mathbf{x}) + \gamma \delta^m \mathbf{d}^\top \nabla f(\mathbf{x}) \right\}$ and put

$$\alpha_{Armijo}(\mathbf{d}, \mathbf{x}) := \delta^{m(\mathbf{d}, \mathbf{x})}$$

Iteration for both line search variants:

Starting point $\mathbf{x}^0 \in \Delta$,

$$\mathbf{x}^{k+1} = T(\mathbf{x}^k) := \mathbf{x}^k + \alpha(\mathbf{d}(\mathbf{x}^k), \mathbf{x}^k) \mathbf{d}(\mathbf{x}^k), \quad k = 0, 1, \dots$$

Have $T(\mathbf{x}) = \mathbf{x}$ if and only if \mathbf{x} is stationary.

Note that T is discontinuous in \mathbf{x} if \mathbf{d} is so.

Monotonicity and slope convergence

Proposition:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\{\alpha_{exact}, \alpha_{Armijo}\}}$, we have

Monotonicity and slope convergence

Proposition:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have (a) if $\mathbf{x}^{k+1} \neq \mathbf{x}^k$, then $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$;
Monotonicity and slope convergence

Proposition:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have (a) if $\mathbf{x}^{k+1} \neq \mathbf{x}^k$, then $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$; (b) if $\mathbf{x}^{k+1} \neq \mathbf{x}^k$ for all $k \in \mathbb{N}$, then $\mathbf{d}(\mathbf{x}^k)^\top \nabla f(\mathbf{x}^k) \to 0$ as $k \to \infty$.

Monotonicity and slope convergence

Proposition:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have (a) if $\mathbf{x}^{k+1} \neq \mathbf{x}^k$, then $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$; (b) if $\mathbf{x}^{k+1} \neq \mathbf{x}^k$ for all $k \in \mathbb{N}$, then $\mathbf{d}(\mathbf{x}^k)^\top \nabla f(\mathbf{x}^k) \to 0$ as $k \to \infty$.

Key argument in proof: for $K = \max_{\mathbf{x} \in \Delta} \|\nabla^2 f(\mathbf{x})\|_{spec}$

Monotonicity and slope convergence

Proposition:

For
$$\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$$
 and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have
(a) if $\mathbf{x}^{k+1} \neq \mathbf{x}^k$, then $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$;
(b) if $\mathbf{x}^{k+1} \neq \mathbf{x}^k$ for all $k \in \mathbb{N}$, then
 $\mathbf{d}(\mathbf{x}^k)^\top \nabla f(\mathbf{x}^k) \to 0$ as $k \to \infty$.

Key argument in proof: for $K = \max_{\mathbf{x} \in \Delta} \|\nabla^2 f(\mathbf{x})\|_{spec}$ have $[\mathbf{d}(\mathbf{x}^k)^\top \nabla f(\mathbf{x}^k)]^2 = [\dot{\varphi}(\mathbf{0})]^2 \leq \frac{4K}{\eta} [f(\mathbf{x}^k) - f(\mathbf{x}^{k+1})].$

Theorem:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have that either $\mathbf{x}^{\overline{k}}$ is stationary for some $\overline{k} \in \mathbb{N}$ and iteration stops;

Theorem:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have that either $\mathbf{x}^{\overline{k}}$ is stationary for some $\overline{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point \mathbf{x}^* of iterates $(\mathbf{x}^k)_k$ is stationary.

Theorem:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have that either $\mathbf{x}^{\overline{k}}$ is stationary for some $\overline{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point \mathbf{x}^* of iterates $(\mathbf{x}^k)_k$ is stationary.

Key arguments in proof: previous proposition; show that along subsequences stepsize $\alpha_k = 1$ eventually in difficult subcase.

Theorem:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have that either $\mathbf{x}^{\overline{k}}$ is stationary for some $\overline{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point \mathbf{x}^* of iterates $(\mathbf{x}^k)_k$ is stationary.

Key arguments in proof: previous proposition; show that along subsequences stepsize $\alpha_k = 1$ eventually in difficult subcase.

Good proof of concept

Theorem:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have that either $\mathbf{x}^{\overline{k}}$ is stationary for some $\overline{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point \mathbf{x}^* of iterates $(\mathbf{x}^k)_k$ is stationary.

Key arguments in proof: previous proposition; show that along subsequences stepsize $\alpha_k = 1$ eventually in difficult subcase.

Good proof of concept but still not proved: iterates convergence

Theorem:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, we have that either $\mathbf{x}^{\overline{k}}$ is stationary for some $\overline{k} \in \mathbb{N}$ and iteration stops; or else any accumulation point \mathbf{x}^* of iterates $(\mathbf{x}^k)_k$ is stationary.

Key arguments in proof: previous proposition; show that along subsequences stepsize $\alpha_k = 1$ eventually in difficult subcase.

Good proof of concept but still not proved: iterates convergence (only one accumulation point x^*).

Recently discussed: 2nd-order optimality conditions (saddles);

Recently discussed: 2^{nd} -order optimality conditions (saddles); related more general result here: any attracting x^* is local soln.!

Recently discussed: 2^{nd} -order optimality conditions (saddles); related more general result here: any attracting x^* is local soln.! **Theorem:**

Suppose f is either convex or concave along lines

Recently discussed: 2^{nd} -order optimality conditions (saddles); related more general result here: any attracting x^* is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k.

Recently discussed: 2^{nd} -order optimality conditions (saddles); related more general result here: any attracting x^* is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k. If all acc. points of $(\mathbf{x}^k)_k$ are stationary,

Recently discussed: 2^{nd} -order optimality conditions (saddles); related more general result here: any attracting x^* is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k. If all acc. points of $(\mathbf{x}^k)_k$ are stationary, the following statements are equivalent

Recently discussed: 2nd-order optimality conditions (saddles);

related more general result here: any attracting \mathbf{x}^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k. If all acc. points of $(\mathbf{x}^k)_k$ are stationary, the following statements are equivalent for any stationary \mathbf{x}^* and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of \mathbf{x}^* :

Recently discussed: 2nd-order optimality conditions (saddles);

related more general result here: any attracting \mathbf{x}^* is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k. If all acc. points of $(\mathbf{x}^k)_k$ are stationary, the following statements are equivalent for any stationary \mathbf{x}^* and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of \mathbf{x}^* :

(a) every sequence $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, if $\mathbf{x}^0 \in U$;

Recently discussed: 2nd-order optimality conditions (saddles);

related more general result here: any attracting \mathbf{x}^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k. If all acc. points of $(\mathbf{x}^k)_k$ are stationary, the following statements are equivalent for any stationary \mathbf{x}^* and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of \mathbf{x}^* :

(a) every sequence $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, if $\mathbf{x}^0 \in U$;

(b) $f(\mathbf{x}) > f(\mathbf{x}^*)$ for all $\mathbf{x} \in V \setminus {\mathbf{x}^*}$... contains no KKT point.

Recently discussed: 2nd-order optimality conditions (saddles);

related more general result here: any attracting \mathbf{x}^* is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k. If all acc. points of $(\mathbf{x}^k)_k$ are stationary, the following statements are equivalent for any stationary \mathbf{x}^* and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of \mathbf{x}^* :

(a) every sequence $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, if $\mathbf{x}^0 \in U$;

(b) $f(\mathbf{x}) > f(\mathbf{x}^*)$ for all $\mathbf{x} \in V \setminus {\mathbf{x}^*}$... contains no KKT point.

So no negative curvature feasible direction of $\nabla^2 f(\mathbf{x}^*)$.

Recently discussed: 2nd-order optimality conditions (saddles);

related more general result here: any attracting \mathbf{x}^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k. If all acc. points of $(\mathbf{x}^k)_k$ are stationary, the following statements are equivalent for any stationary \mathbf{x}^* and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of \mathbf{x}^* :

(a) every sequence $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, if $\mathbf{x}^0 \in U$;

(b) $f(\mathbf{x}) > f(\mathbf{x}^*)$ for all $\mathbf{x} \in V \setminus {\mathbf{x}^*}$... contains no KKT point.

So no negative curvature feasible direction of $\nabla^2 f(\mathbf{x}^*)$.

Implies that all strict local solutions are isolated KKT points.

Recently discussed: 2nd-order optimality conditions (saddles);

related more general result here: any attracting \mathbf{x}^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k. If all acc. points of $(\mathbf{x}^k)_k$ are stationary, the following statements are equivalent for any stationary \mathbf{x}^* and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of \mathbf{x}^* :

(a) every sequence $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, if $\mathbf{x}^0 \in U$;

(b) $f(\mathbf{x}) > f(\mathbf{x}^*)$ for all $\mathbf{x} \in V \setminus {\mathbf{x}^*}$... contains no KKT point.

So no negative curvature feasible direction of $\nabla^2 f(\mathbf{x}^*)$.

Implies that all strict local solutions are isolated KKT points. Applies to all f considered here

Recently discussed: 2nd-order optimality conditions (saddles);

related more general result here: any attracting \mathbf{x}^{*} is local soln.!

Theorem:

Suppose f is either convex or concave along lines and that $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$ for all k. If all acc. points of $(\mathbf{x}^k)_k$ are stationary, the following statements are equivalent for any stationary \mathbf{x}^* and neighbourhoods $U \subseteq \Delta$ or $V \subseteq \Delta$ of \mathbf{x}^* :

(a) every sequence $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, if $\mathbf{x}^0 \in U$;

(b) $f(\mathbf{x}) > f(\mathbf{x}^*)$ for all $\mathbf{x} \in V \setminus {\mathbf{x}^*}$... contains no KKT point.

So no negative curvature feasible direction of $\nabla^2 f(\mathbf{x}^*)$.

Implies that all strict local solutions are isolated KKT points.

Applies to all f considered here, including nonconvex quadratic.

Generic property for objective functions: only finitely many stationary points.

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points.

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points. Needed in:

Theorem:

For $\alpha \in \{\alpha_{exact}, \alpha_{Armijo}\}\$ and $\mathbf{d} = \mathbf{d}_{AFW}$, suppose that $(\mathbf{x}^k)_k$ has finitely many accumulation points. Then

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points. Needed in:

Theorem:

For $\alpha \in \left\{ \alpha_{exact}, \alpha_{Armijo} \right\}$ and $\mathbf{d} = \mathbf{d}_{AFW}$, suppose that $(\mathbf{x}^k)_k$ has finitely many accumulation points. Then $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$,

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points. Needed in:

Theorem:

For $\alpha \in \left\{ \alpha_{exact}, \alpha_{Armijo} \right\}$ and $\mathbf{d} = \mathbf{d}_{AFW}$, suppose that $(\mathbf{x}^k)_k$ has finitely many accumulation points. Then $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, only one such accumulation point.

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points. Needed in:

Theorem:

For $\alpha \in \left\{ \alpha_{exact}, \alpha_{Armijo} \right\}$ and $\mathbf{d} = \mathbf{d}_{AFW}$, suppose that $(\mathbf{x}^k)_k$ has finitely many accumulation points. Then $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, only one such accumulation point.

Proof would be easy if ${\cal T}$ were continuous

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points. Needed in:

Theorem:

For $\alpha \in \left\{ \alpha_{exact}, \alpha_{Armijo} \right\}$ and $\mathbf{d} = \mathbf{d}_{AFW}$, suppose that $(\mathbf{x}^k)_k$ has finitely many accumulation points. Then $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, only one such accumulation point.

Proof would be easy if T were continuous, since a finite connected set is a singleton

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points. Needed in:

Theorem:

For $\alpha \in \{\alpha_{exact}, \alpha_{Armijo}\}\$ and $\mathbf{d} = \mathbf{d}_{AFW}$, suppose that $(\mathbf{x}^k)_k$ has finitely many accumulation points. Then $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, only one such accumulation point.

Proof would be easy if T were continuous, since a finite connected set is a singleton; but T isn't continuous !

Let $S_k = S(\mathbf{x}^k)$ be supports of iterates \mathbf{x}^k

Let $S_k = S(\mathbf{x}^k)$ be supports of iterates $\mathbf{x}^k \to \mathbf{x}^*$.

Let $S_k = S(\mathbf{x}^k)$ be supports of iterates $\mathbf{x}^k \to \mathbf{x}^*$. By continuity, $S(\mathbf{x}^*) \subseteq S(\mathbf{x}^k)$ for all large enough k.

Let $S_k = S(\mathbf{x}^k)$ be supports of iterates $\mathbf{x}^k \to \mathbf{x}^*$. By continuity, $S(\mathbf{x}^*) \subseteq S(\mathbf{x}^k)$ for all large enough k.

Furthermore, stationarity of \mathbf{x}^{\ast} implies

$$S(\mathbf{x}^*) \subseteq S_0^* := \left\{ i : \nabla_i f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \right\},\$$

Let $S_k = S(\mathbf{x}^k)$ be supports of iterates $\mathbf{x}^k \to \mathbf{x}^*$. By continuity, $S(\mathbf{x}^*) \subseteq S(\mathbf{x}^k)$ for all large enough k.

Furthermore, stationarity of \mathbf{x}^{\ast} implies

$$S(\mathbf{x}^*) \subseteq S_0^* := \left\{ i : \nabla_i f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \right\},\$$

and strict complementarity is equivalent to $S(\mathbf{x}^*) = S_0^*$.

Let $S_k = S(\mathbf{x}^k)$ be supports of iterates $\mathbf{x}^k \to \mathbf{x}^*$. By continuity, $S(\mathbf{x}^*) \subseteq S(\mathbf{x}^k)$ for all large enough k.

Furthermore, stationarity of \mathbf{x}^{\ast} implies

$$S(\mathbf{x}^*) \subseteq S_0^* := \left\{ i : \nabla_i f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \right\},\$$

and strict complementarity is equivalent to $S(\mathbf{x}^*) = S_0^*$.

Theorem:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\{\alpha_{exact}, \alpha_{Armijo}\}}$, suppose that iterates $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$.
Support identification in finite time

Let $S_k = S(\mathbf{x}^k)$ be supports of iterates $\mathbf{x}^k \to \mathbf{x}^*$. By continuity, $S(\mathbf{x}^*) \subseteq S(\mathbf{x}^k)$ for all large enough k.

Furthermore, stationarity of \mathbf{x}^{\ast} implies

$$S(\mathbf{x}^*) \subseteq S_0^* := \left\{ i : \nabla_i f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \right\},\$$

and strict complementarity is equivalent to $S(\mathbf{x}^*) = S_0^*$.

Theorem:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, suppose that iterates $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$. Then there is a finite \overline{k} such that $S(\mathbf{x}^*) \subseteq S(\mathbf{x}^k) \subseteq S_0^*$ for all $k \ge \overline{k}$.

Support identification in finite time

Let $S_k = S(\mathbf{x}^k)$ be supports of iterates $\mathbf{x}^k \to \mathbf{x}^*$. By continuity, $S(\mathbf{x}^*) \subseteq S(\mathbf{x}^k)$ for all large enough k.

Furthermore, stationarity of \mathbf{x}^{\ast} implies

$$S(\mathbf{x}^*) \subseteq S_0^* := \left\{ i : \nabla_i f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \right\},\$$

and strict complementarity is equivalent to $S(\mathbf{x}^*) = S_0^*$.

Theorem:

For $\mathbf{d} \in {\mathbf{d}_{AFW}, \mathbf{d}_{PFW}}$ and $\alpha \in {\alpha_{exact}, \alpha_{Armijo}}$, suppose that iterates $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$. Then there is a finite \overline{k} such that $S(\mathbf{x}^*) \subseteq S(\mathbf{x}^k) \subseteq S_0^*$ for all $k \ge \overline{k}$.

So under strict complementarity $S(\mathbf{x}^k) = S_0^* = S(\mathbf{x}^*)$ if $k \ge \overline{k}$.

Not true for classical Frank-Wolfe !

Example: $f(\mathbf{x}) = \mathbf{x}^{\top} Q \mathbf{x}$ (convex!) quadratic with α_{Armijo} where

A fresh reference

[B./Rinaldi/Rota Bulò '18] First-order methods for the impatient: support identification in finite time with convergent Frank-Wolfe variants Optimization online 2018/07/6694 (3 July 2018).

Computational Results

Experiments: image segmentation

Berkeley database; objects = pixels, Gaussian similarity

$$a_{ij} = \exp(-\|\mathbf{c}(i) - \mathbf{c}(j)\|/\sigma^2)$$

where $c(i) \in \mathbb{R}^3$ is (Lab) color code and $\sigma > 0$.

Different sampling rates: different $n \approx 200, 600, 1200, 2000$.

Comparison with Nyström method [Fowlkes *et al:*04] (spectral clustering; number of clusters determined by preprocessing) and with RD: stopping criterion: $t \le t_{max}$ or Nash error function

$$\varepsilon(\mathbf{x}^t) = \sum_{i \in N} \left[\min\left\{ x_i, \left(A \mathbf{x}^t \right)_i - \pi(\mathbf{x}^t) \right\} \right]^2 \le 10^{-10}$$

Results: recall/precision identical, but Inf.Imm.Dyn much faster.

Experiments: Region-based image matching

Data from [Todorovic/Ahuja:08] lead to subproblems of tree matching (≥ 100 per image), similarities are adjacencies in *association graph* $G = (V_{ass}, E_{ass})$ of two trees $T_i = (V_i, E_i)$, i = 1, 2:

$$V_{\text{ass}} = V_1 \times V_2, \quad E_{\text{ass}} = \left\{ \{(i,h), (j,k)\} : d_{T_1}(i,j) = d_{T_2}(h,k) \right\},\$$

where $d_T(i, j)$ is tree distance of two vertices i, j in T.

This yields instances with n up to 3000, grouped according to their size across images, to obtain error bars.

Compared to RD, Inf.Imm.Dyn is orders of magnitude faster.

Convergence of iterates

Generic property for objective functions:

only finitely many stationary points.

Then previous results imply only finitely many acc. points. Needed in:

Theorem:

For $\alpha \in \left\{ \alpha_{exact}, \alpha_{Armijo} \right\}$ and $\mathbf{d} \in \{\mathbf{d}_{AFW}, \mathbf{d}_{PFW}\}$, suppose that $(\mathbf{x}^k)_k$ has finitely many accumulation points. Then $\mathbf{x}^k \to \mathbf{x}^*$ as $k \to \infty$, only one such accumulation point.

Proof would be easy if T were continuous, since a finite connected set is a singleton; but T isn't continuous !