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1 Introduction

Maurice Fréchet defined the distance (named in French écart) which now bears his name for curves
in R3 and proved that it satisfied the axioms of the distance.
Maurice René Fréchet was born September 10, 1878, at Maligny. While being a student to Lycée

Buffon in Paris he was taught Mathematics in 1890-1893 by Jacques Hadamard, who tutored him
individually. Hadamard was appointed to a professorship in the University of Bordeaux from 1894
to 1897, and then in Paris. They continuously wrote to each other on mathematical problems, or
met in Paris for discussions. Fréchet entered the École Normale Supérieure in 1900 after doing his
military service. He completed his course there in 1903, and he was the first of Hadamard doctoral
students, obtaining his Ph.D in 1906 at the University of Bordeaux.
Fréchet intended to give definitions in general spaces, and he did this in [6], where he consider the

notion of écart. To two elements A and B (which can be points, curves, functions) there corresponds
a number (A,B) ≥ 0, so that:
- (A,B) = 0 if A and B are not distinct and only in this case;
- A,B,C being three arbitrary elements, if the écarts (A,C) and (B,C) are infinitely small, the

same is true for (A,B). In this short note he gave a sketch of the definition of the distance between
two curves in R3.
He then gave the definition of the distance for curves in R3 in the longer paper [7] published

in America, where he proved its properties. During his studies at the École Normale Supérieure,
Fréchet get acquainted with E. B. Wilson, who become an editor of the Transactions of the American
Mathematical Society from 1903 to 1919. He published several papers in Transactions and this helped
to make his work known to American mathematicians. In a third paper dedicated to continuous
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curves [8], Fréchet studied some topological properties. These works were included in his doctoral
Thesis submitted on April 2 1906. In his dissertation, Fréchet introduces the definition of the metric
space, whose name was given by Hausdorff - metrischer Raum ([10]) and also that of completeness.
The class of the continuous curves in R3 serves as an example for his abstract theory.
The life and work of Maurice Fréchet from this period are presented in the first essay [12] out of

three dedicated to Fréchet’s role in the history of functional analysis by the American professor A.E.
Taylor. A Colombian student, L.C. Arboleda, put Fréchet’s papers from the Archives of the Académie
des Sciences in good order, while working for his doctoral thesis defended in 1980, Contributions
à l’Étude des Premières Recherches Topologiques (d’après la correspondence et les publications de
Maurice Fréchet, 1904-1928). A description of the files from the archive is to be found in [4].
Fréchet was a school teacher at Besançon and Nantes, and then professor at the Universities of

Poitiers, Strasbourg and Paris. He died June 4, 1973, in Paris.

2 The Fréchet distance

Let (X, d) be a metric space. A curve A in X is a continuous map from the unit interval into X, i.e.,
A : [0, 1]→ X. A reparametrization α of the unit interval is a continuous, non-decreasing surjection
α : [0, 1]→ [0, 1]. For two given curves A and B in X, the Fréchet distance F (A,B) between them is
defined as the infimum over all reparametrizations α and β of [0, 1] of the maximum over all t ∈ [0, 1]
of the distance in X between A(α(t)) and B(β(t)),

F (A,B) = inf
α,β
max
t∈[0,1]

{d(A(α(t)), B(β(t)))} .
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It is a good measure for the resemblance of two curves, from this point of view better then the
Hausdorff distance, because it takes into account the flow of the two curves. For two curves A,B :
[0, 1]→ X, the Hausdorff distance (or Pompeiu-Hausdorff distance) is given by

H(A,B) = max{ sup
x∈[A]

inf
y∈[B]

d(x, y), sup
y∈[B]

inf
x∈[A]

d(x, y)}.

Here, [A] and [B] are the supports of the curves. This distance was defined in [11] by Pompeiu for
sets in the complex plane, and in [10] by Hausdorff in metric spaces.
It is obvious that

H(A,B) ≤ F (A,B).

In [1] the equality between the Fréchet and Hausdorff distances for the boundary of a convex set
in the plane is proved. The parametrizations of the boundary ∂C of a convex set C are supposed to
be injective. The following theorem holds.

Theorem 1 Let C1 and C2 be convex sets in the plane. Then F (∂C1, ∂C2) = H(∂C1, ∂C2) =
H(C1, C2), where F is taken with respect to any two monotone parametrizations.

A similar result was proved later for closed convex curves in [2]. A simple closed curve is a subset
of R2 that is homeomorphic to the circle S1, and assume that simple closed curves are parametrized
by such a homeomorphism. Assume also that a fixed orientation of the parameter space S1 is given
and that the homeomorphism is orientation preserving. A simple closed curve is called a convex
closed curve if it encloses a convex set. Therefore the boundary ∂C of any bounded convex set
C ⊂ R2 is a closed convex curve.
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In the definition of the Fréchet distance of two simple closed curves, the parametrizations α and
β are supposed to be orientation preserving homeomorphisms on S1. The following theorem holds.

Theorem 2 For any closed convex curves A and B, F (A,B) = H(A,B).

Remark 3 Monotone (non-strict) parametrizations have been considered by Fréchet himself. He
wanted to include in the approach curves A : [0, 1]→ X which are constant in an interval. Note that
there can be even countably many such intervals. A classical example is Cantor’s function (Devil’s
staircase) which, by the way, can be defined and represented by a very short Maple procedure.

> Cf:=proc(x, n:=floor(Digits/log10(2)+2))
if not(type(x,realcons)) then return ’Cf’(x) fi;
if x=0 or x=1 then return x fi; if n<0 then return 0.0 fi;
piecewise(x<1/3, Cf(3*x,n-1)/2, x<=2/3, 1/2, 1/2+Cf(3*x-2,n-1)/2)
end:

> plot(Cf,0..1);
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> Cf(80/81);
15/16

> Cf(1/2);
1/2

> evalf(Int(Cf, 0..1));
0.5000000000

> evalf(Int(Cf^2, 0..1, epsilon=1e-4));
0.2999991429

6



3 Approximations of the Fréchet distance

However, the Fréchet distance is diffi cult to compute.
To find F (A,B) one considers polygonal approximations of the curves A and B, as suggested

in [5], and try to find algorithms which allow the approximation of the Fréchet distance. Using the
Computer Algebra System Maple (see for example [3]) we can calculate the Fréchet distance between
several curves by implementing rather fast methods.

3.1 Free-space diagram

The free-space diagram, introduced by Alt and Godau is the set

FS(A,B, ε) = {(a, b) ∈ [0, 1]2 : d(A(a), B(b)) ≤ ε},
where A,B are parametrizations (in the unit interval) for two curves in a metric space (X, d).
The Fréchet distance is at most ε if and only if FS(A,B, ε) contains a path from the lower

left corner to the upper right corner, which is monotone both in the horizontal and in the vertical
direction.
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> A:=x->x*(sin(14*x)+2)^2/9+1/10; # dF=0.14...
> B:=x->x*(sin(15*x)*4/3+2+sin(20*x)/10)^2/9

A := x→ 1

9
x (sin (14x) + 2)2 +

1

10

B := x→ 1

9
x

(
4

3
sin (15x) + 2 +

1

10
sin (20x)

)2
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> plot([A,B], 0..1, color=[red,blue]);

9



FreeSpace :=proc(A,B, epsilon, N:=400)
local i,j, e2:=epsilon^2,

X:=Vector(),Y:=Vector(), n:=0, yi,yj;
for i from 0 to N do
for j from 0 to N do
yi:=evalf(A(i/N)); yj:=evalf(B(j/N));
if (yi-yj)^2 + ((i-j)/N)^2 <= e2 then
n:=n+1; X(n):=i/N; Y(n):=j/N;

fi;
od od;
print(’n’=n);
plots:-display(plot([[0,0],[1,0],[1,1],[0,1],[0,0]],color=black),

plots:-pointplot(X,Y,color=red),gridlines);
end:
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> FreeSpace(A,B, 0.15);

11



> FreeSpace(A,B, 0.14);
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> plot(abs@(A-B), 0..1);

3.2 Discrete Fréchet distance

In computing the Fréchet distance between arbitrary curves one typically approximates the curves
by polygonal curves. A polygonal curve in a metric vector space (X, d) is a curve P : [1, n] → X,
where n is a positive integer, such that for each i ∈ {1, ..., n− 1}, the restriction of P to the interval
[i, i+ 1] is affi ne, i.e. P (i+ λ) = (1− λ)P (i) + λP (i+ 1).
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Let P : [1, n] → V be a polygonal curve. We denote the sequence (P (1), ..., P (n)) of vertices
(endpoints of the line segments of P ) by V (P ). Also, d(P ) denotes max1≤i≤n−1 d(P (i), P (i+ 1)).
Let P and Q be polygonal curves and V (P ) = (u1, ..., up) and V (Q) = (v1, ..., vq) the correspon-

ding sequences. A coupling L between P and Q is a sequence

(ua1 , vb1), (ua2 , vb2), ..., (uam , vbm)

of distinct pairs from V (P )× V (Q) such that a1 = 1, b1 = 1, am = p, bm = q, and for all i = 1, ..., q
we have ai+1 = ai or ai+1 = ai + 1,and bi+1 = bi or bi+1 = bi + 1. Thus, a coupling has to respect the
order of the points in P and Q. The length ||L|| of the coupling L is the length of the longest link
in L, that is,

||L|| = max
i=1,...,m

d(uai , vbi).

Given the polygonal curves P and Q, their discrete Fréchet distance F ∗ is defined to be

F ∗(P,Q) = min{||L|| : L is a coupling between P and Q}.
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dF:=proc(P::listlist, Q::listlist)
# input: polygons P,Q;
# return: F*(P, Q) = the discrete Frechet distance
# and the optimal coupling (as two lists)
local A := Matrix(nops(P),nops(Q),-1), c, df,

iP:=Vector(nops(P)+nops(Q)), jQ:=copy(iP), m:=1, i:=nops(P),j:=nops(Q);

c:=proc(i, j)
if A[i,j] > -1 then return A[i,j];
elif i = 1 and j = 1 then A[i,j] := d(P[1], Q[1])
elif i > 1 and j = 1 then A[i,j] := max( c(i-1,1), d(P[i], Q[1]) )
elif i = 1 and j > 1 then A[i,j] := max( c(1,j-1), d(P[1], Q[j]) )
elif i > 1 and j > 1 then A[i,j] :=

max( min(c(i-1,j), c(i-1,j-1), c(i,j-1)), d(P[i], Q[j]) )
else A[i,j] := infinity; print([i,j]=infinity);
fi;

return A[i,j];
end; # function c

df := c(nops(P), nops(Q));
iP[m]:=nops(P); jQ[m]:=nops(Q);
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while (i>1) or (j>1) do
m:=m+1;
if i=1 then j:=j-1
elif j=1 then i:=i-1
elif A[i-1,j-1]<=df then i:=i-1; j:=j-1
elif A[i,j-1]<=df then j:=j-1
elif A[i-1,j]<=df then i:=i-1 fi;

iP[m]:=i; jQ[m]:=j
od;
df, iP[1..m], jQ[1..m];

end:

To use this program, the distance d of the metric space must be defined. For example, for the
Euclidean metric in R2, use
d := (u,v) -> sqrt( (u[1]-v[1])^2 + (u[2]-v[2])^2 );

The following short program produces an animation for two concentric circles with opposite
senses. The Fréchet distance in this case is R + r. Note that if the senses are the same, the Fréchet
distance and the Hausdorff-Pompeiu distances are both R− r.

cP:=t -> [cos(2*Pi*t), sin(2*Pi*t)]; # dF=0.14...
cQ:=t -> [2*cos(2*Pi*t), -2*sin(2*Pi*t)];

16



p:=400; q:=400;

P:=evalf([ seq(cP(i/p),i=0..p) ]):
Q:=evalf([ seq(cQ(i/q),i=0..q) ]):

df,a,b := dF(P,Q);
m:=numelems(a);

imax:=select( i -> d(P[a[i]],Q[b[i]])=df, [seq(1..m)]);
lnkmax:=seq( [ P[a[i]],Q[b[i]] ], i=imax);

plotPQ:=plot([P,Q], color=[red,blue], size=[1200,400]);
plotPQ1:=display(plotPQ,plot([lnkmax], thickness=4, color=gold));

animate( plot, [ [ ’P’[’a’[round(i)]],’Q’[’b’[round(i)]]], color=green, thickness=6 ],
i=1..m, frames=100, background=plotPQ1, size=[800,800] );

The following results are from [5].

Theorem 4 For any polygonal curves P and Q

F (P,Q) ≤ F ∗(P,Q) ≤ F (P,Q) + max{d(P ), d(Q)}.
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Proposition 5 Let P0, P1, ... and Q0, Q1, ... be two sequences of polygonal curves such that Pi+1 (res-
pectively Qi+1) is a refinement of Pi (respectively Qi) for all i ≥ 0 and limi→∞ d(Pi) = limi→∞ d(Qi) =
0. Then,

lim
i→∞

F ∗(Pi, Qi) = F (P0, Q0).

Theorem 6 Let P : [1, p]→ X and Q : [1, q]→ X be polygonal curves. The measure F ∗(P,Q) can
be computed in O(pq) time.

The motivation for studying such measures comes from the notion of truthlikeness in philosophy
of science and from artificial intelligence, where the task of quantifying the distance of theories is
important for example for machine learning and theory approximation. Theories viewed as sets of
models naturally correspond to curves viewed as sets of points. Given a metric on the models, the
distance between the sets of models may be interpreted as a measure of similarity between theories.
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