
Primary Building Blocks for Web Automation

Abstract

We present a semi-automated tool that can be used to discover
basic business processes in business web applications, construct more
complex business processes based on these and execute them automat-
ically later. Our tool maps UI operations in the target business web
application to conceptual operations in a database. The user of our
tool is not required to have any programming knowledge in contrast
to current RPA platforms. This tool comes in the form of a browser
extension.

1 Introduction

Current RPA (Robotic Process Automation) platforms allow an increase of
the work efficiency and accuracy by automatizing business processes and
executing them in a more robust way by avoiding possible human errors.

In order to describe business processes in a way that can later be exe-
cuted automatically by programs, RPA platforms like UiPath, Power Auto-
mate, Automation Anywhere etc. operate (i.e. create automated business
processes) in the following way: RPA developers identify UI (i.e. User Inter-
face) components of a software application like buttons, text input controls,
dropdown lists and tables, and then customize activities by writing code snip-
pets in a programming language in order to act on these UI controls (e.g.
click the selected button, write data in the text input, select all data from
a table or a dropdown list etc.); this code that references the selected UI
controls forms the automated business process which can be executed many
times later with different input parameters.

Our paper introduces a semi-automated tool that can be used to discover
basic business processes and, based on these, construct more complex busi-
ness processes that can be automatically executed later. This tool comes
in the form of a browser extension (i.e. Chrome plugin) and can automate
only business web applications, not desktop applications. To be more spe-
cific, we target CRM (i.e. Customer Relationship Management) or resource

1



and/or project management web applications like Microsoft Dynamics, Jira,
ERP platforms, but our tool should work with any business web application
that uses a relational database in the backend and exposes the data in this
database through the functionality of the UI. The tool is semi-automatic,
meaning that the human user must guide the tool through the various UI
screens of the target web application (i.e. the human user navigates through
the web application). Still, the user does not need to code for the automated
business process execution, the tool handles all the understanding of the UI
and the mapping of process parameters to UI controls.

The central idea of this semi-automated tool is that all the UI functional-
ities/ operations of a business web application that uses a relational database
in the backend can be of exactly two types:

1. UI operations that only affect the UI of the application and they do
not use, expose or manipulate the data in the database; these may
be various functionalities for customizing the UI. These functionalities
have no real value for business process automation.

2. UI operations that imply operations upon the associated database (they
can be abstracted/reduced to operations on the database). Most UI
operations translate into read or write operations in the database or in
SQL language; they translate to ’Select’, ’Insert’, ’Update’ or ’Delete’
operations of various entities in the database - the CRUD (Create,
Read, Update, Delete) operations. These are the UI functionalities
that are important for business process automation and it makes sense
to try to automate them.

In this sense, the proposed automation tool automatically translates hu-
man user operations on the UI onto conceptual operations in the database.
So, the the central idea of the tool is to map UI operations on conceptual
operations of the database. More specifically, the human user guides the
automation tool (by navigating in the target business web application) such
that it can discover what we call primary blocks for process automation -
these are represented by the set of UI operations (i.e. clicks, input text fill
in, etc.) that correspond to CRUD operations for the entities in the database.
These primary blocks or primary navigation blocks for process automation
are similar to Lego blocks that we can use in order to build more complex
automated business processes out of them; these complex business processes
can be later executed automatically by the tool.

BPMN 2.0 is the most used modelling notation to represent business
processes. Moreover, BPMN 2.0 is not used only for graphical representa-
tions, but also for business process automation. The major aim of RPA

2



is to automate repetitive tasks, while Business Process Automation using
BPM focuses on automation, but also considers process improvement and
decision support. Another difference between BPM and RPA is that Busi-
ness Process Management Systems built on BPM lifecycle need a database
and a data model to store data, while RPA does not store any transactional
data [21]. Some authors propose the integration of RPA into BPM lifecy-
cle [6, 7,12]. The mapping of BPMN patterns on Workflow Patterns defined
by [19] are described in [22]. Yamasathien S. and Vatanawood W. use ba-
sic BPMN Workflow Patterns in order to formalize business processes using
Promela [23]. The correctness of business processes is validated by SPIN
model checker. A similar approach using Promela and SPIN is proposed
by [17], where BPMN Choreography Diagrams are analysed.

In this paper, the term concept refers to the data stored in a database
table, while entity refers to a row/record of a database table. A concept
always describes a set of entities.

The remainder of the paper is structured as follows: Section 2 discusses
related work to the tool proposed in the paper, Section 3 presents the methods
used for discovering primary blocks, Sections 4 and 5 outlines representation
and composition of primary blocks, and Section 6 discusses the automatic
execution of complex business processes. The paper ends with conclusions
and future work.

2 Related work

2.1 Robotic Process Automation

Robotic Process Automation (RPA) is defined as the application of spe-
cific methodologies and technologies that aim to automate repetitive tasks
achieved usually by human users [8,10]. RPA frameworks (e.g., UiPath1 , Au-
tomation Anywhere2 , Blue Prism3 , Microsoft Power Automate4 , etc.) are
designed to develop software robots that improve the business environment
in various ways. RPA refers to those tools that operate on the user interface
(UI) aiming to perform automation tasks using an ”outside-in” approach.
The information systems are kept unchanged, compared to the traditional
workflow technology, that allows the improvement using an ”inside-out” ap-
proach [18].

1https://www.uipath.com/
2https://www.automationanywhere.com/
3https://www.blueprism.com/
4https://powerautomate.microsoft.com/en-us/

3



Software robots mimic the actions achieved by humans through the use
of the keyboard and the mouse in interactions with various available soft-
ware. They ensure work productivity increase and costs reduction through
enhanced accuracy, being available 24/7 compared to the human user. The
use of software robots allows the reduction of the rule-based and repetitive
work achieved by the employees and contributes to business process stan-
dardization and enhancement. In addition to reproducing human user UI
interactions (mouse clicks, data entering, etc.), RPA frameworks improve
software robots’ potential by integrating into their actions AI capabilities
and/or interactions that go beyond the user interface [4, 16]. Commercial
RPA tools provide capabilities in process mining5 and process discovery6 .
Still, human expert involvement is needed to perform analysis and decision-
making according to specific process requirements. There is significant inter-
est from academic research groups in optimizing Business Process Manage-
ment in various aspects, especially in automatically extracting process steps
and converting them into a software robot sequence of actions. There are
several approaches that are related to the work presented in this paper.

The first research area is focused on studying the anatomy of tasks from
the natural language descriptions of the process that details the executed
routines. The automatic identification of the type of performed activities
(manual, human interaction, or automated) from text documents while em-
ploying supervised machine learning techniques was investigated in [15]. In
order to identify the existing relationship between various activities of a
process, the authors of [9] used long short-term memory (LSTM) recur-
rent neural networks to learn from process description documents (PDDs).
Paper [11] proposes a new grammar for complex workflows with chaining
machine-executable meaning representations for semantic parsing.

The current development of RPA tools makes use of AI advances in rou-
tine identification and automation. Still, the use of human expert skills is
required to analyze how the routines are executed on the application’s UI. A
second research area addresses the actual automation of routines by examin-
ing the actions performed by human users when executing their tasks using
software applications.

Robidium [13] is a tool that discovers automatable routine tasks from
the user interface (UI) logs and generates RPA scripts to automate these
routines. This is a Software as a Service (SaaS) tool that implements the
robotic process mining pipeline proposed in [14]. Robidium uses UI log files
that consist of data and events that are not related to a specific task identified

5https://www.uipath.com/product/process-mining
6https://www.uipath.com/product/task-capture

4



beforehand. Its architecture emphasizes a preprocessing step on UI logs, that
allows the routine extraction and discovery of automatable routines that are
compiled into a UiPath script.

SmartRPA [1] is a cross-platform tool that attempts to tackle the dis-
covery and the automation of routine tasks, that current practice proves to
be time-consuming and error-prone. The tool uses its own action logger to
record UI actions on the actions system, Microsoft Office applications, or
web browser (e.g., Google Chrome, Mozilla Firefox) into a log file, used as
input for routine identification. The tool allows the generation of a high-level
flowchart diagram that can be studied by expert users for potential diagnosis
operations and to generate executable RPA scripts based on the most fre-
quent routine variant. Some input fields of the selected routine variant can
be personalized before executing the related RPA scripts, supporting those
steps that require manual user inputs.

There are also tools that automate users’ actions. Ringer is a web replayer
developed as a Chrome extension. Based on the trace of DOM (i.e. Document
Object Model) events performed by users, it provides a script replaying users’
actions [2]. This tool is only used for recording users’ actions. Rousillon uses
Ringer to further develop complex web automation scripts using Helena web
scripting language [5].

In contrast with Robidium [13] and SmartRPA [1], our tool does not use
an external logging tool to record user actions. Instead, it uses the human
user actions at UI level in order to compute a navigation flow in the target
web application and it uses the web DOM itself and the data model of the
target web application in order to identify the elements that are available
on UI and can be included in future interactions. As a result, the tool al-
lows the generation of the workflow blocks together with the inventory (or a
map) of the UI elements the user may interact with (inputs, buttons, etc.).
The identification of the relevant interaction elements is accomplished by
considering a data model that corresponds to the concepts processed within
the examined software application. Robidium, SmartRPA and Ringer are all
record-and-replay tools. Both Robidium and SmartRPA emphasize a partic-
ular type of routine, i.e., filling out a web form (Google Forms or other web
application) with data taken from a desktop application (Microsoft Office Ex-
cel file), that is equivalent to inserting a new record into a database. These
are very simple examples. Our tool is capable of discovering processes (i.e.
primary blocks) on complex business web applications (e.g. CRM and ERP
apps.) which imply complex browsing flows in the target web application.
Also, our tool can automatically execute complex business processes that the
human user didn’t even recorded/executed (because complex automatizable
business processes can be composed from individual primary blocks discov-

5



ered by our tool and these complex business process can be automatically
executed by our tool); i.e. our tool is not a simple record-and-replay tool.
Also, our browser plugin is capable of understanding the UI using the data
model of the target web application - so the human user does not need to
indicate to the plugin relevant input fields or property controls on the UI.

3 Primary Blocks construction/discovery

Existing RPA platforms have powerful features like OCR, Computer Vision,
or DOM-based for recognizing UI controls, but they do not have a deep un-
derstanding of the UI of an application (e.g. they don’t detect structural
elements and structural relations like all the controls belonging to a pan-
el/tab, detecting complete menus made of menu items, detecting entities
operated on by the UI of the application, etc.). By abstracting the whole UI
of the target web application to data operations (CRUD) on the database,
our tool brings a semantic, more interconnected understanding of the UI and
the whole application. This makes process automation possible on a higher,
more abstract layer that just simple recording and replaying UI events.

The set of primary blocks discovered by the browser plugin functions
similarly to a basis in a vector space. The primary blocks may be combined
with special operators (that will be introduced later in the paper) like the
sequence operator (i.e. logical AND) in order to form complex automatable
business processes.

The browser plugin determines automatically the primary blocks corre-
sponding to CRUD operations on all the concepts in the database of the
applications. The human user still has to guide the plugin (i.e. the human
user has to navigate) through the target web application, but there is no
other required input from the human user except this navigation through
the screens of the web application and the initial settings of the plugin for
a target web application - which consists of the Data Model of the database
used by the target web application. The human user mainly has to trigger
click events in the targeted web application’s UI in a logical order (so that
to register the order of clicks on the UI, by navigating through the web ap-
plication from the first web page to the desired UI form, which allows the
user to perform a specific CRUD operation in the database) and the browser
plugin understands all the web content that is loaded in the browser like:
identifying HTML elements/tag that the user clicked on, identifying entities
or concepts from the database shown in the HTML document loaded in the
browser window, associating HTML text input fields with the data fields of
an entity from the backend database etc.

6



The browser plugin can not determine automatically partial CRUD oper-
ations like a functionality of the application that links two entities together
from the database using foreign keys (this would be implemented using an
SQL Update operation that updates only one or two fields of those entities
- the foreign key value) or cross-concepts operations like the functionality
of showing complex reports implemented with multiple SQL Select queries
on different tables joined together by the JOIN operator. But these partial
CRUD or cross-concepts operations can still be recorded/saved by the plugin
and the human user can tag them (i.e. annotate them) as such.

The browser plugin functionality is depicted in Fig. 1. The user starts the
process of recording a new primary block by clicking on the ”Start recording
primary block” button. Up to the point when the user clicks on the ”End
recording primary block” button 7, all actions happening on the UI of the
target web application will be recorded by the plugin and at the end, they
will be serialized in a JSON format and persisted to a database using an Rest
API server or saved to the browser’s local storage. But the plugin is not a
record and replay tool for web UI actions, it is more than that - it abstracts
UI actions to semantic/conceptual operations on the database.

During the time when the primary block is recorder/discovered, the plugin
has two states: idle and processing. When the plugin is idle (depicted in Fig.
1 by the green progress bar), it awaits for a UI operation (i.e. a click event)
from the human user. After the user clicks on a button or other clickable
element in the web page, the plugin saves to local storage the signature of the
element that was clicked and then moves to the state of processing. In this
new state, it waits until the result of the click event on the UI is finished (i.e.
this would usually imply, for single-page application, that one or more XHR
requests are sent by the browser to the HTTP server and a part of the loaded
document (i.e. DOM) is updated). After the handling of the click event is
complete, the plugin determines the diff DOM (i.e. the part of the DOM that
was updated) and tries to identify the concept which is rendered in this diff
DOM, if possible, and the operation (i.e. Select, Update, Insert, Delete or
SelectAll) on this concept that is facilitated by this diff DOM. For example,
if the user clicks a ”New” button that constructs a form which allows the
user to insert a new entity of type ”Account” to the database, then this diff
DOM (i.e. the web form) is semantically defined by the concept ”Account”
and the operation ”Insert”.

So, actions happening on the UI of the target web application are recorded

7please note that the ”End recording primary block” button is not visible in Fig. 1 as
this button replaces the ”Start recording primary block” button, after the user clicks on
it to trigger the recording of a new primary block

7



in pairs: a click event is first recorded (by saving the signature of the DOM
element that was clicked - the signature is just its XPATH up to the doc-
ument’s <body>tag) and the resulted diff DOM is then saved in a seman-
tically abstract form defined by: concept : operation. The concept is just
a concept from the data model of the target web application (i.e. from the
database) and operation is one of the following: Insert, Update, Delete, Select
and SelectAll, although the human user can also annotate custom operations.
These operation are the basic CRUD operations on a concept in the database;
we distinguish SelectAll which basically means selecting several entities of a
concept (not necessarily all entities in the database) from Select because the
entities resulted from a SelectAll are usually displayed as a list or a table on
the UI of a web application (which is different than the way a single entity
resulted from a Select operation is rendered on the web UI). If the plugin does
not identify any concept or entity from the database in the diff DOM, then
this diff DOM will be represented as Concept: ”Generic DOM”, Operation:
””.

When the user finally clicks the ”End recording primary block” button,
the recording of a primary block is complete and the user can tag this chain
of UI actions / events with a custom string; by default, the tag/name of
the primary block chain is the concept : operation pair discovered by the
plugin at the end of the recording of the primary block (e.g. ”Account” :
”Update” pair). A full example of a primary block recorded in the CRM web
application Microsoft Dynamics 2016 CRM, i.e. the primary block of the
CRUD operation: Account : Insert is visible below (i.e. all the steps from
the primary block, except the finalization step are visible).

8



��������	
��	��
�
���������������������������������� ���!"�������#�$%&'()��*+�,!"�������#����������$'�-���+�,.���$�%&'(�+�,-���$/�0���*+�,���"
/�*$�/�0���*!��$/�0������1� ���$������������������2��
�
�����������������/�������
��
�
����������������������������������$%&'()��*'�����!"��������$%&'()��*'�����!"�����������������$'�%3'$�.�)��*4#��"
$�%&'()��*4��5�"�$�%&'()��*4#��"
!��5$%&'()��*4#��"
���������$�.�)��*41",#��"
$�6.)��*4��,!��5$/�0����������"
�������$/�0����������"
�������7*��8
���$/�0����������"
�������71������,�����/�0)����+�,4��*41���$/�0)��*'��������"
���������$/�0������1� ���$������������������2��
�
�����������������/�������
��



��������	
��
����
�������
���	�
������	����������
���	����������� �	����!�"��!�������	���������	�������	���
�#�!�������	���"��!�$��#�������	���"��!���	���	����� �	���"��!��%��	������$��#�& '������
�����	(��!���	���
�& '������
�����	(��!���	���
��������& '������
�����	(��!���	���
�����

��& '�	������
�& '�	�������	������	���	���& '����)���*�����
�������
���	����+�
�����!	��
��������	
��,�,�-�����	����
�����!	�
��������	
��
����
�������
���	�
������������������	�$���)�	!�����������)�	!�����
�������������������	�$���$!���	��������)�	!�����
�.�������� �����!	����/�
����	�*���.�����"�(%��������������	�$���)�	!�& '������	���	���	��0�& '����/����	)�	�"���& '����-��$����
�������
���	����+�
��,1
��������	
� ��,/-��	����
�����!	�



(a) The ”Primary block Discovery”
UI

(b) The ”Automatic execution” UI

Figure 1: The user interfaces of the browser extension

Although a primary block can contain a sequence of pairs of the form:
”UI Click event”, ”Conceptual operation”, we can group these pairs in some
templates/models, that are valid for all CRUD operations for all concepts
(and for all web applications). Most CRM applications process use specific
sets of business concepts among which there exist a wide variety of rela-
tionships. CRUD operations that are performed over the business domain
concepts allow data processing that is finally stored in a database. Fig. 2
shows the primary building block that corresponds to the concept detection
as a first action achieved for almost all other primary blocks, i.e., insert,
update, delete, select, select all. The action that defines the Detect Concept
primary block consists of clicking on the UI element that corresponds to the
abstract concept included in the data model, e.g., Contact, Account, etc. As
a subsequent result, the content of the DOM object is updated. Every pri-
mary building block makes use of some parameters ensuring the reusability
of that particular operation.

Figure 2: Detect concept operation representation

11



Detect Entity emphasized by Fig. 3 is the primary building block that is
connected after the Detect Concept block for several CRUD operations, as
it is required to indicate the actual data to act on for operations like update
or delete. The identification of the particular entity to operate on suggests
the need to have to perform several click operations in order to identify the
desired entity indicated by the input parameters.

Figure 3: Detect entity operation representation

The actions accomplished during CRUD operations may be organized
into three sections, according to the particularity of every operation: pre-
operations (i.e. operations required before we can execute the main concep-
tual operation), specific operations (i.e. the main conceptual operation), and
post-operations (i.e. usually these are final confirmations from the user of the
main operation and are usually achieved by click events on ’Confirm’ or ’Save’
or ’Ok’ buttons). For example the Insert conceptual operation depicted in
Fig. 4 requires achieving first the concept identification only, without any
entity to operate on. Subsequently, the actions refer to choosing the UI ele-
ment that allows entering new data (usually a New button), followed by the
data entering step (filling in the input texts). The Insert operation finishes
with the confirmation of adding new data into the database (e.g. clicking on
a ’Save’-like button).

Figure 4: Insert operation representation

Fig. 5 and Fig. 6 emphasize similar templates for the Update and Delete
operations on concepts, acting on some existing entity that should be up-
dated or deleted. Both Detect Concept and Detect Entity operations should
be executed as pre-operations. Select operation and Select All operation
are different from other CRUD operations in terms of the category of the
performed actions. They allow data extraction from the database and its
presentation to the user, altering the content of the DOM object. See Fig. 7
and 8.

12



Figure 5: Update operation representation

Figure 6: Delete operation representation

Depending on the conceptual operation (i.e. Update, Delete, Insert, Se-
lect, SelectAll) and on the targeted web application, as we have seen in the
above templates, usually a primary block ends with UI click events that are
meant to confirm the operation by the user; for example, an Insert concep-
tual operation will usually end with a click on a ’Save’ or ’Confirm’ button;
an Delete conceptual operation will usually end with a click on ’Are you sure
?’ or ’Confirm’ buttons. These click events form the post-operations and
these steps have to be signalized as such to the plugin by checking the ’Fi-
nalization steps’ checkbox of the plugin (so that when the plugin switches to
the automatic execution of the primary block, it knows that the DOM that
allows the main conceptual operation to be perform lies in the chain before
these finalization steps).

As we said before, the recorded primary block is automatically tagged by
the plugin with the text concept : operation where concept and operation
represent the conceptual operation discovered by the plugin at the end of
the recording of the primary block (e.g. ”Account” : ”Update”). The plugin
also allows the user to change this tag/name of the recorded primary block
if he/she wants. The user can also change the attributes of the pre-recorded
steps that form the primary block.

3.1 Detecting concepts and conceptual operations in
the DOM

The detection of an operation on a concept in the current DOM (i.e. the dif-
ference DOM, diffDOM ) happens according to the algorithm depicted in list-
ing 1. The algorithm begins with the function TableOfEntitiesDetected(diffDOM)
which tries to detect any tables in the diff DOM. Tables are important be-
cause the may indicate a SelectAll operation on a concept. We can not

13



Figure 7: Select operation representation

Figure 8: Select All operation representation

present here the body of this function due to space constraints, but in essence,
the algorithm for detecting a tables tries to horizontally align leaf html tags
containing only text into horizontal row clusters and then tries to vertically
align these horizontal rows into a table. After detecting a table, the algorithm
tries to detect if the entities of a concept are rendered in that table through
function DetectConceptInTable(diffDOM). Again, we omit the details
here, but simply said, the concept is determined by searching its attributes
in the table cells of the table header or, if these are not found (e.g. the table
may not have a header), the concept is determined by inspecting (i.e. trig-
gering click events) the entities from the first two rows of the table; detecting
an entity is done similarly to the way function FindOneConcept(diffDOM)
determines that an entity (of that concept) is rendered in the diffDOM :
several text attributes (labels) of a concept from the Data Model are found
in the diffDOM - more than 75% of the labels of a concept are found.

Next, if there was no SelectAll or Delete operation on a concept/entity
detected, the algorithm tries to find text input elements/tags (i.e. ”<input
type=text >,<select >,<textarea >”) associated to the text labels (i.e. the
text attributes of the found entity). We do this in the FindInputF ieldsForTextLabels()
function. The associated text input tag is searched in the neighborhood of
the label, more specifically, the associated input tag is searched in the South-
East quarter of a circle with the center in the middle of the label - the closest
such text input tag from this South-East quarter is associated to the label.
If no such input html tags were detected, that the operation is Select on an
entity of the detected concept. If, on the other hand, there was text input
html elements found in the diffDOM, but they are empty (i.e. don’t contain

14



values), the conceptual operation would be Insert. Otherwise, the conceptual
operation is Update on an entity of the detected concept.

Algorithm 1 The conceptual operation detection in DOM algorithm

The DetectConceptualOperation algorithm is:
1: if TableOfEntitiesDetected(diffDOM) == TRUE then
2: DetectedConcept = DetectConceptInTable(diffDOM)
3: return (Concept : DetectedConcept,Operation : SELECTAll)
4: else
5: if (DetectedConcept = FindOneConcept(diffDOM))! = NULL) then
6: {Several text attributes (labels) of a Concept from the Data Model are found in the DOM}
7: if (The previous click event was triggered on a tag with the caption ”DELETE”) then
8: return (Concept : DetectedConcept,Operation : DELETE)
9: end if
10:
11: InputF ieldsFound = FindInputF ieldsForTextLabels()
12: if InputF ieldsFound == FALSE then
13: return (Concept : DetectedConcept,Operation : SELECT )
14: else
15: if (Found Text Input elements are empty (i.e. don’t contain values)) then
16: return (Concept : DetectedConcept,Operation : INSERT )
17: else
18: return (Concept : DetectedConcept,Operation : UPDATE)
19: end if
20: end if
21: end if

22: end if

3.2 Configuration settings for the plugin

The initial settings of the plugin for a target web application are the following:

• URL of the target web application together with access credentials

• the Data Model of the database used by the target web application

The Data Model configuration does not need to match exactly the structure
of the database used by the application, but it should match the text labels
used for each concept of the database on the UI of the application. This is
why, primary access to the database used by the target web application is
not required in order to use the plugin.

A small snippet from a data model example used for the Microsoft Dy-
namics 2016 CRM application is given below in JSON format:

DataModel = {

"Account" : ["Account Name", "Phone", "Fax", "Website", "Parent Account", "Ticker Symbol",

"Address", "Primary Contact", "Description", "Industry", "SIC Code", "Ownership"],

"Contact" : ["Full Name", "Job Title", "Account Name", "Email", "Business Phone", "Mobile Phone",

"Fax", "Preferred Method of Contact", "Address", "Gender", "Marital Status", "Birthday",

15



"Spouse/Partner Name", "Anniversary", "Personal Notes", "Company", "Originating Lead",

"Last Campaign Date", "Marketing Materials", "Contact Method", "Email", "Bulk Email", "Phone",

"Fax", "Mail"],

"PrimaryKeys" : [{Concept : "Account", PrimaryKey : "Account Name"}]

"ForeignKeys" : [{ForeignKey : "Company", ForeignConcept : "Contact", PrimaryKey : "Account Name",

PrimaryConcept : "Account"}]

...

};

The data model describes the concept Account with its associated at-
tributes and the concept Contact with its associated attributes. It also de-
scribes that the Company attribute from Contact is a foreign key and refers
to the primary key Account Name from the Account concept. Again, we
emphasize that these attributes don’t have to match exactly the attributes
of the database tables, but instead they have to match the text labels for
the respective entities on the UI of the target web application. The foreign
key relation is used when for example the plugin tries to add a new (i.e. an
Insert operation) entity of type Contact and the UI interface of the Microsoft
Dynamics CRM application only allows the input of values for the main at-
tributes of Contact entity and assumes that the Account to which this new
Contact entity is linked already exists in the database, so the UI only allows
the user/plugin to specify the Account Name attribute of the Account entity,
without specifying other attributes for the Account.

4 Representation of primary building blocks

Internally, a primary block is represented as a JSON object. The representa-
tion stores the pre-operations, specific operations and post-operations of the
primary block as a sequence of steps. But except the post-operations which
are usually represented as a UI click event on a ’Save’-like button, the steps
from pre-operations and specific operations come as pairs: a UI click event
and a conceptual operation in the diff DOM. An example of a JSON rep-
resentation of a {concept : ”Account”, operation : ”Insert”} primary block
for the Microsoft Dynamics CRM 2016 web application is depicted in the
following listing.

PrimaryBlock=[

{operation: "Click", target: ".../IMG#homeButtonImage", targetText : ""},

{concept: "", operation : "Generic DOM"},

{operation: "Click", target : ".../IMG", targetText : ""},

{concept: "", operation : "Generic DOM"},

{operation: "Click", target: ".../SPAN.nav-rowLabel", targetText: "Accounts"},

{concept : "Account", operation: "SELECTALL"},

{operation: "Click", target: ".../SPAN.ms-crm-CommandBar-Menu", targetText: "NEW"},

{concept: "Account", operation: "INSERT"},

16



{operation: "Click", target: ".../BUTTON#saveBtn", targetText: "SAVE", finalizationStep: "True"}

]

In this listing, the UI click operations are identified by the attributes:
operation=”Click”, the target of the click event (i.e. the html tag that was
clicked) identified by its XPATH (only the last step of the XPATH is present
in the listing for brevity reasons) and the textual caption of the target tag
(e.g. the text shown by the button that was clicked); sometimes there is
no such target text as the button may just contain an icon and no text
(for example a delete button can contain a recycle bin icon). A conceptual
operation identified in the diff DOM is specified in the JSON using the
attributes: concept and operation (i.e. Select, SelectAll, Insert, Update,
Delete); sometimes, when the plugin identifies no operation on a concept,
then only a {concept : ””, operation : ”GenericDOM”} generic step is saved.
The last step from the listing identifies the post-operations step (specified by
the finalizationStep attribute).

A graphical representation of a small part from the primary block repre-
sented as JSON in listing 4 is visible in fig. 9. The graphical representation
of the full primary block is presented above. Another representation of a
primary block that can be interpreted by a business analyst is obtained by
transforming the JSON serialization into XPDL serialization, which can be
visualized graphically using a BPMN tool (e.g. Together Workflow) as in
Fig. 10. Similarly, diagrammatic visualizations can be generated for com-
plex processes, by composing the XPDL serialization of the primary blocks.

Figure 9: Snippet of an {concept : ”Account”, operation : ”Insert”} primary
block for the Microsoft Dynamics CRM 2016 web application

Figure 10: BPMN representation of XPDL format for (Account : Insert)

17



5 Composition of complex business processes

using primary navigation/building blocks

In 2003, van der Aalst et al. defined a series of 20 workflow patterns [19].
Their initial goal was to use these patterns as qualitative criteria in workflow
systems’ assessment or standards’ assessment. A comparison based on the
workflow patterns, where BPMN models and UML Activity Diagrams are
analysed, is depicted in [20]. Another similar approach that analyzes BPMN
models, workflow patterns and YAWL models is presented in [3]. Wohed et
al. studied the application of these patterns on BPMN models [22]. They
do not focus only on control-flow perspective, but also resource and data
perspectives are analyzed. Control-flow patterns are described in 6 cate-
gories: Basic control-flow patterns, Advanced branching and synchronisation
patterns, Structural patterns, Multiple instances patterns, State-based pat-
terns, and Cancellation patterns. A similar approach where business process
models are built based on BPMN Workflow Patterns is treated in [23].

The Sequence pattern involves at least 2 tasks that should precede and
succeed each other. This pattern requires tasks and sequence flows concepts.
Modeling parallel tasks is performed using Parallel Split and Synchroniza-
tion patterns, while the choice of one branch out of multiple branches is
described by Exclusive Choice and Merge patterns. These patterns use tasks
and gateways (exclusive of parallel gateways).

Complex processes could be obtained by combining primary blocks using
Basic control-flow patterns [22]. To achieve this we may consider primary
blocks as sub-processes, and assimilate them to tasks. Sequencing the CRUD
operations is a natural composition, but we may also allow discriminating
composition based on some conditions (i.e. Insert or Update depending on
the existence or not of the considered entities) or even parallel composition
(e.g. several Insert operations executed in parallel). Parallel composition
is achieved by operating on two or more browser tabs in which the target
web application is loaded. The composition correctness is simple to prove
for sequencing and/or discriminating compositions; for parallel composition,
some extra conditions should be added for data race exclusion.

6 Automatic execution of complex business

processes. Experiments

We tested the primary block discovery and the automatic execution of com-
plex processes functionalities of our plugin on 3 business applications: 1) Mi-

18



Target applica-
tion

Total number of
use cases (i.e. pri-
mary blocks)

Number of pri-
mary blocks auto-
matically discov-
ered

Percentage of pri-
mary blocks auto-
matically discov-
ered

Atlassian Jira 39 26 67%

Microsoft Dy-
namics 2016
CRM

102 81 79%

Microsoft Dy-
namics 365
Business Central

135 70 52%

Table 1: Automatic discovery of primary building blocks

crosoft Dynamics 2016 CRM 8, 2) Microsoft Dynamics 365 Business Central 9

and 3) Atlassian Jira 10. We evaluated the ability of our web automation tool
to automatically discover primary building blocks of conceptual operations
by going through use cases/functionalities of the three previous mentioned
business applications. We considered all use cases that involve (i.e. whose
outcome is) a CRUD operation in the backend database. So, we ignored use
cases that involve only UI modifications, without reading from or changing
the data in the database. We ignored use cases that do not operate on the
database (they operate just on the data that is shown in html documents in
the browser) like for example: print current html document, draw reports,
email a link/current document, import from Excel into the browser window
etc. On all these considered use cases, we tested whether our plugin is able to
automatically detect the primary block (i.e. the main conceptual operation
of the primary block). The results are summarized in the Table 1.

The second column in the table presents the number of use cases (i.e.
potential primary blocks) we considered/tested in each of the 3 web appli-
cations. The third column presents the absolute number of primary blocks
detected and the fourth column presents the percentage of this number of au-
tomatically detected primary blocks in the total number of potential primary
blocks (i.e. the second column value). We can see in this table that our web
automation tool was able to detect 67%, 79% and respectively 52% of the
available primary blocks. The rest of non discovered primary blocks involve
partial CRUD operations, i.e. operations that only change a single field or

8https://learn.microsoft.com/en-us/lifecycle/products/dynamics-crm-2016-dynamics-
365

9https://dynamics.microsoft.com/en-us/business-central/overview/
10https://www.atlassian.com/software/jira

19



a couple of fields from a database entity (e.g. the operation ”Fulfill Order”
which only changes a field of the ”Order” entity and does not perform a full
fledged Update operation of all fields).

A complex, automizable business process is a sequence of primary blocks
linked by the operators presented in the previous section. An example of
such an automizable business process is presented in the following listing.

ComplexProcess=[

{Operation: "Insert", Concept: "Account", Parameters:{"Account Name": "UBB",

"Phone" : "0000000000", "Fax" : "000000000", "Website" : "www.company.com", ...} }
Operator,

{Operation: "Insert", Concept: "Contact", Parameters:{"Full Name": "John Doe",

"Job Title": "Professor", "Account Name" : "UBB", "Email" : "John.Doe@company.com",

...} },
Operator,

...

]

The complex process is given in the listing in a JSON representation. The
Operator can be one of ”Sequence”, ”Choice” and ”Parallel”. The ”Choice”
operator is implemented using Exclusive choice and Merge patterns, and
the ”Parallel” operator is implemented using the Parallel Split and Syn-
chronization patterns. Each primary block in the listing is identified by the
Operation and Concept pair and also contains the Parameters of the primary
block (e.g. the {Operation : ”Insert”, Concept : ”Account”} primary block
specifies value parameters for each property of the Account entity that is to
be inserted in the database). Of course, there can be more than two primary
blocks linked by different operators in a complex automizable process.

The plugin’s UI allows the user to specify a complex process for automatic
execution in the above JSON format (see Fig. 1 (b)).

The full code of our browser plugin is available at:
https://github.com/KiralyCraft/WAPlugin

We tested the automatic execution of complex processes functionalities of
our plugin on the 3 business applications: 1) Microsoft Dynamics 2016 CRM,
2) Microsoft Dynamics 365 Business Central and 3) Atlassian Jira. We used
similar complex processes as the one in the above JSON listing, having 2-3
operators. The examples of complex processes we automatically executed on
Microsoft Dynamics 2016 CRM application are presented on the following
listing. We used similar processes for the other two applications for experi-
mentation. Our browser plugin was able to successfully discover the primary
blocks and execute the complex processes in the 3 aforementioned business
applications. Some screenshots and additional details of these experiments
are presented in the figures below.

20



ComplexProcess1=[

{Operation: "Insert", Concept: "Account", Parameters:{"Account Name": "UBB", "Phone": "00000000000",

"Fax": "00000000000", "Website": "www.ubbcluj.ro", "Parent Account": "", "Ticker Symbol": "a",

"Address": "Str. M. Kogalniceanu, Cluj", "Primary Contact" : "Virginia Niculescu", "Description": "University",

"Industry": "Academic", "SIC Code": "00000", "Ownership": ""} }
Operator,

{Operation: "Insert", Concept: "Contact", Parameters:{"Full Name": "Adrian Sterca",

"Job Title": "Professor", "Account Name" : "UBB", "Email" : "adrian.sterca@ubbcluj.ro",

"Business Phone": "00000000000", "Mobile Phone": "00000000000","Fax": "000000000",

"Preferred Method of Contact": "telephone", "Address": "Str. M. Kogalniceanu, Cluj", "Gender": "M",

"Marital Status": "married", "Spouse/Partner Name": "", "Birthday" : "20/01/2020", "Anniversary": "",

"Personal Notes": "", "Company": "UBB", "Originating Lead": "", "Last Campaign Date": "",

"Marketing Materials": "", "Contact Method": "", "Email": "other@gmail.com", "Bulk Email": "", "Phone": "",

"Fax": "", "Mail": "" } },
]

ComplexProcess2=[

{Operation: "Delete", Concept: "Account", Parameters:{"Account Name": "UBB"} }
Operator,

{Operation: "Update", Concept: "Contact", Parameters:{"Full Name": "Camelia Chisalita-Cretu",

"Job Title": "Professor", "Account Name" : "UBB", "Email" : "maria.cretu@ubbcluj.ro",

"Business Phone": "00000000000", "Mobile Phone": "00000000000","Fax": "000000000",

"Preferred Method of Contact": "telephone", "Address": "Str. M. Kogalniceanu, Cluj", "Gender": "M",

"Marital Status": "married", "Spouse/Partner Name": "", "Birthday" : "20/01/2020", "Anniversary": "",

"Personal Notes": "", "Company": "UBB", "Originating Lead": "", "Last Campaign Date": "",

"Marketing Materials": "", "Contact Method": "", "Email": "other@gmail.com", "Bulk Email": "", "Phone": "",

"Fax": "", "Mail": "" } },
]

ComplexProcess3=[

{Operation: "SelectAll", Concept: "Account", Parameters:{"Account Name": "UBB"} }
Operator,

{Operation: "Select", Concept: "Contact", Parameters:{"Full Name": "Camelia Chisalita-Cretu"} },
]

6.1 Limitations

In this subsection, we want to list some of the limitations of our browser
plugin. Firstly, our tool is able to detect only entity CRUD operations in the
UI, other UI operations which do not translate to CRUD operations in the
database (e.g. operations that modify a single property of an entity), must
be tagged manually by the user (also using our browser plugin). Secondly, we
have tested our tool on 3 commercial, business web applications and although,
we based our plugin implementation on common web design principles (like
the fact that an input field is always placed in the web UI either on the
right or below or in the south-east part of its corresponding text label),
it may not work correctly on other business web applications. As shown
in Figs. 4 - 8, we used general templates for CRUD operations which are
not specific to a particular web application, so our web automation plugin
should, in principle, work with any typical business web applications that
uses a relational database. Another limitation is the fact that, currently, the

21



Figure 11: A screenshot performing an (Account : Insert) in Microsoft Dy-
namics CRM 2016 (the link between labels and text inputs of the Account
entity are outlined with green lines by the plugin)

complex process which is executed automatically must be specified by the
human user in the JSON format which is not necessary business friendly.
Other limitation is that currently, once saved, we can not edit a recorded
primary block.

7 Conclusions and Future Work

We presented in this paper a browser tool that can be used in order to semi-
automatically detect basic business processes in business web applications,
construct more complex business processes based on these and execute them
automatically later. Our tool maps UI operations in the target business web
application to conceptual operations in a database. The user of our tool is
not required to have any programming knowledge, all he/she needs to do is to
provide a small startup configuration (like the URL of the target web appli-
cation, credentials for accessing it and the concepts from the database with
their properties) and to ”guide” the plugin in the discovery of basic business
processes (i.e. primary blocks) by browsing through the target web applica-
tion. This is different than the current RPA platforms which function on a
record-and-replay principle (i.e. they can only execute automatically what
they have previously recorded in the UI) and also require the user to write
code in order to program the automated process. We have shown that our

22



Figure 12: A screenshot performing an (Issue : SelectAll) in Atlassian Jira
(the table with the Issue entities is highlighed in red by the plugin)

idea is viable by experimenting on 3 commercial, business web applications.
As future work, we intend to test our tool on other business web applications,
to improve its execution interface with the user through NLP (Natural Lan-
guage Processing), to automatically discover the entities and concepts used
by the target web application, to automatically detect operations different
than CRUD operations and to allow the user a greater flexibility in editing
the recorded primary blocks.

References

[1] Agostinelli, S., Lupia, M., Marrella, A., and Mecella, M.
Automated Generation of Executable RPA Scripts from User Interface
Logs. 2020.

[2] Barman, S., Chasins, S., Bodik, R., and Gulwani, S. Ringer:
web automation by demonstration. In Proceedings of the 2016 ACM
SIGPLAN international conference on object-oriented programming,
systems, languages, and applications (2016), pp. 748–764.

[3] Börger, E. Approaches to modeling business processes: a critical
analysis of bpmn, workflow patterns and yawl. Software & Systems
Modeling 11 (2012), 305–318.

23



[4] Chakraborti, T., Isahagian, V., Khalaf, R., Khazaeni, Y.,
Muthusamy, V., Rizk, Y., and Unuvar, M. From robotic process
automation to intelligent process automation: Emerging trends. CoRR
abs/2007.13257 (2020).

[5] Chasins, S. E., Mueller, M., and Bodik, R. Rousillon: Scraping
distributed hierarchical web data. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology (2018),
pp. 963–975.

[6] Flechsig, C., Lohmer, J., and Lasch, R. Realizing the full poten-
tial of robotic process automation through a combination with bpm. In
Logistics Management: Strategies and Instruments for digitalizing and
decarbonizing supply chains-Proceedings of the German Academic Asso-
ciation for Business Research, Halle, 2019 (2019), Springer, pp. 104–
119.

[7] Flechsig, C., Völker, M., Egger, C., and Weske, M. To-
wards an integrated platform for business process management sys-
tems and robotic process automation. In Business Process Man-
agement: Blockchain, Robotic Process Automation, and Central and
Eastern Europe Forum: BPM 2022 Blockchain, RPA, and CEE Fo-
rum, Münster, Germany, September 11–16, 2022, Proceedings (2022),
Springer, pp. 138–153.

[8] for Robotic Process Automation, I. Introduction to robotic pro-
cess automation. a primer, June 2015.

[9] Han, X., Hu, L., Dang, Y., Agarwal, S., Mei, L., Li, S., and
Zhou, X. Automatic business process structure discovery using ordered
neurons LSTM: A preliminary study. CoRR abs/2001.01243 (2020).

[10] Hofmann, P., Samp, C., and Urbach, N. Robotic process automa-
tion. Electronic Markets 30, 1 (March 2020), 99–106.

[11] Ito, N., Suzuki, Y., and Aizawa, A. From natural language in-
structions to complex processes: Issues in chaining trigger action rules.
CoRR abs/2001.02462 (2020).

[12] König, M., Bein, L., Nikaj, A., and Weske, M. Integrating
robotic process automation into business process management. In Busi-
ness Process Management: Blockchain and Robotic Process Automation
Forum: BPM 2020 Blockchain and RPA Forum, Seville, Spain, Septem-
ber 13–18, 2020, Proceedings 18 (2020), Springer, pp. 132–146.

24



[13] Leno, V., Deviatykh, S., Polyvyanyy, A., Rosa, M. L., Du-
mas, M., and Maggi, F. M. Robidium: Automated synthesis of
robotic process automation scripts from UI logs. In Proceedings of the
Best Dissertation Award, Doctoral Consortium, and Demonstration &
Resources Track at BPM 2020 co-located with the 18th International
Conference on Business Process Management (BPM 2020), Sevilla,
Spain, Sept. 13-18, 2020 (2020), vol. 2673, CEUR-WS.org, pp. 102–
106.

[14] Leno, V., Polyvyanyy, A., Dumas, M., Rosa, M. L., and
Maggi, F. M. Robotic process mining: Vision and challenges. Busi-
ness Information Systems Engineering: The International Journal of
WIRTSCHAFTSINFORMATIK 63, 3 (2021), 301–314.

[15] Leopold, H., van der Aa, H., and Reijers, H. Identifying Candi-
date Tasks for Robotic Process Automation in Textual Process Descrip-
tions. 01 2018, pp. 67–81.

[16] Rajawat, A. S., Rawat, R., Barhanpurkar, K., Shaw, R. N.,
and Ghosh, A. Chapter one - robotic process automation with in-
creasing productivity and improving product quality using artificial in-
telligence and machine learning. In Artificial Intelligence for Future
Generation Robotics, R. N. Shaw, A. Ghosh, V. E. Balas, and M. Bian-
chini, Eds. Elsevier, 2021, pp. 1–13.

[17] Solaiman, E., Sun, W., and Molina-Jimenez, C. A tool for the
automatic verification of bpmn choreographies. In 2015 IEEE interna-
tional conference on services computing (2015), IEEE, pp. 728–735.

[18] Van-der Aalst, W. M. P., Bichler, M., and Heinzl, A. Robotic
process automation. Business and Information Systems Engineering 60
(08 2018), 269–272.

[19] van der Aalst, W. M. P., ter Hofstede, A. H. M., Kie-
puszewski, B., and Barros, A. P. Workflow patterns. Distributed
and Parallel Databases 14, 1 (2003), 5–51.

[20] White, S. A., et al. Process modeling notations and workflow pat-
terns. Workflow handbook 2004, 265-294 (2004), 12.

[21] Willcocks, L. P., and Lacity, M. Service automation robots and
the future of work. SB Publishing, 2016.

25



[22] Wohed, P., van der Aalst, W. M., Dumas, M., ter Hofstede,
A. H., and Russell, N. Pattern-based analysis of bpmn.

[23] Yamasathien, S., and Vatanawood, W. An approach to construct
formal model of business process model from bpmn workflow patterns. In
2014 Fourth International Conference on Digital Information and Com-
munication Technology and its Applications (DICTAP) (2014), IEEE,
pp. 211–215.

26


