Machine learning in financial forecasting

Haindrich Henrietta Vezér Evelin

Contents

- Financial forecasting
- Window Method
- Machine learning-past and future
- MLP (Multi-layer perceptron)
- Gaussian Process
- Bibliography

Financial forecasting

- Start with a sales forecast
- Ends with a forecast of how much money you will spend (net) of inflows to get those sales
- Continuous process of directing and allocating financial resources to meet strategic goals and objectives

Financial forecasting

- The output from financial planning takes the form of budgets
- We can also break financial forecasting down into planning for operations and planning for financing
- But we will consider as one single process that encompasses both operations and financing

Window Method

What is window method? It is an algorithm to make financial forecast

 $x_1, x_2, \ldots, x_n \mapsto x_{n+1}, x_{n+2}, \ldots, x_{n+m}$

Two Types of Window Methods (1)

Use the predicted data in forecasting

 x_1 , x_2 , ..., $x_n \mapsto x_{n+1}$ x_2 , x_3 , ..., x_n , $x_{n+1} \mapsto x_{n+2}$ x_3 , x_4 , ..., x_{n+1} , $x_{n+2} \mapsto x_{n+3}$

Two Types of Window Methods

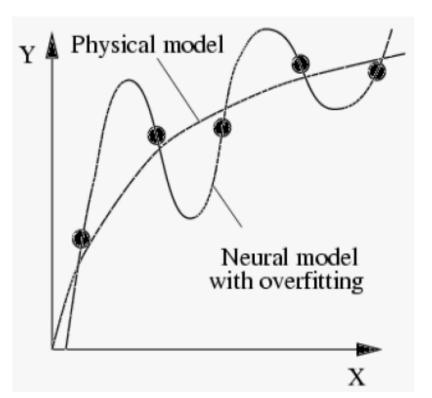
Don't use the predicted data

 $x_1, x_2, \dots, x_n \mapsto x_{n+1}$ $x_2, x_3, \dots x_n, x_{n+1}' \mapsto x_{n+2}$ $x_3, x_4, \dots x_{n+1}', x_{n+2}' \mapsto x_{n+3}$ where $x_{n+1}', x_{n+2}', \dots$ are the real values

Tools needed for Window Methods

- Data
 - The size of the window
 - Initial data
 - Number of these data >= size of window
- Machine learning Algorithms
 - MLP (Multi Layer Perception)
 - GP (Gaussian Process)

- Training data
- Santa Fe data set
 - exchange rates from Swiss francs to US dollars
 - recorded from August 7, 1990 to April 18, 1991
 - contains 30.000 data points


Machine learning-past and future

- Neural networks generated much interest
- Neural networks solved some useful problems
- Other learning methods can be even better

What do neural networks do?

 Approximate arbitrary functions from training data What is wrong with neural networks?

- The 'overfitting' problem
- Domain knowledge is hard to utilize
- We have no bounds on generalization performance

MLP (Multi-layer perceptron)

- Feed-forward neural networks
- Are the first and arguably simplest type of artificial neural networks devised
- In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes.
- There are no cycles or loops in the network.

Feedforward neural networks Hidden Input Output

MLP (Multi-layer perceptron)

- This class of networks consists of multiple layers of computational units
- These are interconnected in a feedforward way
- Each neuron in one layer has directed connections to the neurons of the subsequent layer

In our example

- We use the Santa Fe data set
- We use three function
 - eq_data
 - equal_steps
 - mlp_main

Eq_data

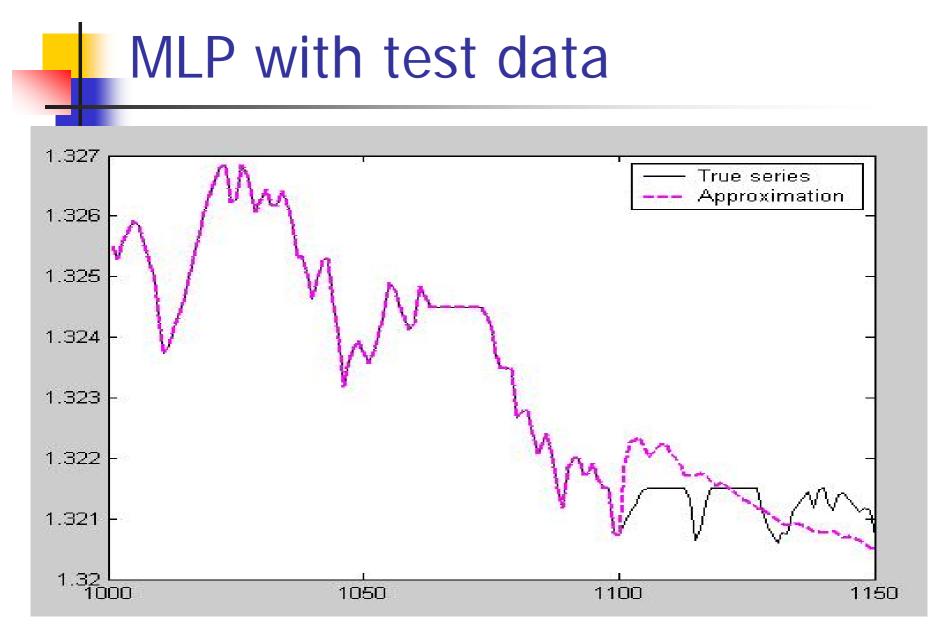
- Load the data
- the time format is:
 - 1.column:day
 - 2.column:(hour).(minute)(second)
- convert the time into second

<<< Why needed >>> !Explain!

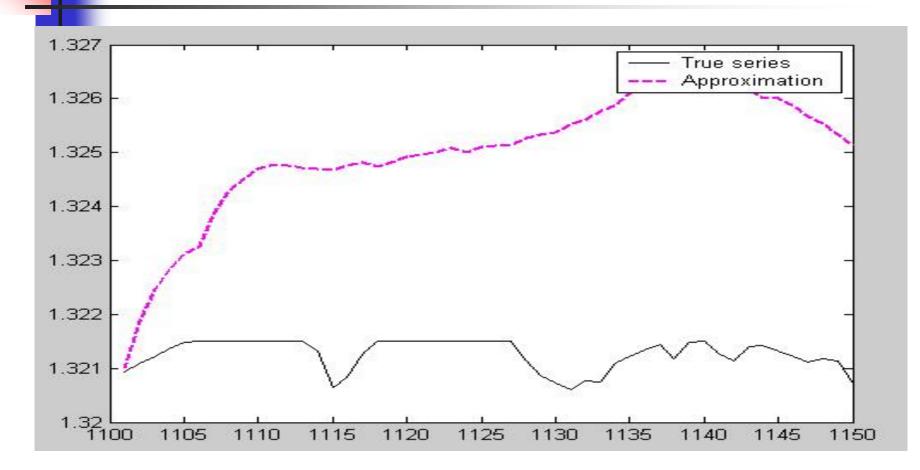
Needed to

Equal_steps

- Time the inputs uniformly
- Input: time-series with the ticks
- Output: time-series that contains the values on an equally-spaced time-steps


<<< Why needed >>> !Explain!

Mlp_main


- Call the eq_data and equal_steps on the Santa Fe data set
- the input window length = 100
- the output window length = 20
- prediction length = 50
- Iength of the training set = 2700

Mlp_main

- Create the MLP network
- training the network
- testing the network
- give the prediction
- plot the prediction

MLP with test data (detail)

Conclusion

- Theoretically the second method is the best, because it predict only one data
- After that it use, the real data to make the next prediction

One idea of machine learning

- The implicit Bayesian prior is then a class of Gaussian Process
- Gaussian processes are probability distribution on a space of function
- Are well-understood

GP-Mathematical interpretation

A Gaussian process is a stochastic process which generates samples over time X_t such that no matter which finite linear combination of the X_t ones takes (or, more generally, any linear functional of the sample function X_t), that linear combination will be normally distributed

Important Gaussian processes

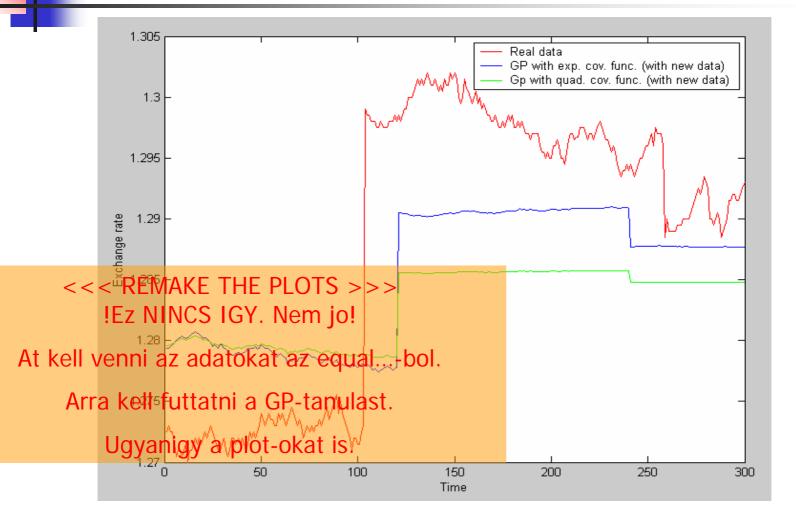
- The Wiener process is perhaps the most widely studied Gaussian process. It is not stationary, but it has stationary increments
- The Ornstein-Uhlenbeck process is a stationary Gaussian process. The Brownian bridge is a Gaussian process whose increments are not independent

GP (Gaussian process) method

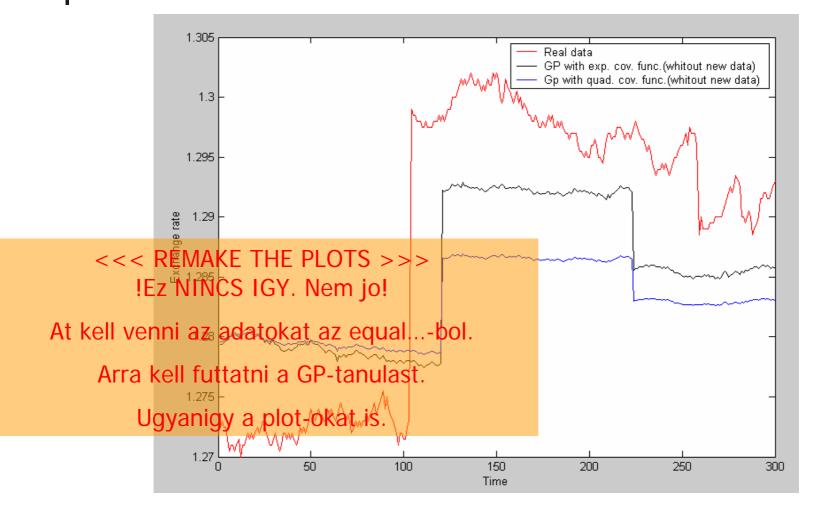
- Provide promising non-parametric tools for modelling real-word statistical problems
- An important advantage of GP-s over other non-Bayesian models is the explicit probabilistic formulation of the model
- Unfortunately this model has a relevant drawback

GP (Gaussian process) method

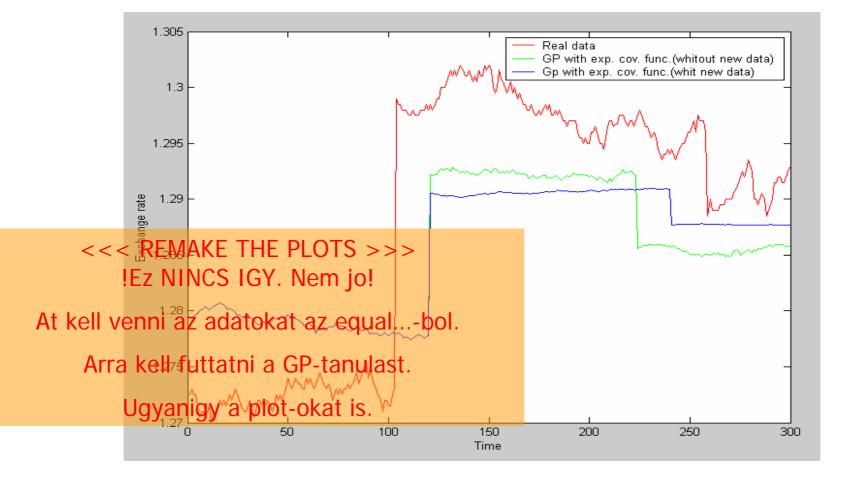
- This drawback of GP models lies, in the huge increase of the computational cost with the number of training data
- This seems to preclude applications of GPs to large datasets


GP (Gaussian process) method

- Create a Gaussian process
- Initialize Gaussian Process model with training data
- Forward propagation through Gaussian
 Process



- We use the Santa Fe data set
- windows size=120
- the forecasting data size=300


GP with Exponential and Quadratic covariance using new data

GP with Exponential and Quadratic covariance without using new data

GP with Exponential covariance with and without using new data

Bibliography

- Michael A. Arbib (ed.): <u>The Handbook of</u> <u>Brain Theory and Neural Networks</u>.
- cenit.latech.edu/cenit/misc/Financial%20Sta tements%20and%20Financial%
- en.wikipedia.org/wiki/Gaussian_process
- www.ncrg.aston.ac.uk/.../tr_search?logic=AN D&author=*&year=*&show_abstract=&form at=HTML
- Netlab documentation