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The aims of the short course
I to get an overview of kernel methods

I to get an overview of semi-supervised classification

I kernel methods: change the kernel ⇒ obtain a new
algorithm

I semi-supervised learning: use a large unlabeled dataset

I semi-supervised kernels: use a supervised algorithm with a
semi-supervised kernel to obtain a semi-supervised learning
method

I no need to develop semi-supervised methods

I use a supervised algorithm with a good – and replaceable –
semi-supervised kernel
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Machine learning. Supervised learning
I machine learning (ML): subdomain of AI, modeling the most

important brain activities: classification, differentiation,
prediction

I supervised learning: examples with teaching instructions
I example: learn to differentiate between relevant and spam

emails

I unsupervised learning: no teaching instructions; group
similar points into clusters

I example: find products similar to a given one

I semi-supervised learning: halfway between supervised and
unsupervised learning

I example: learn to classify handwritten digits based on a few
labeled and a large set of unlabeled examples

spamham (1200x287x16M jpeg)
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I training data: Dtrain = {(xxx i , yi ) | i = 1, . . . ,N}, xxx i ∈ X ,
yi ∈ Y

I X is the input space, xxx i ’s are vectors

I Y is the label set, yi ’s are scalars

I goal: find f̂ : X → Y to approximate f given by Dtrain

I if |Y | = 2 ⇒ binary classification
I if |Y | > 2 ⇒ multi-class classification
I if f : X → Y ⇒ single-label classification
I if f : X → 2Y ⇒ multi-label classification
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Kernel methods
I James Mercer (1909): any continuous symmetric, positive

semi-definite kernel function can be expressed as a dot
product in a high-dimensional space

I M. Aizerman, E. Braverman, and L. Rozonoer – 1964

I Boser, Guyon, and Vapnik – 1992 (Support Vector Machine)

I linear algorithm → non-linear algorithm

I φ: feature mapping

I kernels: k(xxx ,zzz) = 〈φ(xxx), φ(zzz)〉, φ : X → H, X ⊆ Rn i.e.
cosine of the angle enclosed by the vectors in a
high-dimensional space

I covers all geometric constructions that can be formulated in
terms of angles, lengths and distances

I any positive definite kernel is a dot product in another space;
any mapping φ to a dot product space defines a positive
definite kernel by 〈φ(xxx), φ(zzz)〉
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FEJEZET 6. KERNEL MÓDSZEREK 132
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6.1. ábra. Az XOR feladat – bal oldali ábra – és a nemlineáris vetítés, mely szeparál-
hatóvá teszi az adatokat – jobbra

tól a legtávolabb van. Ez összekapcsolható a 2.4. fejezetben említett regularizáció
módszerével, ugyanis ez a hipersík a legstabilabb a lehetséges hipersíkok közül. A
módszer kernelesített alkalmazásáig sok évnek kellett eltelnie: a paradigma a modern
számítógépek kapacitásának nagymértékű bővülésével lett népszerű.

19. példa. []„Mi újat hoz egy lineáris módszer kernelesítése?”
A kérdésre az XOR feladattal válaszolunk a 4.4 részből. A feladat a 6.1.a ábrán
látható négy pont két osztályba való sorolása, ahol a osztályok kódjai az XOR függvény
kimenetei. A pontjaink

X =

{
(0, 0), (0, 1), (1, 0), (1, 1)

}

és hozzájuk a {−1, 1, 1,−1} címkék tartoznak, ebben a sorrendben. Korábban beláttuk,
hogy az adatok lineárisan nem szétválaszthatók – a 6.1.a ábra pontjait nem tudjuk ket-
téosztani úgy, hogy a két kör egy félsík egyik felén, a két „X” a félsík másik felén legyen.
A megoldáshoz az adatokat vetítjük a következő függvény szerint:

φ(xxx) =
[
x21, x

2
2,
√
2x1x2

]T
(6.1)

a háromdimenziós euklidészi térbe, ahol xk az xxx vektor k-adik komponensét jelöli. A

kutató, majd 2002-től a NEC Princeton-i kutatócsoportjában csatlakozik a „Machine
Learning” csoporthoz. 1995 óta a londoni Royal Holloway egyetem, 2003 óta pedig
a New York-i Columbia egyetem professzora.
Kutatási eredményei közül fontosak a „szupport vektor gépek” és az ezt megalapozó
Vapnik-Chervonenkis elmélet. Wikipedia Vapnik-ról
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I we want to solve the XOR-problem (shown above) by a linear
separator; data: (0, 0), (1, 1), (1, 0), (0, 1)

I easy to observe: this cannot be done in the initial space

I lets use the following mapping: φ(xxx) =
[
x2

1 x2
2

√
2x1x2

]′

I then the dot product:
φ(xxx)′φ(zzz) = x2

1 z2
1 + 2x1z1x2z2 + x2

2 z2
2 = (xxx ′zzz)2 = k(xxx ,zzz)

I it is called the second order homogeneous polynomial kernel
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Hilbert spaces

I we work in/with Hilbert spaces

I what is a Hilbert space?

Def. Inner product

An inner product on a complex linear space X is a map

〈·, ·〉 : X × X → C

s.t. ∀xxx ,yyy ,zzz ∈ X and λ, µ ∈ C:

(a) 〈xxx , λyyy + µzzz〉 = λ〈xxx ,yyy〉+ µ〈xxx ,zzz〉 (linear in the 2nd argument)

(b) 〈yyy ,xxx〉 = 〈xxx ,yyy〉 (Hermitian symmetric)

(c) 〈xxx ,xxx〉 ≥ 0 (non-negative)

(d) 〈xxx ,xxx〉 = 0 iff xxx = 000 (positive definite)
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Def. Inner product space, pre-Hilbert space

A linear space with an inner product is called an inner product
space or pre-Hilbert space.

Def. Hilbert space

A Hilbert space is an inner product space that is also a complete
metric space with respect to the distance function induced by the
inner product.

Norm is defined as
‖xxx‖ =

√
〈xxx ,xxx〉

Distance is defined as

d(xxx ,yyy) = ‖xxx − yyy‖ =
√
〈xxx − yyy ,xxx − yyy〉

Example

Euclidean space: 〈xxx ,zzz〉 =
∑d

i=1 xizi , ‖xxx‖2 =
√∑d

i=1 x2
i

9/33



Kernel Methods and
Semi-Supervised

Learning

Zalán Bodó
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General-purpose kernels

I linear (dot product):

k(xxx ,zzz) = xxx ′zzz

I polynomial:
k(xxx ,zzz) = (axxx ′zzz + b)c

I RBF (Gaussian):

k(xxx ,zzz) = exp

(
−‖xxx − zzz‖2

2

2σ2

)
= exp

(
−γ‖xxx − zzz‖2

2

)

10/33



Kernel Methods and
Semi-Supervised

Learning

Zalán Bodó
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General-purpose kernels
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Kernel trick
Given an algorithm which is formulated in terms of a positive
definite kernel k, one can construct an alternative algorithm by
replacing k by another positive definite kernel k̃ .
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Distances ↔ kernels

1. kernel → (squared) distance:

DDD(2) = diag(KKK )111NN + 111NNdiag(KKK )− 2KKK

2. distance → kernel:

−1

2
JJJDDD(2)JJJ = −1

2
JJJdiag(KKK )111NNJJJ − 1

2
JJJ111NNdiag(KKK )′JJJ + JJJKKKJJJ

= JJJKKKJJJ

where JJJ = III − 1
N111111′ = III − 1

N111NN is the centering matrix
(since 111NNJJJ = 000)

Effect of double centering: 0 mean (rows & columns)
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Centroid method

Outline:

I learn: calculate the class centroids

I classify: label an unseen example as belonging to the class
with closest centroid

+ 
+ 

+ 
+ 

+ 
+ 
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Binary classification:

m+ = |{xxx i |yi = +1}|,m− = |{xxx i |yi = −1}|

centers:

ccc+ =
1

m+

∑

{i|yi=+1}

xxx i

ccc− =
1

m−

∑

{i|yi=−1}

xxx i

Let www := ccc+ − ccc− and ccc := (ccc+ + ccc−)/2; label will be determined
by www ′(xxx − ccc)

y = sgn ((xxx − ccc)′www)

= sgn
(
ccc ′+xxx − ccc ′−xxx + b

)
,

where b :=
(
‖ccc−‖2 − ‖ccc+‖2

)
/2
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Substituting the corresponding expressions for ccc+ and ccc− we
obtain

y = sgn


 1

m+

∑

{i|yi=+1}

xxx ′xxx i −
1

m−

∑

{i|yi=−1}

xxx ′xxx i + b




= sgn


 1

m+

∑

{i|yi=+1}

k(xxx ,xxx i )−
1

m−

∑

{i|yi=−1}

k(xxx ,xxx i ) + b


 ,

where

b :=
1

2


 1

m2
−

∑

{(i,j)|yi=yj=−1}

k(xxx i ,xxx j)−
1

m2
+

∑

{(i,j)|yi=yj=+1}

k(xxx i ,xxx j)




and k(·, ·) is an arbitrary kernel function.
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For multi-class classification:

ccc i =
1

|Ci |
∑

xxx j∈Ci

xxx i

The Euclidean distance can be written in terms of the dot product:

‖xxx − zzz‖2 = xxx ′xxx − 2xxx ′zzz + zzz ′zzz = k(xxx ,xxx)− 2k(xxx ,zzz) + k(zzz ,zzz)

Since distances from the centroids are to be considered, we can
calculate:

‖xxx − ccc i‖2 = ‖xxx − 1

|Ci |
∑

xxx j∈Ci

xxx i‖2

= xxx ′xxx − 2

|Ci |
∑

xxx j∈Ci

xxx ′xxx j +
1

|Ci |2
∑

xxx j∈Ci ,xxxk∈Ci

xxx ′jxxxk

= k(xxx ,xxx)− 2

|Ci |
∑

xxx j∈Ci

k(xxx ,xxx j) +
1

|Ci |2
∑

xxx j∈Ci ,xxxk∈Ci

k(xxx j ,xxxk)
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k-Nearest Neighbors

Outline:

I seemingly no separate learning phase

I classify: find the k nearest neighbors of the example in
question and label with the majority class
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I assign the label which is in majority among the k-nearest
neighbors

f (xxx) = argmax
c=1,2,...,K

∑

zzz∈Nk (xxx),xxx∈Dtrain

sim(zzz ,xxx) · δ(c , f (zzz))

(we use sim(zzz ,xxx) = 1,∀zzz ,xxx)

δ(a, b) =

{
1, a = b
0, otherwise

(Kronecker delta)

I to determine Nk(xxx) the Euclidean distance is used

I as before, we can rewrite the Euclidean distance using dot
products:

‖xxx − zzz‖2 = xxx ′xxx − 2xxx ′zzz + zzz ′zzz = k(xxx ,xxx)− 2k(xxx ,zzz) + k(zzz ,zzz)

18/33



Kernel Methods and
Semi-Supervised

Learning

Zalán Bodó
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k-Means

Outline:

I clustering method; no supervised information is given

I goal: cluster data into K sets, such that similar points are
grouped in the same set

I determine K cluster centers
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I objective function:

F =
K∑

i=1

N∑

j=1

Uijd(xxx j ,ccc i )

where
I ccc i , i = 1, . . . ,K are the cluster centers
I UUU is the membership matrix of size K × N (K clusters, N

points)
I Uij ∈ {0, 1}; Uij = 1 if xxx j belongs to Ci (i-th cluster);

otherwise 0
I d(·, ·) is a distance, usually the squared Euclidean:

d(xxx ,zzz) = ‖xxx − zzz‖2

I F is minimized if the points are assigned to the closest cluster
center, provided they are fixed:

Uij =

{
1, if ‖xxx j − ccc i‖2 ≤ ‖xxx j − ccck‖2,∀k 6= i
0, otherwise

I on the other side, if UUU is fixed, F is minimized by taking the
centers of the groups:

ccc i =
1

∑N
j=1 Uij

N∑

k=1

Uikxxxk
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k-Means

1. Initialize the centers.

2. Determine UUU.

3. Compute cost function F .

4. If converged, then STOP.
Else update centers using the new UUU; GOTO step 2.

21/33



Kernel Methods and
Semi-Supervised

Learning

Zalán Bodó
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Kernel k-means

I k-means (and fuzzy c-means) are limited to (properly) find
pairwise linearly separable clusters

I to obtain non-linear cluster boundaries we use kernels

I the only expression one needs to rewrite for the kernel-based
variant of the algorithm is the distance of a point to a center:

‖φ(xxx)− 1

sj

N∑

k=1

Ujkφ(xxxk)‖2

= k(xxx ,xxx) +
1

s2
j

N∑

k,`=1

UjkUjlk(xxxk ,xxx`)−
2

sj

N∑

k=1

Ujkk(xxxk ,xxx)

where sj is the size of the j-th cluster
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Kernel k-means

1. Generate a random UUU which satisfies the conditions, that is
make a random assignments of the points.

2. Compute the cost function F .

3. If converged then STOP.
Else update UUU using the update formula used in k-means;
GOTO step 2.
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Semi-supervised learning (SSL)
I supervised learning:

D = {(xxx i , yi ) |xxx i ∈ X ⊆ Rd , yi ∈ {−1,+1}, i = 1, . . . , `};
find f : X → {−1,+1} which agrees with D

I semi-supervised learning:
D = {(xxx i , yi ) | i = 1, . . . , `} ∪ {xxx j | j = `+ 1, . . . , `+ u},
`� u, N = `+ u;

I inductive: find f : X → {−1,+1} which agrees with D +
use the information of DU

I transductive: find f : DU → {−1,+1} by using D = DL ∪DU
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Assumptions in SSL

I smoothness assumption: If two points xxx i and xxx j in a high
density region are close, then so should be the corresponding
outputs yi and yj .

I cluster assumption: If two points are in the same cluster,
they are likely to be of the same class.

I manifold assumption: The high dimensional data lie roughly
on a low dimensional manifold. – regarding dimensionality;
but if manifold = approximation of the high-dimensional
region ⇒ smoothness assumption
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Simple semi-supervised methods

Simple self-training
Until convergence:

1. Train classifier with the labeled data.

2. Classify unlabeled data with the trained classifier.

3. Add the most confident unlabeled points to the training data.

4. GOTO step 1.

Committee-based learning
Until convergence:

1. Train separate classifiers on the same labeled data.

2. Make predictions on the unlabeled data.

3. Add the most agreed points to the training set.

4. GOTO step 1.

Final prediction: weighted majority vote among all the learners.
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Graph-based distances

I if data lie on a manifold, graph-based distances are better

I graph-based distances = shortest path distances calculated
using a known algorithm: Floyd–Warshall, Dijkstra, etc.

�

�
�

�

�

�

�
�

�

�

�
�

�

Floyd–Warshall algorithm

1. Dij = weight of the edge; if no edge then ∞
2. for k=1:N

for i=1:N
for j=1:N

if Dij > Dik + Dkj

Dij = Dik + Dkj
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Manifold learning

here: semi-supervised = graph-based

1. Initial distance matrix = sparsified (kNN/εNN) distance
matrix

2. Compute the all-pair shortest path distance matrix—using for
example the Floyd–Warshall algorithm:

Dij = shortest path value among all paths from i to j

3. Perform supervised learning using these graph distances.
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Cluster kernels

Neighborhood kernel

I representing each as the average of its neighbors →
neighborhood structure influences representation:

φnbd(xxx) =
1

|N(xxx)|
∑

xxx′∈N(xxx)

φb(xxx)

I the kernel:

knbd(xxx ,zzz) =

∑
xxx′∈N(xxx),zzz′∈N(zzz) kb(xxx ′,zzz ′)

|N(xxx)||N(zzz)|

It is pd. because of its definition (φnbd(xxx)).
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Bagged cluster kernel
I idea: reweighting the base kernel values by the probability

that the points belong to the same cluster
I use k-means clustering: random initial cluster centers →

affects the output of the algorithm

BCK

1. Run k-means t times, which results in cj(xxx i ) cluster
assignments, j = 1, . . . , t, i = 1, . . . ,N, c·(·) ∈ {1, . . . ,K}.

2. Construct the bagged kernel in the following way:

kbag(xxx ,zzz) =

∑t
j=1[cj(xxx) = cj(zzz)]

t

The final kernel:

k(xxx ,zzz) = kb(xxx ,zzz) · kbag(xxx ,zzz)

It is pd. because we can think of it as a feature mapping to the
t · K -dimensional space,

φbag(xxx) =
1√
t
〈[cj(xxx) = q] | j = 1, . . . , t, q ∈ {1, 2, . . . ,K}〉
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2moons
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