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. Kernel Methods and
The aims of the short course e

Learning

o Zalan Bodé
> to get an overview of kernel methods e et

The aims of the short

> to get an overview of semi-supervised classification ERp

» kernel methods: change the kernel = obtain a new
algorithm

» semi-supervised learning: use a large unlabeled dataset

» semi-supervised kernels: use a supervised algorithm with a
semi-supervised kernel to obtain a semi-supervised learning
method

» no need to develop semi-supervised methods

» use a supervised algorithm with a good — and replaceable —
semi-supervised kernel
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Machine learning. Supervised learning

» machine learning (ML): subdomain of Al, modeling the most
important brain activities: classification, differentiation,
prediction

» supervised learning: examples with teaching instructions

> example: learn to differentiate between relevant and spam
emails

» unsupervised learning: no teaching instructions; group
similar points into clusters

> example: find products similar to a given one

» semi-supervised learning: halfway between supervised and
unsupervised learning
> example: learn to classify handwritten digits based on a few
labeled and a large set of unlabeled examples
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training data: Dipain = {(xi,yi) | i =1,..., N}, x; € X,

vieyY

X is the input space, x;'s are vectors

Y is the label set, y;'s are scalars

goal: find F:X>Yto approximate f given by D;ain

>

>
>
>

if |Y| =2 = binary classification

if |Y| > 2 = multi-class classification

if f: X — Y = single-label classification
if f: X — 2 = multi-label classification
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Kernel Methods and

Kernel methods Semi Supenacd

Learning

o o . Zalan Bodé
» James Mercer (1909): any continuous symmetric, positive e et

semi-definite kernel function can be expressed as a dot
product in a high-dimensional space

M. Aizerman, E. Braverman, and L. Rozonoer — 1964
Boser, Guyon, and Vapnik — 1992 (Support Vector Machine)

linear algorithm — non-linear algorithm

Kernel methods

¢: feature mapping

kernels: k(x,z) = (¢(x),d(2)), ¢ : X = H, X CR" ie.
cosine of the angle enclosed by the vectors in a
high-dimensional space

vV V. v v Yy

> covers all geometric constructions that can be formulated in
terms of angles, lengths and distances
> any positive definite kernel is a dot product in another space;

any mapping ¢ to a dot product space defines a positive
definite kernel by (¢(x), ¢(z2))
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we want to solve the XOR-problem (shown above) by a linear
separator; data: (0,0),(1,1), (1,0),(0,1)

easy to observe: this cannot be done in the initial space

lets use the following mapping: ¢(x) = [x? x2 ﬁxle]/
then the dot product:

d(x)'P(z) = X222 + 2x1 21020 + X525 = (X'2)? = k(x,2)

it is called the second order homogeneous polynomial kernel

Kernel Methods and
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Zalan Bodd
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Hilbert spaces

» we work in/with Hilbert spaces

» what is a Hilbert space?

Def. Inner product

An inner product on a complex linear space X is a map
() XxX=C

s.t. Vx,y,z€ X and A\, u € C:
(a)
(b) {y,x) = (x,y) (Hermitian symmetric)
(c) {(x,x) >0 (non-negative)

(d) (x,x) =0 iff x =0 (positive definite)

(x, Ay + pz) = Mx,y) + 1(x,z) (linear in the 2nd argument)
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Def. Inner product space, pre-Hilbert space

A linear space with an inner product is called an inner product

space or pre-Hilbert space.
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Def. Hilbert space

A Hilbert space is an inner product space that is also a complete
metric space with respect to the distance function induced by the

inner product.

Hilbert spaces
Kernels

Centroid method
kNN

k-Means

Norm is defined as

X[l = v/ {x, x)
Distance is defined as
dix,y) = llx —yll = vix—y,x—y)
Example
Euclidean space: (x,z) = >0, xizi, ||x[2 = /30, x?
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General-purpose kernels

» linear (dot product):
k(x,z) =x'z

» polynomial:
k(x,z) = (ax'z + b)°
» RBF (Gaussian):

2

X—z
k(x,z) = exp <”202”2> = exp (*WHX o ZH%)
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» linear (dot product):
Hilbert spaces
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k(x, z) =x'z (’;‘r’w\:rmd method

k-Means
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k(x,z) = (ax'z + b)° Assumptions in S

Simple
semi-supervised
methods

Graph-based distances
Manifold learning
Cluster kernels

10/33



Kernel Methods and
Semi-Supervised

Learning
General-purpose kernels Zaldn Bodé
» linear (dot product):
Kernels

k(x,z) = x'z
» polynomial:
k(x,z) = (ax’z + b)°
» RBF (Gaussian):
2

X—2z
k(X,Z) = exp (”20_2”2> = exp (*FYHX 72”%)
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Kernel trick et
Centroid method

Given an algorithm which is formulated in terms of a positive o

definite kernel k, one can construct an alternative algorithm by

replacing k by another positive definite kernel k. R
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Distances < kernels

1. kernel — (squared) distance:
D® = diag(K)1yy + 1yndiag(K) — 2K
2. distance — kernel:
—%JD@)J = —%Jdiag(K)lNNJ - %JINNdiag(K)’J +JKJ
= JKJ

where J = | — £11' = | — $1uy is the centering matrix
(since 1ynJ =0)

Effect of double centering: 0 mean (rows & columns)
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Kernel Methods and
Semi-Supervised
Learning

Centroid method Zalan Bods
Outline:
» learn: calculate the class centroids

> classify: label an unseen example as belonging to the class
with closest centroid

Centroid method

+Cr ; -
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Binary classification:
my = [{xilyi = +1}, m- = [{xily; = -1}

centers:
1
Ct=— E Xj

M fiy=)
1
= X
{ilyi=—1}
Let w :=c; —c_ and ¢ := (¢} + ¢_)/2; label will be determined

by w/(x — ¢c)

y = sgn((x—c)w)
= sgn(c/x—c x+b),

where b := (||C_H2 = HC+||2) /2
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Substituting the corresponding expressions for ¢, and c_ we
obtain

y = sen|— Y xx,—— > Xxi+b
* {ily=t1} {ilyi=—1}
= k(% x;) — — k(x,x;) + b
= sgn (x,x;) — p— Z (x,x;)+b |,
T {ily=+1} {ilyi=—1}
where
1 1 1
b:== — Z k(X,‘,Xj)—F Z k(X,’,X_,’)
= A{GD)ly=y=-1) T {D)ly=y=11}
and k(-,-) is an arbitrary kernel function.
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. oo o Kernel Methods and
For multi-class classification: St Spern ez

Learning

1 Z Zalan Bodd
Xj
G
XjEC,'

The Euclidean distance can be written in terms of the dot product:

x — z||? = x'x — 2x'z + 2’z = k(x,x) — 2k(x,z) + k(z, 2)

Centroid method

Since distances from the centroids are to be considered, we can
calculate:

e — el = m > il
x;€C
1 /
! XjGC,',XkGC,'
2 1
= k(x,x)— m Z k(x,x;) + |C\2 Z k(xj,xk)
" xjeG x;€Cixk€Ci
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Kernel Methods and
Semi-Supervised
Learning

k-Nearest Neighbors Zalin Bodo

QOutline:
» seemingly no separate learning phase

» classify: find the k nearest neighbors of the example in
question and label with the majority class Hilbert spaces
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assign the label which is in majority among the k-nearest
neighbors

f(x) = argmax Z sim(z,x) - 6(c, f(2))

=12 K 2 e Ny (%) XE D
(we use sim(z,x) = 1,Vz,x)

1, a=b
e, ) = { 0, otherwise

(Kronecker delta)
to determine Nj(x) the Euclidean distance is used

as before, we can rewrite the Euclidean distance using dot
products:

x — z||? = x'x — 2x'z + 2’z = k(x,x) — 2k(x, z) + k(z, 2)
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k-Means
Outline:
» clustering method; no supervised information is given

» goal: cluster data into K sets, such that similar points are
grouped in the same set

» determine K cluster centers

10 & 88 880
&8 N
&s ?gx‘

o
x 8
ToR  oiie &

; o% L g‘:&

-10| % o o

-1

Kernel Methods and
Semi-Supervised
Learning

Zalan Bodd

k-Means

19/33



» objective function:

K N
F=>Y Ujd(xec

i=1 j=1

where

» cj,i =1,...,K are the cluster centers

» U is the membership matrix of size K x N (K clusters, N

points)

» U; € {0,1}; Uj =1 if x; belongs to C; (i-th cluster);

otherwise 0

> d(-,-) is a distance, usually the squared Euclidean:

d(x,z) = |[x — z||?

» F is minimized if the points are assigned to the closest cluster

center, provided they are fixed:

otherwise

1, if [Ix; — €ill® < [Ix; — ckl?, Vk # i
Ui=1 ¢

» on the other side, if U is fixed, F is minimized by taking the

centers of the groups:

Ci =

Zjl

0 Z UikXk

i k=1
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Kernel Methods and
k-Means Semi-Supervised

Learning
Initialize the centers. S
Determine U.
Compute cost function F.

If converged, then STOP.
Else update centers using the new U; GOTO step 2.

> @ N =

k-Means
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Kernel k-means

» k-means (and fuzzy c-means) are limited to (properly) find
pairwise linearly separable clusters

» to obtain non-linear cluster boundaries we use kernels

> the only expression one needs to rewrite for the kernel-based

variant of the algorithm is the distance of a point to a center:

[¢(x **ZUJW) xi)|1?
% =
1 N
= k(x 5 > UnUpk(xie, x¢) — *ZUJkk (X5 x)
J k=1 % =1

where s; is the size of the j-th cluster

Kernel Methods and
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Zalan Bodd

k-Means
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Kernel k-means

1.

Generate a random U which satisfies the conditions, that is
make a random assignments of the points.

2. Compute the cost function F.
3. If converged then STOP.

Else update U using the update formula used in k-means;
GOTO step 2.

Kernel Methods and
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Learning

Zalan Bodd

k-Means
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o o o Kernel Methods and
Semi-supervised learning (SSL) Somi-Supenoed

Learning

» supervised learning: fatin Bodo
D= {(Xl'a.yi) |X,‘ eEXC IRdvyi € {_17+1}7I =aoe 7£};
find f : X — {—1,+1} which agrees with D

Hilbert spaces
Kernels

Centroid method
kNN

k-Means

Semi-supervised

learning
Assumptions in SSL
Simple
semi-supervised
methods
4 4 Graph-based distances
Manifold learning
2 -] 2 Cluster kernels
0 [} 0
2 -2
—4 -4
6 -6,
0 5 10 0 5 10
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o o o Kernel Methods and
Semi-supervised learning (SSL) SeneSupec

. - Zaldn Bodé
» supervised learning:

D= {(Xi,}/i) |X,‘ eEXC Rdd’i S {_17+1}7I: Igooc 7£};
find £ : X — {—1, 41} which agrees with D

» semi-supervised learning:

D = {(X,’,y,') | i=1,... ,E} @] {Xj |j =0+1,...,0+ u}, T\;\Dir‘t:pr,vc‘;
é << U, N = K + U; (:'Vr”l';:\d method
kNN
» inductive: find f : X — {—1,+1} which agrees with D + -Means
use the information of Dy iz::;:zpefvised
» transductive: find f : Dy — {—1,+1} by using D = D, U Dy Assumptions in SSI
iﬂ;ﬁv»» ised
4 4 o S Graph
: Manifc
2 a 2 Cluste
0 o 0
2 -2
A
4| -4
6 -6
0 5 10 0 5 10
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Assumptions in SSL

» smoothness assumption: If two points x; and x; in a high
density region are close, then so should be the corresponding
outputs y; and y;.

10
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Assumptions in SSL

» smoothness assumption: If two points x; and x; in a high
density region are close, then so should be the corresponding
outputs y; and y;.

» cluster assumption: If two points are in the same cluster,
they are likely to be of the same class.

10
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Kernel Methods and
Semi-Supervised
Learning

Assumptions in SSL Zaln Bodd

» smoothness assumption: If two points x; and x; in a high
density region are close, then so should be the corresponding
outputs y; and y;.

» cluster assumption: If two points are in the same cluster,
they are likely to be of the same class.

» manifold assumption: The high dimensional data lie roughly
on a low dimensional manifold. — regarding dimensionality;
but if manifold = approximation of the high-dimensional At i SEL
region = smoothness assumption

25/33



Kernel Methods and
Semi-Supervised
Learning

Simple semi-supervised methods Zaldn Bodé
Simple self-training
Until convergence:
1. Train classifier with the labeled data.
2. Classify unlabeled data with the trained classifier.
3. Add the most confident unlabeled points to the training data.
4. GOTO step 1.
Committee-based learning

Until convergence: Simple

semi-supervised
methods

1. Train separate classifiers on the same labeled data.
2. Make predictions on the unlabeled data.
3. Add the most agreed points to the training set.
4. GOTO step 1.
Final prediction: weighted majority vote among all the learners.
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Kernel Methods and
Semi-Supervised
Learning

Graph-based distances Zaldn Bodé

» if data lie on a manifold, graph-based distances are better

» graph-based distances = shortest path distances calculated
using a known algorithm: Floyd—Warshall, Dijkstra, etc.

Floyd—Warshall algorithm Graph-based distances

1. Djj = weight of the edge; if no edge then oo

2. for k=1:N
for i=1:N
for j=1:N
if D,‘j > Dy + ij
Djj = Dix + Dy
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Kernel Methods and
Semi-Supervised
Learning

Manifold learning Zalin Bodo
here: semi-supervised = graph-based

1. Initial distance matrix = sparsified (kNN/eNN) distance
matrix

2. Compute the all-pair shortest path distance matrix—using for
example the Floyd—Warshall algorithm:

Dj; = shortest path value among all paths from i to j

3. Perform supervised learning using these graph distances.

Manifold learning
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Kernel Methods and
Semi-Supervised
Learning

Cluster kernels Zalén Bodé

Neighborhood kernel

> representing each as the average of its neighbors —
neighborhood structure influences representation:

Buba(x) = el Z bu(x
x'€N(x)
» the kernel:
koba(x,2) = D oxreN).zen(z) ko(x',Z')

[N(x )IIN( )l

It is pd. because of its definition (¢npa(x)).

Cluster kernels

29/33



Bagged cluster kernel

» idea: reweighting the base kernel values by the probability
that the points belong to the same cluster

» use k-means clustering: random initial cluster centers —
affects the output of the algorithm
BCK
1. Run k-means t times, which results in ¢j(x;) cluster
assignments, j=1,...,t,i=1,...,N, c(:) e {1,...,K}.
2. Construct the bagged kernel in the following way:

Y ale(x) = 6(2)]

t

kbag(X,2) =
The final kernel:
k(x,z) = kp(x,2) - kbag(x,2)

It is pd. because we can think of it as a feature mapping to the
t - K-dimensional space,

¢bag(x>=%<[cj(x)=q1 =1 tige{l2...,K})
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Datasets
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