
Virginia Niculescu, Darius Bufnea, Adrian Sterca
Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Romania

25TH INTERNATIONAL WORKSHOP ON HIGH-LEVEL PARALLEL

PROGRAMMING MODELS AND SUPPORTIVE ENVIRONMENTS

HIPS

2020

http://www.cs.ubbcluj.ro/en

Enhancing Java Streams API with PowerList Computation

◦ JPLF framework

◦ Motivation and Goals

◦ Java Streams

◦ Powerlist and PList Theories

◦ Adapting Java Streams for PowerList functions

◦ Polynomial value computation

◦ Conclusions

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 JPLF
[V. Niculescu, F. Loulergue, D. Bufnea, and A. Sterca. “A Java Framework for High Level Parallel

Programming using Powerlists,” in Parallel and Distributed Computing, Applications and Technologies

(PDCAT). IEEE, Taipei, Taiwan. 2017, pp. 255-262.]

◦ Java framework for parallel programming

 including High Performance Computing

◦ start from a formal base -- PowerList theory – in order to assure correctness

◦ allow efficient executions on both shared memory and distributed memory systems

HIPS 2020

Java Parallel List Framework

PowerList PList

PowerArray PArray

3

divide-and-conquer

skeleton

Enhancing Java Streams API with PowerList Computation

 Goals

◦ The purpose of this work is to investigate if the computations defined

based on PowerList and PList theories could be specified using the

Java Streams infrastructure, and to which extent.

 Java Stream API is very popular nowadays, and so if some powerful

parallel programming skeletons could be adopted to be executed inside

this API, then they will be easily popularized while the expressiveness

of the Java Stream API increases.

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 A Java stream is a sequence of objects.

 Usually it has a data source and a destination where they are transmitted.

 A stream is not a repository, but it operates on a data source such as an array or a

collection.

 More formally, we may consider the streams as being monads, which is a structure

that represents computations defined as sequences of steps.

 In Java Stream API there are many already implemented operations that could be

sent to a stream, the most common being map, filter, reduce, collect.

 Parallel computation is possible for parallel streams.

HIPS 2020

Enhancing Java Streams API with PowerList Computation

Powerlist Theory was introduced by J. Misra in 1994.

 PowerLists are homonogeously typed sequences of elements.

 The size of a PowerList is a power of two.

 A singleton is a PowerList containing a single element - notation [v]

 Two PowerLists of the same size and same type for elements are similar.

 Two constructors exist to combine two similar PowerLists:

◦ (|) the operator tie yields a PowerList containing the elements of p followed by elements

of q;

◦ (#) the operator zip returns a PowerList containing alternatively the elements of p and q.

 The functions on Powerlists are recursive functions defined based on a structural induction.

◦ the base case considers the singleton list

◦ the recursive case may use either (|) or (#) for decomposing/composing

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 Map - applies a scalar function fs to each element of a PowerList

 Reduce – for an associative operator

 Fast Fourier Transform

where

 Fp= fft (p), Fq= fft (q), u = powers(p),

 +, - are the correspondent associative binary operators extended to PowerLists.

 powers(p) is the PowerList [w0,w1, ...,w|p-1|]

 where |p| denotes the size of p and w denotes the 2nd principal root of 1.

 HIPS 2020

Enhancing Java Streams API with PowerList Computation

 The PList extension of PowerLists (Kornerup,1997) lifts the restriction of the length

being a power of 2.

 PLists are also defined based on tie and zip operators.

 For PLists, both tie and zip are generalized to take as arguments an arbitrary number

of similar PLists.

 The map function on PLists can then be defined as:

where n::l denotes the list with head element n, and with tail l (a list) and is the

generalized tie applied on n lists pi

 HIPS 2020

Enhancing Java Streams API with PowerList Computation

express Divide-and Conquer computation

1) Descending/splitting phase that considers the operations needed to

split the list arguments, and additional operations, if they exist.

2) Leaf phase that considers the operations executed on singletons.

3) Ascending/combining phase that considers the operations needed to

combine the list arguments, and additional operations, if they exist.

HIPS 2020

Enhancing Java Streams API with PowerList Computation

1. splitting ≣ data decomposition

The class of functions for which the splitting phase needs only data decomposition.

Examples: map, reduce, fft

 much easier to implement!

2. splitting ≇ data decomposition

The class of functions for which the splitting phase needs also additional computation

besides the data decomposition.

Example: f (p|q) = f (p+q) | f(p-q)

or

“polynomial value function”

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 The functions from the second class involve some additional computations on the

sublists obtained at each step.

 Example: computing the value of a polynomial in a given point:

where means that every element of the list p is multiplied with x

(it could be considered a map function)

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 use Spliterator for the splitting phase

 use collect function for leaf and combining phases

HIPS 2020

Enhancing Java Streams API with PowerList Computation

collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R> combiner)

 performs a mutable reduction operation on the elements of the calling stream

 mutable reduction => the reduced value is a mutable result container, and elements are
incorporated by updating the state of the result rather than by replacing the result.

◦ supplier:

 a function that creates a new mutable result container;

 in a parallel execution, this function may be called multiple times and must return a
fresh value each time.

◦ accumulator:

 fold an element into a result container.

◦ combiner:

 accepts two partial result containers and merges them,

 fold the elements from the second result container into the first result container

HIPS 2020

Enhancing Java Streams API with PowerList Computation
HIPS 2020

• the words in a given

list are concatenated,

including a comma

between each pair of

two words

• combiner function is specific to the parallel execution of the collect

method:

• if the stream hadn’t been parallel, the combiner would not be used

and so

• the comma wouldn’t be added

Enhancing Java Streams API with PowerList Computation

 The function collect has also a definition that receives as an argument a Collector.

 Collector is an interface that provides a wrapper for the supplier, accumulator, and

combiner objects.

Collector<T,A,R>

where the type parameters have the following significance:

◦ T - the type of input elements;

◦ A - the mutable accumulation type;

◦ R - the result type.

 This variant is more convenient to be used for PowerList functions, because a

specific function – APowerFunction, could implements the Collector interface, and

then for its execution we just need to invoke the collect function with an argument,

which is an instance of that class.

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 The parallel computation of the parallel streams is directed by the existence of a

special type of iterator – Spliterator – and by the usage of the ForkJoinPool

executor.

 ForkJoinPool executor is specialized in the computation of the recursive tasks, and

so it is appropriate for the divide-and-conquer computational model.

 The Spliterator interface defines several methods, such that

◦ trySplit operation that partitions off some of its elements as another Spliterator

◦ by default, the partitioning is performed linearly, in “segments”, which is

somehow similar to the operator tie from PowerLists.

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 In order to control the partitioning, new implementations for the Spliterator

interface are provided

◦ TieSpliterator and

◦ ZipSpliterator

◦ trySplit

defined correspondingly

HIPS 2020

Enhancing Java Streams API with PowerList Computation

=> we need to provide operations for the tie and zip
constructor operators

 This could be achieved by defining a class PowerList
that extends any RandomAccess collection
(e.g. ArrayList)

 the class provides the methods:

◦ tieAll

◦ zipAll

 zip operation:

◦ when executing the collect function, the stream is
decomposed using ZipSpliterator instance, and then
recomposed based on the function zipAll of the class
PowerList.

 tie operation: similar

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 this works very easy for the functions that belongs to the first class,

ZipSpliterator or TieSpliterator can be used

But

for the functions belonging to the second class, additional adjustments needed:

define new specialization of the Spliterator

connect the splitting phase with the other phases

HIPS 2020

• Define a class that implements Collector -> ACollector

• Provide definition for the three methods: supplier, accumulator, combiner

• Create the needed specialized Spliterator -> aSpliterator

• Define the stream based on this aSpliterator

• Call the collect method using an instance of the ACollector

Enhancing Java Streams API with PowerList Computation

class PolynomialValue implements

Collector< Double, PolynomialValue,
 PolynomialValue>

{

 private double x; // the given point

 private double val = 0; // the result

 private int x_degree = 1;

// contructors

@Override

public Supplier<PolynomialValue> supplier
() {

 return () -> {

 return new PolynomialValue(this);

 };

}

@Override

public

BiConsumer<PolynomialValue, Double> accumulator()

{

return (pv1, d) -> {

pv1.val =

 pv1.val*Math.pow(pv1.x,pv1.x_degree) + d;

 };

}

@Override

public

BinaryOperator<PolynomialValue> combiner () {

 return (pv1, pv2) -> {

 pv1.x_degree/=2;

 pv1.val = pv1.val*

 Math.pow(this.x, pv1.x_degree)

 +pv2.val;

 return pv1;

 };

}

HIPS 2020

Example: computing the value of a polynomial in a point

very simple parallel PowerList definition, but

involves some operations at the splitting phase

Enhancing Java Streams API with PowerList Computation
HIPS 2020

• This could be solved by defining a

specialisation of ZipSpliterator,

defined as an inner class inside the

class PolynomialValue.

• In this way, all the instances of the

inner class will have access to he

instance of the outer class –

PolynomialValue.this.

Enhancing Java Streams API with PowerList Computation

 The supplier provides a new instance of PolynomialValue,

◦ but it should be one created as a copy of the initial PolynomialValue instance,
which also has to be

◦ the one through which the initial spliterator was created.

 The reason for this is the need for

◦ connection between the different phases of the computation

 splitting,

 leaf(basic case),

 combining.

HIPS 2020

Enhancing Java Streams API with PowerList Computation
HIPS 2020

define the

spliterator

verify the power

of 2 length

create the stream

compute the

polynomial value

Enhancing Java Streams API with PowerList Computation

Speedup Time

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 The adaptation of Java Streams uses:

◦ the collect function as a template method for defining the divide-and-conquer

PowerList skeletons.

◦ specializations of the Spliterator

 The PowerList functions are defined as classes implementing the Collector

interface, and so it wraps the three arguments used in the collect function.

 The analysed examples emphasise the fact that for a large majority of PowerList

functions, the definition inside Java Stream API could be done very easy based on

the proposed adaptation.

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 The performance obtained for the parallel execution of these functions proved to be

very good.

 The advantage of Powerlists over general lists is that they provide two different

views over the underlying data, simplifying the design of the algorithms on

Powerlists.

 Extension to PLists (so multiway divide-and-conquer) needs an extension of the

definition of the Spliterator such that trySplit method to be able to return a set of

Spliterators that all together cover all the elements of the source.

HIPS 2020

Enhancing Java Streams API with PowerList Computation

 Contact:

◦ Virginia Niculescu

◦ email: vniculescu@cs.ubbcluj.ro

◦ Faculty of Mathematics and Computer Science,

Babeș-Bolyai University, Romania

◦ 1, M. Kogalniceanu, Cluj-Napoca, Romania

HIPS 2020

mailto:vniculescu@cs.ubbcluj.ro

