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REZUMAT, — Teorln §1 aplieatille subordoniirilor diferen{lale de ordinul dol.
Tn aceastd lucrare se prezintii o sintezii a unor rezultate recente ale autorilor
privind teoria generald a subordonirilor diferenfiale de ordinul doi, precum si
unele aplicalii ale acesteia in teoria geometricd a functiilor analitice.

«~ Tie Qsi A doud submultimi ale planului complex C, fie p o functie anali-
ticd in discul unitate U si fie Y': €* x U— C. Partea centrali a lucririi are ca
scop rezolvarea urmitoarelor trei probleme privind implicatia (4).

Problema 1. Dindu-se Q si A, si se giseascd conditii asupra functiei ¥,
astfel ca (4) sii aibi loc. O astfel de functie se numeste functie admisibild. -

Problema 2. Dindu-se ¥* si Q si se giseascd A astfel ca (4) si aibid loc.

Problema 3. Dindu-se ¥ si A, si se giseasci Q astfel ca (4) si aibd loc.

Se dau solutii ale acestor probleme in cazul cind A este un domeniu sim-
plu-conex, A # €. Dacdl 5i Q este un domeniu simplu-conex, Q # C, atunci
implicagia (4) se scrie sub forma (5), unde % §i ¢ sint reprezentdri conforme ale
disculuni unitate pe Q si respectiv pe A. Se consider#, in mod special, cazurile
cind A este un disc sau un semiplan.

Se prezintd unele aplicatii ale teoriei generale Ia construirea unor operatori
care conservi functiile cu partea reald pozitivi, operatori de mediere, operatori
care conservil stelaritatea $i operatori care conservd subordonarea. De asemenea
se aplicd reznltatele generale la studierea subordondrilor diferentiale de tip Briot-
Bouquet, care prezinti un interes deosebit in teoria geometricd a functiilor anali-
tice.

Chapter 1 GENERAL THHEORY
Introductjon
2. Preliminary Lemmas
3. Admissible Tunctions and Fundamental Theorems
4. Special Cases: the Disc and Falf-Plane
Chapter 11 APPLICATIONS
5. Differential and Integral Operators Preserving Functions with Positive Real Part
. Averaging Integral Operators
. Analytic and Starllke Integral Operators
. Briot—Bouquet Dilferential Subordinations
. Integral Operators Preserving Subordination

CcwNO

I. GENERAL TIIEQRY.

1. Introduetion. In the field of differential equations of real-valued functions
there are many examples of differential inequalities that have important appli-
cations in the general theory. In these cases, bounds on a function f are often
determined from an figequality involving several of the derivatives of f. As
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a very si Yoo .

diffel'élni\zl\?)lllgl:s;\ } \=111(11»k1, (5011511(1@' a function f w

= [2f(1) - 37" — gy | and suppose that the differenyi contj
A0+ PY" = 210y 4 a0 () 1 20 + 6 sq?fflfeffl ential operatoy 11)11{1}3,(1’1)513,

O0<Dfilt) <2, for { = I

It is easy to show
o show that —1 < f() <2, for ¢t e . This result can 1 )]
S 1 be rewris

A ten
X DI/UI) C (€, 2) = f(I) C (-1, 2).
n two articles in 1978 13
- . 5 es in | 3 [13] and 1981
K aﬁisedmfvol‘ t1'.1g d1f%'e1c~nt1al mequalities for real-valued funct]
: unctions. Since those two articles, th oo 0 compley.
enriched this new field. In this surve ’t' le Arahors and e v others lhek
icld. In this survey article we will deseribe s ave
new results and 'Cl,le1r applications. Although many o obe some o fhese
cussed also pertain to hi Harentiol’ coproscicolCets to be g
cussed also lt etain <]) nghfgr order differential expressions, we resot ')i dis--
. rticle to first and second-order differ ial ot our
: ; ( . SeCo crent X i
for A dlflferentml 1nequa]_1ty of the form (1) does not ha\l'i] fkc{)i:'esilous'
fo tc.omp ex-\;alued fqnctlolls, l.e. we cannot merely replace the reecal ;
i nlc }Pn f(t) in (1).\\’}th a comp.ex-valued function f(z). However tl-\’alfl‘md
‘mc usion relation of (2) does have a natural complex analog such '1]5Q .

DIIU) CQ,

with D[f](z) = 2%/"(2) + 42/'(z) + 2f(z) + 62, where U, Q C € and U is the
unit _d1sk. If f U—»> € satisfies this inclusions, then analogously to (2) we can
ask if there is a “smallest” set A C C such that 7 '

D[/IU) C Q= f(U) CA. (3)

There are two other problems that are associated with (3). Given Q and

A, does there exist a class of functions satisfving (3). And secondly, given

f and A, does there exist a “largest” set Q satisfving (3). In these three prob-

lems, for this very elementary example, we see some of the idcas that_have

been used in developing the theory of differential subordinations. These problems

will be generalized below and their solutions will be described in this articte.

Let Q and A be any sets in C, let p be analytic in the unit disk U, \v!th

(0) = a, and let (7, s, ;] z): ® x U— €. The heart of this article deals with
the following implication

W(p(), ' (), 2p"(2) s )|z = UpC Q@ = pU) CA (4)

thie form wit r,s,t;z=t+4s+2r+6z. '\Vet‘ﬂn
this form with ¢f ) heory of differential sub-

hich is twice

=

2

[14] the authors extendeq ty
€se

analog

Note that (3) is of _
now state the three problems that characterize the t

_dinations in the complex plane. . Ve

Orde?lOBLEM 1. Given Q and A, {find conditions on ¢ so that (4) holds. Ve
; an admissible fuuction. . re,

call ;fz%};fmqi 2. Given ¢ af:d Q, find A such that (4) holds. Furtherino

; “gmallest’” such A. Syrthermore,

fmd;}:gm;rﬁqs. “Given ¢ and A, find Q such that (4) holds. Furthert

{ind the ajargest’” such Q
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If either Q or A in (4) is a simply connected domain then (4) can be
rewritten in termns of subordination. Recall that if f and F‘ are analytic in
U and F is univalept in U then f is subordinate to F, written f(z) < F(2)
or f<F, if f(0)=F0) and f(U) CF(U). , _ -

If A is a simply connected domain containing the point a and A # (;,
then there is a conformal mapping ¢ of U onto A such that ¢(0) = a. In this
case (4) can  Dbe rewritten as

{$(p(2), 2p'(z), 2" (2) s 2) | 2 & U} C Q= p(2) < ¢(2).

If Q is also a simply connected domain and Q # €, then there is: a confoppal
mapping /# of U onto Q such that %(0) = §(q,0,0; 0). If in addition
Y(plz), zp'(2), 2p"'(2) ; z) is analytic in U then (4) can be rewritten as

$(p(2), 2p"(2), 2P (2) 5 2) < Mlz) = pl2) < ¢la). (%)
This last result leads us to some of the important definitions that will be
used throughout this article.
prFINItioN L1 Let 4 (@ X U-—~ € and Jet 2 be univalent in U. If p
is analvtic in U and satisfies the (sccond-order) differential subordination

Y(p(z), 2p'(z), £°p"(2) 5 7). < A(z), (6)
then p is called a solution of the differential subcordination. The univalent func-
tion ¢ is called a dominent of tie solulions of lhe differential subordination,
or more simply a deminant of the differenlial subordination if p < g for all
p satisfving (6). .\ dominant ¢ which satisfies ¢ < ¢ for all dominants q of
(6) is said to Dbe the best dominant of (6). (Note that the.best dominant is
unique up to a rotation ol U).

Let £ be a set in € and suppose (6) is replaced by

G(P(2), =P (2), 25p""(2) 5 2) € Q, for z & U. (6")

Although this is a “differential inclusion” and $(p, 2p’, 2*p”; 2z) may not be
anaivtic in U, we shall also refer to (6°) as a  (sccond-order) differential sub-
ordination, and usc the same delinitions of solution, dominant and best do-
minant as given in Definition 1.

In the case when Q and A in (4) are simply connected domains, we have
.seen that (4) can be rewritten in terms of subordinations such as given in
(5). Using this and Definition 1 we can restate Problems 1—3 as follows:

PROBLEM 1’ Given univalent functions & and ¢, find a class of admis-
sible functions W[/, ¢] such that (5) holds.

PROBLEM 2'. Given the difierential subordination (6), find a dominant of
(6). Moreover, find the best dominant.

PROBLEM 3. Given ¢ and dominant ¢, find the largest class of univalent
functions /& so that (5) holds. ‘ '

Solutions to Problems 1, 1°, 2 and 2’ will be given in Section 3, while
a solution for special cases of Problem 3 and 3’ will be given in Section 8.

We close this introduction by mentioning some special cases of the diffe-
rential subordination (6) that appeared in the literature prior to our first two
articles [13, 14]. These were formulated using different terminologies and their
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methods of
this article.

In 1935 G. M. Goluzin
subordination zp’(z) < h(z). He

= 5 h(t)t= dt
0

proof were quite different from those that wip be
Presenteq
1n

e simple first o
h is convex the

[7] cousidered th 1 .
showed that if fle;(d)lfferential
o I < gl
» and this ¢ is the best dominant. Tn 1970 T. Sy frig )

ge [32
P. 777] showed that Goluzin’

- s result is true if % i .
In 1947 R. Robinson s starlike,

(30, p. 22] considered the differentia] suborg;
Td)-

nation  p(z) + zp'(z) < k(z). He showed that if J and ¢(z) = z~1 Sh(l)dt
. are
univalent then g is the best dominant, at least for lzj < 1/5.
In 1975 D. Hallenbeck and S. Ru sheweyh 9, p. 192] .
dered the diiferential subordination p(z) + 2p'(z)/y < h(z), when y % 80315]‘&

Rey > 0. They showed that if % is convex, then g¢(z) = vz~ 5/,(/)[7—1(1[ is the
0

best dominant.

2. Preliminary Lemmas. In this section we list the main lemmas that
will be needed to prove the theorems of the next scction. Proofs will be omitted,
but references will be indicated. For zy = ryci® with 0 <r, < 1, we let U,=
= {z:]z| < r,}. | |

LEMMA 2.1. [13, p. 2907 Let f(2) = a,2* - ayay2® it 4= ... he continnous on
Ur. and analytic e U, \)42,} with f(‘) #£0 and uw > 1. ’lf o) | =
= max {|f(z):z € U,,} then lhere exists an m = n such that

. L]

(1) zof (o) [f(24) = m, and

(if) Reflzyf"(zo)lf'(z0)] 4 1 2 2. o | .

This lemma is based on the fact that f(U’,)) lies inside tIIlC d]'siltlol“'zl'f: =
= |f(z,) | and that the boundary of f({,) is tangent to the circie i K.

: i i ith z, == f(z,) == 1, appearcd in 1925 asa prob

A special version of part (1),L \.\q)th 7y == f.ﬁ;’)"] ’l(-l]l]' :
O 3 i () 5 —\ . 1e .
lem of K. Léowner in {29, l}()bl@}}l 291, p] B the disk wl € R

We need to extend the ideas in this lemma, by 1 ‘] l 'hl"?‘ e g the

with a more general region A. We can achieve this by [irst nt

s of functions. o o o oalviic
fono‘]\’)gllgl\’cll'f“lsg\lo2 2. We denote by @ the sct of functions ¢ that are analy

A R) AN 5N :- . y ' 2
and injective on U N\ E(g), where

; . cU - i g(z) = OO},
Elg) = {¢ ¢ i 7(2)

. - g 0 for ¥ e ¢UN E(9). its boundary
and are such :}?:tdgégif A = g(U) is simply connect'ed andss‘iﬁ)sl\' ? inite)
If g <@ simple closed regular curve or the union (1)0' % to oo in

ither a sunple b4 es. each of which converge

consists of ¢ )/ (1—z) are exam”

- A e e ]e I'Cglllar curv ~
wwige disjoint. simple reguia s o) = (1 4+ 2

tOftrIiJ acllli;ections. T'he functions ¢,(z) =z and ¢x(2) = (

ot

ples of these two c€ases.
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rEMMA 2.3. [14, p. 158] Let g = Q with q(0) = a, and let p(z) = a +
+ P+ ... be analytic in U with p(z) # a and n 2 1. If there exist points

7z, €U and ?;o e 8U\E(q) such tlzat P(zo) = q(8,) and p(U,,) C q(U), where
= |z, |, then therc exists an m > n such that

(i) 2o8"(20) = MCoq' (%), and

(ii) Ref[zgp"(z,) ,7 #'(z0) + 1] = m Re[Lq""(o) /9 (%) + 11.

Note that (i) is a relation between the outer normals to the curves
pllz| = r,) and ¢(dU) at their point of tangency, while (ii) is a relation bet-
ween the curvatures of these two curves at their point of tangency.

We next discuss two important cases of I,eimnma 2.3 corresponding to ¢(U)
being a disk, and ¢(U) bemg a half-plane.
Casc 1. The Disk = {w: |w| < M}. If we let

q(z) = M(Mz + a) /(M + az),
with M >0, and |a| <M then ¢(U)=A= Uy, ¢0) =a, E(g) =¢ and
g € Q. If there are points z, € U, {, € dU such that p(z,) = q(§,) and [p(2) |<
< M for jz] < |75, then [p(z,) | = |9(&) | = M,
Lo = 7 (P(2)) = M[pl2) — al /[M? — ap(z)],
Lo’ (Za) = [M? — ap(z) 1 [Plzo) — @)/ [M?* — |a]?], 7)
Re[Toq"(T0)/q'(8o) 4+ 1] = [p(2) — aPP[[M* — [a|*]. @)

Using these results in Temuna 2.3 we obtain :
LEMMA 2.3° Let p(2) == a + pi* + ... be analviic in U with p(z) # a and
n 2 1. If there exists zy € U such that |p(z,) | = Max{|p(2)]: |2]| & |24 |} then

() o' (z) [p() = 1iplia) ~ Y [1p(zo) It — lal?] and
(i) Relzop"(z0)/P'(20) - 1] 2 n|p(z) — al/[1p(z) * — la|?]. .
For a = 0 this lemmma reduces to Lemma 2.1.
Casc 2. The Half-Plaue = {w: Rew > «, « real}. If we let
9(2) = [a — (2o — @)z]/[1 — 2]

with Rea > o then ¢(U) = A, q(O) =a, E(q) = {1} and ¢ Q. If there are
points z, € U and ¢, BU\{I such that $(z,) = ¢(%,) and Re p(z) > «
for |z] < |zo], then Re p(zy) = «,

Go = 9474(p(z5)) = [p(z) — 2)/[p(z,) — (20 — a)],
8od'(To) = — l@ — p(z)*2Re[a — p(z,)] ©)

and
Re%9"(8o)/7'(%) +11=0 (10)

Using these results in Lemma 2.3 we obtain ;
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LEN 3", Let p(z) =
IMA 2.3". Let p(z) = a + pem 4 ... be analytic in U 4

n 2 1. If there exist
(i) zp’ %0 € U such that Re plaq) = Min (Re p(s)? | (1
N 01) (zo)”< _7,2 |(l - P(ZO) |2/2RC[(¢ - j)('/o)] and % l} ”leu
(1) Rezop"(2,)/p'(z,) + 1 = 0.
Remarks. 1. Sinc "(2) is t .
replaced by ¢ %o'(7o) is veal and negative, the inequality (i)
can be

-

(ii") Re235"(20)] + 27" (z0) < O.

2.If «=0 and a =1 the inequality (1) becomes

(1) 208'(z0) < —n(l = N2 < —mj2

LEMMA 2.4 Let g € Q, with ¢(0)-= a, and lct pl2) = a 4 pom. b
Al I

analvtic in U with p(z) # a and ’

i w2 1 If p g, the o . |
= r,¢i0 . A g, then there exist po
ree'% € U and §, € cUN E(g) and an m > n Jor which 1t poins %

(i) A(U,) Cq(U)
(i) £(zo) = 9(%y),
(i) 208'(20) = mEyg'(L,), and
(iv) Refzop"(2,)[p"(z0) + 1] 2 m Rel€q"(8)/q'(€,) + 1.
Proof. Since p(0) = ¢(0), and p and ¢ are analytic on U/, we can define

ro = sup {r: p(U) C g(U)}.
Since p < ¢ we have p(U) & g(U). Thus for 0 < 7, < 1 we get p(U7,) <ot
and p(U,,) ¢ q(U). Since p(U,,) q(U) there exists 2, « ¢ U, such that p(: /[
AVE . o o . such that plo,) &
= 9g(U). This implies there exists {, & ¢~ [F(y) ruch that p(:) = q("?)
The C011c1115}01}s of this lemma now follow ":‘juvzq*,j'-':}.'in: Lemma L’(.)IS. "
3. Admissible Functions and Fundamerial Theoirems, T this section we
define the class of functions ¢ for which we iuterd to prove (4).
DEFINITION 3.1 Let Q be a set in €, ¢ € Q) and »# be a positive integer.
We define the class of admissible funrctions M, 0, ¢ to be those functions
$:C x U—C that satisly the following admissitidlily condiiion:
Y(r, s, t; 2) & Q when r==¢(J), s = mly'(Q),
Re[/fs + 1] = mRe[L¢"(Q)/g'(3) + 1] and = U, (1)
for § € dUNZE(Q) and m = 1.
We write ¥,[Q, q] as 1°[Q, ¢q].
In the special casc when Q # € is a simpy maii
is a conformal mapping of U onto Q we denote the class by Wi gl
Remarks. 1. If §: €2 X U—C the condition (11) becomes Uir, s;2) F4,
when 7 = ¢({), s= mg'(g) and z € U, for { € ¢UNE(q) and m 21 ‘
2. If Q C Q then V,[Q, ¢] C W, [Q, q]. that is, cnjarging Q decreases the
class. Also note that v, IQ, 91 C ‘I",,H[_Q, gl
THEOREM 3.2. Let § € vy, (Q, ¢1 with ¢(0) = a.
If p(z) = @ 4 P A e 1S analytic 1n U and safisfics )
W), (), 2P ) Sz U ‘

-

contiected  domaii and #

then p < q.
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Proof. Assume that p <4 ¢. By Lemma 2.4 there exist points z, € U and
L = ¢UNE(g) and an »' > n that satisfy (i) — (iv) of Lemma 2.4. Using
these conditions with 7 = p(z,), s = 20p'(2,), ¢ = 23p"'(2,) and z = z, in De-
finition 3.1 we obtain .

Y(P(2), 20" (29), 25D (20) 5 %) E Q.

Since this contradicts (8) we must have p <
Remarks. 1. The conclusion jof Theorem 39 also holds if (12) is replaced
by

$(p(2), 2p'(2), #p"(2) s w(2)) = Q, z € U, (12')

for any function w(z) mapping U into U.

~ 2. The conditions on Y¥,[Q, ¢] are fairly general, and as a result, for a
given ¢ in the class there may not exist an analytic function p satisfying
(12). As an example, let ¢(z) = (1 4 2)/(1 — 2), Q = ¢q(U) and d(r,s,¢;2) =
= —ris, A simple computation shows that ¢ € ¥[q(U), ¢]. In this case (12)

becomes
Re[—(p(2))* - 2p"(2)] > O,

bhut there is no analytic function p that satisfies this inequality at z = 0.
However, in the applications of the theorem that we will present, the exis-
tence of a p satislying (12) will be clear. In the particular case when Q is
a domain in €, $(a,0,0;0) € Q and ¢ is continuous in a neighborhood of
(¢, 0,0;0), then p(z) = a 4 p* will satisfy (12) for sufficiently small |p,]|.

O.a checking the definitions of @ and Y,[Q, ¢g] we see that the hypo-
thests of Theorem 3.2 requires that ¢ behave very nicely on its boundary.
If this is not the case or if the behavior of ¢ on its boundary is not known,
it may still be possible to prove that p < ¢ by the following limiting pro-
cedure.

COROLLARY 3.3, Let Q C C and let q be univalent in U. Let § & W,[Q, q,],
Jor some o = (0, 1), where g,(2) = q(p2). If p(2) = a +- pa + ... is analytic
e U and Y(p(2), zp'(2), z/)"() 2) € Q for z € U, then p <yq.

Proof. The function g, is univalent on U, and hence E(g,) is empty and
4o = (). The class W,[Q, g,] is an admissible class and from Theorem 1 we
obtain P < g, Since g, < g we deduce p < g.

We next list the special case when Q # € is a simply connected domain.
The proof follows immediately from Thcorem 3.2.

TurorEM 3.4, Let ¢ € W, [k, q], with g0) =a and $(a;0,0;0) = A(0).
If pz) = a+ pue™ + ... and Y(p(2), 2p’(2), 22p"'(2) ; 2) arc analytic in U, and

V(plz), 2p'(x) 2p"(2) 5 2) < hlz) (13)
then p < gq.
An analogue of Corollary 3.3 can be given for W,[(k, ¢] = T, [/L(U) q].
COROLLARY 3.5. Let h and q be univalent in U with q(0) = a. Let

G X U—C, with {(a,0,0;0) = 1(0), sahsfy one of the following condmons:

() ¢ e ¥,k g1, for some ¢ = (U, 1) o
(i) therc exists p 0, 1) such that { = 11;”[]" )
Jor all o & (o, 1), ¥ o o]
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where qo(2) == q(p3) and hy(z) = h(p2). If plz) = b om
R), 2P 5 2) are analylic in U and PR =a s p +

nd \"(75(2)
V(P(2), 2p'(2), 22p™(2) 5 2) < I(z),

Q]

then H < q.
. DProof. Case (i). By applying Theorem 3.4 i ‘
W defuce fs o 1' g rem 3.4 we obtain P < g
Case (11). I[ we let p,(2) = p(pz) we have
Y(Pola)s 2Pe(2), 2Py (2) 5 p7) = Y(p(p2), p2p’(p2), p22p™(
for z € U. By using Theorem 3.2 and Remark 1 followine :
. M y ’ '1n tr i 54
we obtain p,(z) < go(2) for p & (gy, 1). By letting o — 1g i\'e \c‘ﬂl)tt]elliu(~
If # =1 and ¢ is a' dominant and solution of (13) then ¢ will benth'e best
est

dominant. Using this result together with T'hcorem 3.3
-~ - ) a 4 S ]
the following theorem. nd Corollary 35 Yields

THEOREM 3.6. Let v be univalent in U, and lct & (3 s :
that the differential equation Y *U=C Sup pose

$(g(2), 24'(2), 224" (2) ; 2) = h(z)

has a solution g and onc of the following conditions is salisficd

() g €Q and § =Wk, q),
(ii) ¢ 1s wnivalent in U and & « W[k, q,] for some p (0, 1), or
(i) g is univalent in U and therc exists p, € (0, 1) such that

v e Yk, q,] for all o € (py, 1).

If p(2) = q0) + piz 4 ... and U(p, zp’, 22p""; 2) are analytic in U and if p
ts a solution of (13), then p < q and q 1s the best dominant.
. - From the above theorem we see that the problem of finding best domi-
nants corresponds to finding univalent solutions of differential equations. We
will take advantage of this in several of the applications in the next chapter.
Theorem 3.2 can be used to show that the solutions of certain second
order differential equations are contained in a ceratain set. . ‘
“ rHEOREM 3.7. Let § & W,[Q, q] and let f be an analylic function salis-
fying f(U) C Q. If the differentral equalion

b(p(2), 2p'(2), 2p"'(2) s 2) = f(2)
has a solution p(z) analyhjc in U with p(0) = q(0) then p <4

4. Speeial Cases: the Dise and Hali-Plane. In this section we -\\‘lltl aP(PL’,_-‘)
the theorems of the last section to the particular cases f:orrespond]lﬂ_gforo t({xcse
being a disk and g(U) being a hali-plane. Some preliminary results
two cases have been presented in Section 2.

Case 1. The Disk A = {w:|w| < M}. The function
q(z) = M(Mz + a)/(M + az),

SinCe q°_<q

pz); p2) < hy(U)

)=z
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with M >0 and [a| < M satisfies g(U) = A, ¢(0) = a and ¢ € Q. We first
determine the class of admissible functions, as defir:ed inr Definition 3.1, for
this particular ¢. We set W,[Q, M, a] = ¥,[Q, ¢g] and in the special case
when Q = A we denote the class by W, [, a]” Since ¢(f) = Me® with 6 R

when [{] =1, by using (7) and (8) the condition of admissibility (11) becomes
br, s, 1;2) ¢ Q when » = /:%iﬁ,
s = mMci |ME — G |2/(M2 — |a?), (14)

Re(lfs + 1) = m|M — ac® [2(M2 — |a |,
for ze U, 6 € R and m = »n.
If @ =0 then (14) simplifies to i
i (M0, Ke®, L; z) ¢ Q when K > nd, (14)
Re(Le=) 2 (0 — 1)K, z € U and 6 € R,

a condition much casier to check.
THEORLM 1. Let p(z)=a+p,e* +... be analytic in U. If = W,[(Q, M, a]
then
Upla), p'(2), 27(2); 2 = Q = |p(a) | < M.

It % e Y, LM, a] then
fo(p(z), 2p'(2), 2" (2) ;) | < M = |p(z)| < M.

‘The prool of this theorem follows immediately by applying Theorem 3.2.
ExaMpLE 4.2, Tt a=0, n=1, Q= U) where h(z) =2Mz, and
w(r, s, i :) = r 4 s+ [ We lirst show that ¢ ‘1"[/1(M, M, 0], that is, that
admissibility condition (14°) is satisfied. This follows since
fp(Mcei, K, L z) | = |M 4+ K 4+ Le=| > M 4 K + Re(Le—%)
=M+ Mn+ (n— 1)nM = M(1 4 1n2) > 2M

when A 2 ndl and Re(Le=) > (n — 1)K. By Theorem 4.1 we deduce the
following result. Il p(z) is analytic in U with p(0) = 0 then

[p(2) 4+ zp'(2) + 24" (2) | < 2M = [p(2) ]| < M.
We can use Theorem 3.6 to present a different proof of this result, and
to also show that this result is sharp. The differential equation

9(2) + 2¢'(2) + 2¢"() = 2Mz, _

has the univalent solution ¢(z) = Mz. In order to use Theorem 3.6 we need
to show that ¢ € YW'([2Mz, Mz]. For r = MY, s = mM¢ and Re [¢fs + 1] = m,
for |} =1 and m > 1 we have

[r, s, )| = MY+ Mmq 4| = M1 +m + mifs)
2 M(l+m + m2 —m) = M(1 + m2) > 2M.
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Hence ¢ € W24z, Mz], and by Theorem 3.6

pe) + 2p'(2) + 2" (2) < 2Mz = p(2) < My,

and q(z) = Mz is the best dominant. J
Case 2. The Half-Plane A = {w: Rew > 0}. The functioy

9(2) = (a + az)/(1 — z)

with Rea > 0 satisfies q(U) = A, 9(0) = a, E(¢) = {1}, and .
determine the class of admissible functions, as defin{e&’inube({h:to' We firg
this particular ¢g. We set W, {Q, a} =V, [Q, ¢] and in th 'on 3.1, for

€ speci
Q = A we denote: the class by W,{a}. Since Re¢(¥) =0 “.;16)101(121 Eca;z_\“‘hen

by using (9) and (10) the condition of admissibility (11) becomes N
Yo, %, p+in:2) €O, for 2 = U and for o=, p, 4 =
satislying v < —#nla — ig{*2Re @ and 7 4 p < 0, ’

If a=1 then (15) simplifies to

Y(io, 7, b + 19 2) ¢ Q; for z € U, and for real o, =, ®, 1

13
satisfying v < —#n(l + ¢%)/2 and 7 4+ p < 0. 1)

The proot of the f{following theorem [follows immediately by applying
Theorem 3.2. :

THEOREM 4.3. Lel p(z) = a + p2* + ... be analytic in U. If g 1'{Q, @
then

$(p(2), 2p'(2), 22p"" () 5 z) € Q = Re p(z) = 0.
If 4 € W, {a} then
Re $(p(2), 2p'(2), *p"(2) 5 2) > 0 = Re p(2) > 0.

ExAMPLES 4.4. a) A simple check of (15) shows that §(r, s, {;2) =71+
+ s 4 ¢t € W{1}. Thus if p(z) =1+ pz + ... is analytic in U then

Re[p(z) + 2'(2) + 22p"(2)] > 0 = Re p(z) > 0.

b) Let 4(r, s, ¢; z) = » + B(z)s, where B: U— € and Re B(z) > 0. A
check of (15) shows that ¢ € W{a} with Rea > 0. Thus if p(z) =a + h
is analytic in U then

Re[p(z) + B(2)zp'(2)] > 0 = Re p(2) > 0.
c) Let ¢(r, s, ¢; z) =14 3b— »* + 1. A simple check of (15%)

simple
Z

+...

shows that

¢ ¢ ¥,{1}, but ¢ = Y,{1}. Thus if p2) =1+ P2+ --- is analytic il
then ’ : 0
Re[z2p"(z) + 3zp'(2) — p*(z) + 1] > 0 = Re p(z) > 0.

be found it [10],

Other examples of similar differential inequalities may

[12], [13] aud [13].
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»

I1. APPLICATIONS

5. Differential and Integral Operators Preserving Functions with Positive
Real Part. In the next two sections we will be interested in determining do-
minants of the second-order lincar differential subordinalion

A(2)2°p"(2) + B(2)zp'(2) + C(2)p(2) + D(2) = Q (16)

for z € U, where Q CC, and 4, B, C and D are complex-valued functions
defined on U, In this section "we let Q be a set in {w| Rew > 0} and let
g(z) = (1 +2)/(1 — z) be a dominant of (16). We will determine conditions
on A, B,C and D corresponding to this particular Q and g. This situation
corresponds to Problem 1 of Section 1.

THEOREM 5.1. Let A(z) = A >0 and suppose that B, C, D: U—C and
satisfy
ReB(z) 2 A and [ImC(2)]? < [Re B(z) — A] - Re[B(z) — A — 2D(2)]. (17)

If p 1s analytic in U with p(0) = 1, and if
Re[Azp"(z) + B(d)zp'(2) + C(2)p(z) + D(2)] > O, (18)

then Re p(z) > 0.

Proof. I{ we let §(r, s, t; 2) = At + B(2)s + C(z)r + D(z), then the con-
clusion will follow from Theorem 3.1 if we show that ¢ € ¥[Q, ¢], where
Q= {w|Rew >0} and ¢ = (1 + 2)[(1 =z). This follows from (17), and De-
finition 3.1 or (15%) since

i, %, .+ 11, 2) = Ap 4+ «Re B(2) — 6 Im C(2) + Re D(2) <

7[Re B(z) — A] — e Im C(z) + Re D(2) <

[—(1 4 o%)/2][Re B(z) — A] — ¢ Im C(2) 4+ Re D(z) = ( .
—{[Re B(z) — AJe* + 2[Im C(2)]c + Re [B(z) — A — 2D(2)}/2 <0,

§

Re -

=

[ A A

for z € U, and for real o, 7, p, 7 satisfying © < —(1 4 ¢?)/2 and ‘r{l- p<0.
Hence 3 & W[Q, q], p < g and Re p(z) > 0.

If A =0 and D(z) = 0 then Theorem 5.1 reduces to the following first
order result [20, Theorem 8].

COROLLARY 5.2. Let B(z) and C(z) be functions defined on .U, with

Im C(z) | < Re B(2). (19)
If p is analytic in U with p0) = 1, and if
Re[B(z) - zp'(s) + C2) - p(2)] >0, (20)

then Re p(z) > 0.

[20, \'}‘rlex egilénma%ﬁ{y Corollary 5.2 to obtain a corresponding result for integrals
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TnroruM 5.3, Let v # 0 be a complex number

: wilh R
and ® be analvtic in U, wilh ¢(z) - (z) # 0, ¢(0) &Y 2

= ®(0), and 0, ang let 9 |
T [(y®(z2) 4 20'(2)) [ye(2)]] < Re [@(2)[yo(2)].

Let f be analvtic in U with f(0) = 1 and Re f(z)

{2y
by

>0, for z e U, If F 4 defingg
Flz) = vz~ ©@) | f0r=re() .
0 @)
then Fois analytic in U, F(0) =1 and ReF(z) > 0 for z < U.

. Proof. I we let B(z) = ®(z)[yo(z) and C(z) = [y®(2) 4 2d'(z)7])-
condition (21) implies condition l(19). By differentiating (22)()]/'(?(2)’ then

we obtaip
Re [B(z) « zF'(z) + C(2) - F(2)] = Re f(z) > 0.

Hence (20) of Corollary 5.2 is satisfied with p = F, and we conclude that

Re F(z) > 0.

If we let \{)= ® and y > 0 then (21) reduces to
Im 29" (2)f(2) | < 1. o
In this case we deduce

Ref() >0 = Re [277 o() = { f()r=14(1) d1] > 0.
0

EXAMPLE 5.4. The function o(z) = e™ satisfies (23) for |x| < 1. In this '
case we obtain

Ref(z) > 0 = Re [z“f e—M Sf(l)tT—l N dtl > 0. (24) ‘\
0

Corollary 5.2,involves a first order linear differential subordination and
its integral amalog is the linear operator given in Theorem 5.3. The seco.nd
order linear *differential subordination given in Theorem 5.1 also has an i
tegral analog. However, in this case the second order differential subordination !
gives rise to a double integral. 0 ;

THEOREM 55. Let B and v be complex numbers with By >0, Ref Zm‘i
Rey >0, let ¢ and ® be gnalytic in U with o(z) - ®(z) # 0, ¢(0) = ®(0) ¢
let w be analytic in U with w(0) = 0. Suppose that (17) holds with

A = 1/By, D(2) = —w(2),
(50 2% 25T et + w00y, and 2
1C@ = [(B + 20" (2P (¥ + 2¢'(@) /() + a(s2’ (@)D WY
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Let f be analytic in U with f(0) = 1 and Re f(z) > O for z € U. If F is defined
by

’

F(z) = H“’q}‘zz)s w((?) 18- IS [f(s) + w(s)] D(s)sB=1 ds dt, (26)

then F is analytic in U, F(0)=1 and ReF(z) >0 in U. .
Proof. By differentlatmg (26) and using (25) we obtain Re [4A22F''(z) +

+ B(z)zF'(z) + C(2)F(2) 4+ D(z)] = Re f(z) > 0. Since the conditions of (17)

hold, we apply Theorem 5.1 with p = I to conclude that Re F(z) > 0 in "U.

- Note that if D(z) = —w(z) =0 the second-order linear differential sub-
ordination (18) gives rise to a linear (double) integral operator F = I(f) given
by (26).

If we let o(z) =1, ©(z) =0, B >0 and y > 0 then from (25) we have
D(z) =0,
( ) =B+y+1+ 20’ (2)]®(z)]/By and
=718 + 207(2)/0(2) ]/Pr.
In this case we obtain the following corollary.

COROLLARY 5.6. Lel B > 0, v > 0, and lel ® be analylic in U with ®(z) #0. !
Suppose thal

Im )‘ Re [ﬁ +v+ 2::(:)] (27) .

Let [ be analytic in U with f(0) =1 and Ref(z) >0 m U.
If F is defined by

F(z) = Byz-r S (r-8-1Q(f) 1 S F(s) ®(s) s8-1 ds dt,

0

then I' is analvtic in U, F(0) = 1 and Re F(z) > 0 in U.

The- complicated condition (27) has a simple geometric interpretation.
i we let w = z0'(z)/D(z) = u + 1v then (27) becomes

Ylvl =B +vy+ w

Hence (27) requires that z®’/® lies in the closed sector S(B, y) containing
the origin and bounded by the lines

Yo =8+ + u

If we take ®(z) = ¢ then 2z0’(z)/®(z) = )z. Since the distance 8 from
the origin to the boundary of the sector S(@, y) is g1ven by

8= (B + v)/(1 + v?)w ' (28)

we obtain the following example.
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RXAMPLE 5.7. If |A| < 8 where 3 is given by (28) then
. t

Ref(z) > 0 = Re [z‘* g =M fr=p-1 S F(s) e sb-1 gs dt} <0
. 0 .

0

In the particular case f =y =1, we deduce that for M < x/i we §
< ave

4 ¢
Re f(2) > 0 = Re lz“l ‘ e~M1 Sf(s) ed ds dl] > 0. N
: ; %)
Note that in Example 5.4 we can apply (24) twice with y =1 to obtain fo
However, by using this method (29) will be valid only for | %] < 1. (29
* 6. Averaging Integral Operators. In this section we will use 3 second
order linear differential subordination of the form -

A@2$"(2) + B@)p'(e) + CE)p() + Die) < hiz)

to obtain a generalized complex-valued version of the Iirst Mean-Value Theo-
rem for Riemann Integrals. Recall that in the real case if f and % are conti-
nuous on J = [0, 1), with 7A(x) > 0, then there exists ¢ & (0, 1) such that

Sf () o) dt = 1) { ) .

0

If we let l(x) = g’(x) with g(0) =0, then we obtain

a(x) “Sf(t) gt dt = fe) = f(I) (30)

for all x . .
We will obtain a complex-valued analog of (30) of the form

8l ™ {7 w) g (w) dwo = f(U) 31)
(1]

for all z € U, where f and g are analytic on U and satisfy some simple con-
ditions. )

In the remainder of this section we let H be the set of functxc}ns ttcl)m:
are analytic in U, we let Hy = {h  H: h(0) =0} and when we T€ erset >
convex function we assume that it is univalent. InG addition, if G is a
C then we denote the convex hull of G by co G. . as

If we denote the integral in (31) by I[f] then (31) can be rewritten

ILfI(U) CAU). @)

This in turn implies that

(32)
I[fI(U) C cof(U). '
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This generalized complex-valued version of Riemann’s mean-value theorem

will be analyzed in this section. Note that (32) reduces to (31’) if f is a con-

vex function, In light of this discussion we make the following definition.
pErFINITION 6.1. If K C H and if an operator I: K— H satisfies

ITf)(U) Cco f(U), with I[f](0) = f(0) (33)

for all f € K, then I is said to be an averaging (or mean-value) operator on K.
A simple characterization of such operators is given in the next theorem.
THEOREM 6.2. Let I: K— H satisfy 1{f}(0) = f(0). A necessary and suf-

ficient condition for I to be an avcraging operalor on K is that for all comvex h

f<h=I{f1<P (34)

Proof. 1f I is an averaging operator then condition (34) follows imme-
diately from condition (33). Next suppose that condition (34) holds. If-co f(U)=
=C then condition (33) holds. It co f(U) # € then there. exists a convex func-
tion A: U—co f(U) with 2(0) = f(0) and »(U) = co f(U). Using this & in (34)
we obtain (33).

We will obtain a large group of averaging operators as an application
of the following theorem on seccond-order dilferential subordinations.

THEOREM 6.3 ([19). Let h & Hy be convex and let A > O Suppose that
k> 4/|1W(0)) and that B(z), C(z) and D(z) are analytic in U and satisfy

Re B(z) > A + |C(z) — 1] — Re[C(z) — 1] + k|D(2) ], (35)
for z € U. If p e H, satisfies the differential subordination
Azp"(2) + Bz)zp'(2) + C(2)p(2) + D(2) < h(2), (36)

then p(z) < I(z).
Proof. We will use Corollary 3.5 part (ii) to prove this theorem. Since
k1W'(0)] > 4, there is a py, 0 < pg < 1, such that (1 + p,)*/p, = £ |4'(0) | and

4 < (1+ ePlp < RIF(0)], for pp < p < 1. (37)

If we set {(r, s, ¢;z) = At + B(z)s + C(z)r + D(z) and hk,(z) = h(pz) then the
conclusion will follow from Corollary 3.5 if we show that ¢ € W[k, k,] for
p € (pg, 1). Since h, is convex on U, according to Definition 3.1 it is suffi-
cient to show

U(r, s, ¢; 2) € hy(U), when 7 = Iy(%), s = mhy(X),
Re[t/Ch,(0)) > —m and z € U, for |{|=1 and m > 1. (38)
If we set V = [(r,s,¢;2) — 1 () ]/TA(T) then

Vo= A Bas | Clr — he(¥) . Dia) 39
Ciel0) Tomo T T wm T )
and
$(r, s, 25 2) = Bo(8) + VEh(Y). (40)

We first show that Re V' > 0 which will lead to the proof of (38).

2 — Mathematica 4/1989
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. $ .y _— . . . { .
Since A, is convex and 1,(0) =0 we have Re(ta c})/hp(t

1%l =1 [8, p. 176], or equivalently )12 12
he(0)/8he(8) — 1] < 1.
If W and Z are complex numbers and |Z — 1| g | then (4y

oW/
Re WZ'I;_jz Ige[W(Z —1]>ReW — .

Using this inequality with W = C(2) — 1 and 7 = /I (Q)/th! . .
(41) that * o(C)/ThAT) we obtain from

Re{[C(2) — 114,(2)/CA(T)} > Re[C(z) — 1] — |C(2) — 1],

42

. Using the distortion theorem for convex functions [8, p. 118] .
IR (w) | = | 0)]/(1 + )% for |w|=p < 1. If we set w = o e obtaine hae
Xk (01 > e IH(0) (1 + o), for ] = 1. (43

If we use the conditions on 7, s,/ and z in (38) together with (33
(42). and (43) we obtain & vith (35), (39)

ReV 2 A(—m) + Re[B(z2)]m + Re{[C(2)—1]h,(8)/ChH(T) ]} — \D(z)/Chs.
(12 (m— D{IC(z) — 1| — Re[C(z) — 1]} + m[k — (1 + o)
B (0)111D(2) 1.

~~From (37) and the fact that m > 1 we obtain Re " > 0, or equivalently
that |arg V| < =/2. '

Using this in (40) together with the fact that gy (%) is the outward nor-
mal .to the boundary of the convex domain /,(U) we obtain 4(r,s,(;z) ¢
¢ I,(U), which completes the proof of the theorem.

This theorem is an example of a solution of Problem 1’ referred to in
Section 1.

Note that condition (36) implies that D(0) = 0. The special case D(0) =0
was proved in [20, Theorem 2].

If C(z) = 1, the condition A(0) = p(0) = 0 can be replaced by A(0) = p()
and Theorem 6.3 simplifies to:

COROLLARY 6.4. Let h be convex in U and let A > 0. Suppose k>4
|#'(0)| and that B € H, D « H, and

Re B(z) 2 A + k|D(2) |,
for z € U. If p € H with p(0) = (0) and if p satisfies
' A7p"() + B(ap'(2) + ple) + Do) < h(2)

then p(z) < h(2). ) . a-
We are now prepared to obtain some classes of 1.11tegral averagiig oper

tors. Our method involves integrating the differential equation "
A7p"(2) + Blzp' (&) + Cla)ple) + D) = /) ‘

irst-order

and applying Theorems 6.2 and 6.3. We first handle the simpler f
case corresponding to 4 =0 and Dfz) =0.
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THEOREM 6.5. Let vy € C with v # —1, —2, ... and let ¢, & € H with
o(2)®(z) #0 for z € U. If
Re B(z) = [C(2) — 1] — Re[C(z) — 1], z & U, (45)

where B(z) = ®(2)o(z) and C(z) = [y®(2) + 20'(2))/o(z), then the integral ope-
rator I defined bv .

170) = &1 0) 1 | 70re-to0) d (46).

is an avcraging operalor on H,.

Proof. The restriction on v, ¢ and ® imply that I[f] is analytic on U
and I7f}(0) = 0. Let & & H, be convex and suppose f < k. According to (34),
the operator will be an averaging operator on Hy if I[f] < A.

If we let p(z) = I[f)(z) and differentiate (46) we obtain

Bz’ (2) + C(p(2) = /() < h(a).

We now apply Theorem 6.3 with 4 =0 and D(z) = 0. Since (45) implies (35)
we obtain p = I[f] < ). Hence according to Theorem 6.2, I is an averaging -
operator.
I we set oz) =.g(z)y~1g'(z)z'=Y and P(z) = g(2)* 2~¥y~! in Theorem 6.5
then condition (45) simplifies and we obtain the following corollary.
COROLLARY 6.6. Let y € C with Rey > 0, and let g = Hy with Relyzg'(z)]
o)) > 0w U, If T is defined by ‘ '

.

s }
T1f16) = ve@)~ (/1) gty ') dt, (47)
; .

then I is an averaging o]‘wralor. on H.
If we set y=1 in (47) we obtain

11/)(:) = ge) 7 (/') dt < co f(U).

0

This is a generalized complex analog of the mean-value theorem of real ana-
lysis as referred to in (30) and (31). In fact, we obtain .exactly (31) when
Re[zg'(2)/g(2z)] > 0 and f is convex.

(EXAMPLE 6.7. If we set y =1 and g(z) = z= in (47) we obtain the fol-
lowing averaging operator on H
I[f1(z) = az—® Sf(t) t=1dt, Rea>0.
0
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for z U. If I[f] is defined by (49) and Jo[f] is defined by (51), then Jo[f]
is an avcraging operalor on H.

exaMpLE 6.11. If we let y =0 and ®(z) = 1 in Theorem 6.9 then B(z)=
= 1/p(z), C(z) =0 and (50) simplifies to )

‘Re[1/o(2)1 2 2[1 4 2]0(2) |]

for z € U. Hence the operator

Jolf1e) = ( [70) + £(0) 0] 7 94

4
is-an averaging operator on H,. As a particular case take o¢(z) E_G_ to obtain:
if 0 € H, with [0(z)] < |z} then P\e) = 1

L

! ) + £(0)0
Jolf)(2) = ng(h

0

is an averaging operator on H,.

We next consider integrating (44) for the case 4 > 0. This involves two
integrations which leads to “second-order” integral averaging operators. The
prools of the following theorem and corollary follow from Theorems 6.2 and
6.3 and wilk be omitted. Sce [26] for full details.

THEOREM 6.12. Lel o > 0, fﬂ//{;; v <€ with Ref > —1 and Rey > —1
and lel o, ® € H with o(:)P(z) #0 in U. Let I: Hy— H, be defined by

z $

Wz) = ——-l—.—- .QLQ. ~p- A
e = - J o e S F(s) d(s) s8-1ds dt,
let
d Blz) = alf + v + 1 + 2:0'(2)/(2) + 2¢(2)/9(2)]
awn

Cle) = «l(B + :0'(2)[ D) (v + 29(2)[9(2)) + 2(z9'(2)/9(2))'].
If 0 € Hy and
Re B(z) 2 o + |C(z) — 1| — Re[C(z) — 1] + 4|0(2) |
Jor z € U, then the operator
Jol/T =11/} + f(0)I[8]
1s an averaging operalor on H,.

We remark that C(z) = 1 if and only if ¢ and & are constant and afy=1,

ie. 1/a = By > 0. In this case we have B(2) = a(f + v + 1) and Theorem 6.12
simplifies to.

COROLLARY 6.13. Let 8, « C with Rep > 0, Rey >0 and By > 0. If
0 e H, salisfies .

[0(z) | < Re(B + v)/4By, z € U,
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then the operator ,
x ¢
JolA)@) = By {2781 (L [£(5) 4+ £(0) 0(s)] s9-1 4 45
0 0
is an averaging operalor on H.

7. Analytic and Starlike Integral Operators. In this section we il f
W1

the application of differential subordinations to the field of integra] diseyg, |
that map certain classes of analytic iunctions into univalent [unct?l)@ato,s'*
Ong :

We first define some of the standard subclasses that will be used :
section and in the remainder of this article. Let A == {feH: £(0) = ged, ' thi
and let S denote the subset of A comsisting of univalent functioh'sf 0)<1},{

Let f = A. If there exists a real number 6, |6| < /2, such t} el
- 2f'(2)[f(2)] > 0 for z € U, then f is said to be spirallike. We ].e;rteslzﬁt{c't"h-

. . . ~ _ o

class if such functions by S. If 0 < B < 1 and Relzf"(2)[f(z)1 > B then f:
said to be starlike .of order . We represent the class of such fl.ll’lctionsfbls-'
S*[8]; S* = S*[0] is the class of slarlike functions. The class of congey ‘fun}
tions, denoted by K, are those f € A for which Rejzf "G+ 11> 0 f(cn
z e U. It is well known that K C S*[1/2) C S* C §C S.

There is a long history to thc study of integral operators mapping a
subclass of A into another subclass of .4, The first such operator,

z

I[f1(z) = g [f(1))e] d,

0

was introduced by J. W. Alexanderin 1915 [17. In that article he showed
that I[S*] = K.}Since then, extensions of Aiexander operator and wany other

~types of integral operators have been investigated Ly many authors. (Sce

[21] for a short historical review). Most of these operators are special cases
of a more general operator of the form

z

If)=) = [ Ly \ S0 o) 151 d/] (52)

Y 0(2)

0

This operator was investigated by the authors together with l\l,.}‘(e ag;ii
[22] and [23]. A key element in the analysis was the use of a.dlfterten b
inequality given in [10]. In that article «, #, v and § were restricted to

real, while f was restricted to be in S* or K.

. . . . - . - allow
In this section we cousider the operator given by (52), but now

«, B,y and 3 to be complex and allow f to be in more ggnerg] subse\t'?(é’s
A. A new method of proof, employing a differential subordination, pro sub-
an extension and sharpening of all previous results. The key dlffe;entla) g
ordination is given in Lemina 7.2, We 1nieed to first introduce a special mapp
from U onto a slit domain.

}

v s e
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peEFINITION 7.1. Let ¢ be a complex number such t}fat Rec >0 and
N =N(c) = [lc](1 +2Rec)2 + Imc]/Rec.

If % is the univalent function h(z) = 2Nz/(1 — 2%) and b = h~1(c), then we
define the “open door” function @, as

Qlz) = hl(z + 0)/(1 + 82)], 2z U.  ~—

From its definition we see that @, is univalent, Q,0) = ¢, and Q{U)=
= I(U) is the complex plane slit along the half-lines Rew = 0, Im»w > N and
Rew =0, Imw < —N. The reason for the title “open door’’ will become
apparent in_the remarks following Lemma 7.2.

LEMMA 7.2, (25]. Let Q. be the function given by Defmmon 7.1 and let
B(z) be en analytic function in U satisfying

B(z) < Q(2). (53)
If pis analytic in U, p(0) = lje and p satisfics the diffcrential equation
() + BEp) = 1 (54)

thew Re p(z) >0 in UL

I'he condition Re B(z) > 0 for ze U impiies condition (53) and so in
this case we also have Re p(z) > 0 in U. This “right-half plane”’ condition
on B plaved a crucial role in several of the authors’ previous articles on dif-
ferential inecqualities and integral operators. The new condition. (53) involving
the slit mapping Q, opens the left-hall plane through the opening (“open door’’)
between the two slits of Q.. This cssentially doubles the region of variability
of I3 and is a significant extention of earlier results. In the remainder of this
article we shall extend some of our previous results by using this lemma.

The following theorem provides conditions for which the function F =
== [T f1 defined by (52) will be an analytic function. This result is a signifi-
cant extension of a similar result in [23, Theorem 1]. ‘

THEOREM 7.3, 1211 Lef o and & be analyiic in U, with o(z)®(2) # 0 in
U, und q,(O) =®0) = 1. Let o, 8, v and 8 be complex numbers with B # 0,

x4+ 3 = -y and Re(x + 8) > 0. ]_/ f & 4 salisfies
2« IO+ 20 4 5 < Qunold), (55)

wh;)r Q. is defined by (33) and F is given by (52), then F € A, F(2)[z# 0
an

Rc[p@ ““2 + - ]>0 for z < U. (56)

Proof. From (33) we see that f(z)/z # 0 in U. Since Re(x + §) > 0, the
function p defined by

pla) = ;=+L@(,,) [f‘—z’]' E ["%’]“ta%—l olt) dt =Z%(—a() S/«(: pplt (57)






SECOND-ORDER DIFFERENTIAL SUBORDINATIONS 25

is a spirallike function. If, in addition, « is real then F is a starlike function
125, Corollary 2.1]. . o . . o
~ By placing some additional restrictions on the function fin (52) it is
possible to determine integral operators I such that; I(S*) C 5:* and. I(K)CS*.
By placing restrictions on the functions f and ¢ in (52) it is possible to qb-
tain integral operators I such that I(S* X K) C S* and I(K X K) C S*. See
[21] for a complete discussion.

Ypecial cases of (52) for which I[S*] C S* and I [§] - S were considered
in [27] and [18] respectively. In these articles the order of starlikeness of

I[S*] and order of spirallikeness of I [§] were obtaiued.

8. Briot — Bouquet Dilferential Subordinations, Let B and y be complex
numbers, let /(z) be univalent in U, and let p(z) = 2{0) + p;z + ... be ana-
Ivtic in U and satisly

p2) + =L < ).

P + Bp(z) + v < M)
This first-order differential subordination is said to be of Briot—Bouquet type.
This particular differential subordination has some special properties and has
a surprising number of applications in the theory of univalent functions.Thi
differential subordination and generalizations of it have been studied by the
authors in [6], [16] and [17].,With suitable conditions on B, y and %, do-
minants and Dbest dominants were obtained by using the general method of
differential subordinations. In each of the alorementioned papers an earlier
version of ILemma 7.2 was employed with the more restrictive condition
Re B(z) = 0 replacing condition (53). We will state the results in this section
using the more general form of the lemma; prools will be omitted since they
are very similar to the original prools.

We first show an example of a problem in univalent {unction theory that
reduces to finding a best dominant for the Briot—Bouquet differential sub-
ordination given above. Let B and y be complex numbers with g # 0, let Q.-
be the univalent function given in Definition 7.1, and define the following,
subclasses of analytic functions: ’

Koy = {f = 4: Re(s (/) +v) > O},
(60)
Hy,={fe4 Bzf’(z)/j(~) + ¥ < Qpiy}-

A PRI 104 H 3 et H - '
As we've indicated in our discussion following Lemima 7.2, because of the
open door function Qg.y we have K,, C Hg,.

Il we set o=@ =1, «a=f and 3 =y in (52) we obtain the operator
5 ]cs
Fl) = I1/)e) = | B2 o) s - - (61)
Z 5 .
If f € Hg, then from (60) and Theorem 7.3 we deduce that F e Ka,,
that is I: Hy, — Kp,. A natural question to cousider is the following: what

!
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i
would be the effect on I if an additional condition were im i
example, suppose % is univalent with 4(0) = 1 and f satisfies 1?sed on

X , Frp
Does (61) imply the existence of another uuivalent function q(z)(z te) < iy |

such that . with q(o)(\\z)i
zf’(2) 2I7(2) b
T2 L M) == —L ? )
o <M )= T 9@ (&)

If we set p(z) = zF'(z)[F(z) then from (61) we obtain the Briot — Boy ;
ferential equation Quet dif”:i

3

P’(2) )
2104 —l— z = .
P Bp@y+vy  f(2)

Hence finding a function ¢ satisfying (62) is equivalent to findi
of the Briot—Bouquet differential subordination

z 2P o).

PO+ oy <) 6

Finding the best dominant of this subordination will yield the sharp ¢ solviy

(62). In [31] S. Ruscheweyh and V. Singh gave a partial answer 15
this problem in the special case when /(z) = (I 4 2)/(1 — 2), B > 0 and Rey>0, -

We turn now to some results concerningdominants and best dominang

of the Briot— Bouquet.differential subordination.

THEOREM 8.1. [6]. Let h be convex in U, with Re(Bh(z) +v]>0in (.

If p s analytic in U with p(0) = h(0) and if p satisfies (63) then p(z) < hiz).

As a corollary of this theorem we obtain the following affirmative answer

to the problem presented in (62).
COROLLARY 8.2. [14]. Let I bhe convex 1n U with Re{ph(z) +v]1>0in
U and 10) = 1. If f e A and zf'(2)|f(2) < I(z), then F as given by (61) salis-
Sies zF'(2)[F(2) < N(z).

Special cases of this theorem and its corollary with 2(z) = (1 + z)/(1 =)

" and particular values of  and y had been proved ba many authors ([11], 12},
-[33] and [6]). In all of the cases the formulation and the technique of proof
was very different from that of the Briot— Bouquet differential subordination. .
We can obtain the sharp version of Theorem 8.1 and Corollary 821,

we impose a condition on the Briot— Bouquet differential equation. ]
THEOREM 8.3. [6]. Let It be convex and supposc that the diffcrential cqualion

18 dominants ,

)+ 28 e 0) = 1(0), (64) .
g(e) + 20— = i(a),  9(0) = MO) e
has a wunivalent solution q, which satisfics g < h. If p is analviic i1 U
satisfies (63) then p < g, and q is the best dominanl. . <h

Note that because of Theorem 8.1 we can replace the condition ¢ ‘
in Theorem 8.3 by the condition Re[ph(z) +v]>0 in U [6]. (5)iel2)

COROLLARY 8.4. [14]. Let f € A and let g = Kgy be such that 2§ (‘)fosc
is convex. Let F =1I[f] and G = I[g], where I is given by (61), and S'fg/(g)l
2G'(2)[G(2) 1s univelant in U. If 2f'(2)|f(z) < zg’(2)[g(s) then 2B () [F(z) < #70
G(z), and this resull is sharp.

and ‘l
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(14 (1 —2a)]/(1 —2), P>0 and —Re(y/}) € « <1 has
a univalent solution. In fact,
then (64) has a lormal solution given by

27

In [6] a direct proof is given that the Briot— Bouquet differential equation
(64) with /fi(2) =

in this case and the gcueral case, if ¢(0) =

a,
z —1
H(:)|p 5 He(fyt=rdt] —~/B, ifa=0
0 65
o) = | - » (®)
2Y[H(z)]8e 35}1&«(/) rrvdt| —~[8, if @ #£0,
| 1}
where
zexp 2 S "a, if a=0,
Y
0
H(z) = {
z exp Slﬂ;—a dt, if a #0.
a

0

Conditious for the analyticity and univalence of this g are given in the
following two theorems.
THEOREM 8.3.

Let b be analvtic in U with h(0) = a. If

(Ba +v) > 0 and BA() + v < Qpesal?) (66)
where Q. Is given by Definition 7.1, then the solulion q of (64) given by (63)
ts analvtic in U and satisfies Re(Rq(z) + ) > 0 in U.
Although some generality
Rejth(z) + 1

v is lost,
1> 0. in U [16].

condition (66) can be replaced by
tuoruM 8.6, Let h be analytic in U with h0) = a, W(0) #0 and
Re(Za 4- ) = 0. 1f P(z) = Bh(z) + v salisfics
(i) P < Qpaty
() P+ 14+ 2P"|P" — 2:P'|P < Quagy+1, and
(iii) =

zP'|P is starlike (log P is convex)

IlzwL//u solulion q of (64) given by (63) is univalent and satisfies Re[Bq(z) +
i U

+ +¢]>0
COROLLARY 8.7 (16). Let b be analytic in U with I (0) # 0. If P(z)
= Bh(2) + v salisfies
(i) Re P(2) }( 0 for z € U, and
(i) V/P and log P are anvex in U,

the nL//u solution q of (64) given by (63) is univalent and satisfies RefB
n

q(z)++]1>0
= Bh(z) +

'lhemem 8.3 requires that A(z) be convex. If this is the case, then P(2)

. z) =
+ v will also be convex. A simple computation shows that P and
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1/P convex imply log P is also convex. Because of this we cap coml

rem 8.3 and Corollary 8.7 and obtain the following more exolill}bme The,
THEOREM 8.8. Let h be analylic in U with I'(0) # 0. If P(‘;; Cf Tesyly

satisfies = fhgy) +y
(i) Re P(z) >0 for z € U, and

(i) P and }|P arc convex in U,

then the -solution g of (64) given by (65) is univalent and is ), hest dopy;
Of (63) ) ) Oﬂml(mt
Using this theorem we can now give a complete answer to the
posed in (62). Drobleg,
COROLIARY 8.9. Let fe A, lel g « Ky, and lel T = [(f)
where I is given by (61). If P(z) = Lzg'(7)/g(2) + ;
(1) of Theorem 8.8, then

= and G = [
¥ salisfies conditions i) ﬂnd

2f’(2) 2g'(3) - 2F'(2) 2G’(z)
f(2) g(2) F(z) G(2)

and this latler subordination is sharp.
Several generalizations of the basic Briot—Bouquet differential subord;.

nation (63) have recently appeared ([17], i3], [4], [5] and [28])
In [17] the authors considered generalizations of the form

0[p(2)] + 20" ()0 [p()] < (2), (67)

where 0(w) and #(w) are analytic in a domain D D p(U), and 72() is univalent.
(If B(w) = w, n(w) = Pw + v)™! and & is convex then (67) reduces to the
Briot—Bouquet differential subordination discussed previously). They deter-
mined conditions on 0, n and 7% so that dominants and best dominants of

(67) could be obtained, that is for {(r, s) = 0(r) + sy(r) and 7 they found a
g such that .

)

Y[p(2), 2p'(2)] < I(z) = p(2) < g(2). (68)
The authors in [17] also considered the converse problem : given a univaleit
function ¢ and a function ¢ : C2— C, then determine the largest class of func
tions % such that (68) will hold. This is an example of Problem 3’ referred

to in Section 1. Typical of their results is the following theorem, which has
many applications.

THEOREM 8.10 [17, Theorem 3]. Let ¢ be univalent in U and Lt 0 u;:xd

n be analytic in a domain D containing q(U), with m(w) # 0 when © € 4(0)-
Set Q(2) = 2q'(2)n[q(2)], Mz) = @[q(2)] + Q(z) and supposc that

(i) Q s starlike in U, and

(ll) Re zl(2) = Re [0’[(1(2)] + 2Q’(2)

. 20 nle(2)] Q@) 17

If p is-analytic in U, with $(0) = 9(0), p(U) C D and
0[p(2)] + 20" (2)n[p(2)] < h(z) = B[q(z)] + 2¢'(2)[9()]
thew p <.q, and g is the best dominant of (69).

0, ze U.

(69)
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ExaMPLE 8.11. If we chose ¢(z) = (1 + 2)/(1 — 2), and if we take O(w) ="w
and n(w) = 1/w, then Theorem 8.10 will be satisfied and we have: if p(z) is

analytic in U, with p(0) = 1, then

zp'(z) 142 2z 142
P+ <1t To= =) < -

and ¢(z) = (1 + 2)/(1 — 2) is the best dominant.
An interesting application of this differential subordination shows that

if f is analytic in U, with f(0) =0 and |f"(z)/f’(2)| <2 for z = U, then f
is ‘a starlike function [17, Theorem 4].

9. Integral Operators Preserving Subordination. Let E C H and let I be
an integral operator I: E— H. In this section we apply the theory of diffe-
rential subordinations to determine conditions under which

f<e=1I[f]<Ig] (70)

We will call such operators subordination-preserving.
A few subordination-preserving integral operators have already appeared
in the literature. In 1935 G. M. Goluzin [7] considered the operator I:

H,— H defined by

z

11716) = {71

#e showed that if g is convex then (70) is satisfied. In 1970 T. Suffridge
[32] extended this result to the case when g is starlike. In 1981 the authors
[14], using the theory of differential subordinations, extended these results

by considering the operator I: Hy— H defined by
P) 1
nﬁw=UMMﬂ4-

. 0

They showed that if 8> 1 and if g is starlike then (70) is satisfied.
In 1947 R. Robinson [30] considered the differential subordination

[2F(2)]" < [G(2)Y,

with {"(0),= G(0) and showed that F(rz) < G(rz), for r < 1/5. If we let f(z)=
= {zF(z)|" and g(z) = [2G(2)}’ then this result can be rewritten as '

fl2) < glz) = I[f](rz) < I[g](rz) (71)
for » < 1/5, where I: H— H is defined by

3

fr@ a (72)

0

N |-

11f1() =

and g is univalent in U. We will extend this result in this section.

\
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ptain new distortion theorems for some classes of analytic functions. As exam-
;les of each of them we present respectively the following examples :

exaMpLE 9.3. If f is analytic in U then

z 2

12

f(z) < a _: - = Sf_t(tz di| < [2arctan z12]2,
2) .

In addition,
2 12 .
— /2 < —2 arctan 72 < Re S f—tﬂ dt € 2 arctan 72 < =[2.

0

for |z} < 7. o
ExaMPLE 9.4. If f is analytic-in U then

R

_ z _]_ ‘ &) 12 4z .
flz) < z:[zfll] dl .<(_———l+\/.l—-|-_z)’
0

I+

If we set p=+y =1 in Theorem 9.2 then & = 1/2 and we obtain the
following particular result.

COROLLARY 9.5. If f,ge e H, g'(0) #0 and .
Re ["3"“" + 1] > -1, (74)
&'(2) 2
thew Iigl 1s wumivalent and
2 | ]
Ji2) < gls) = = Sf(t) a1 < ~ Sg(t) dl.
0 o

This corollary improves the result of D. Hallenbeck and S. Ru-
schewevh [9 p. 192], who proved the conclusion with (74) replaced by
Relzg”(2)/¢g'(z) + 1] > 0 in U. :

Corollary 9.5 can be used to improve the Robinson result given by (71)
and (72). If g is univalent in U, then it is easy to show that (74) holds for

lz] <7, =4 — /13 = .3944... Using f(r,2) < g(#,2) in Corollary 9.5 we deduce
the following result.

THEOREM 9.6. If g is univalent in U and I: H— H 1is defined by (72)
then .

J(z) < g(2) = I[f)rz) < I[g}(r2)
for r 4—JT3= 3944 ..
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ON TTHE OLOVVANISNIKOV - SCHOENBERG THEOREy
AND SOMIL SIMILAR RESULTS .

JOSIF E. PECARIC?, SEVER $. DRAGOMIR** und BORISLAY CR$qypess

|
Ravivad > May 9, 1959 :

REZUMAT. — Asupra teoremel Olovyaniinikov-Schoenberg sf citeva
simflare. In lucrare se dau generalizdri ale inegalitdtii OlovyaniZnikov-Sch
pentru functli k-convexe precum §i citeva rezultate similare.

eZullute
oenberg

|

0. The following result is given in [3] and [4].
THEOREM A. Let g be k-convex for k=0, ....n 41 on (—o
asstme that g satisfies

g(0) < M and g (0)/n! < M,

! 0}- (md.
{

Then
giNx)fp! < (;’) MM G =1, ..., n—1). (i

* Egquality holds in (1) for some 1 <j <n—11iff
g(x) = M, (L4 %) on [—1,0] and g =0 1 (—0 —I) @

where 1" = M,|M,,.
We shall use the notation:

(%9, -+, %4)f 1s divided defference of f;
feWnla, b]: = {f: /-1 is absolutcly continuous and
/™ e L [ab]};

where the norm in Ly is given by ||f]], = esssup {|f(x)]: x € [, b},
P =11, implies P is a polynomial of degree at most 7. 5
A simple proof of Theorem A is given in [1], where the following result
is used :
THEOREM B. Let h & Wi[a, b] and assume (hat
a) h is n-convex on [a, b] and
b) there are points a < &, < ... < E,_y < b such that

(& ..., Eaci]B > 0 for cvery k=0, ..., n— L

-1
Then W9(0) > 0 for every k=0, ..., n— 1. If for some 0 <m ¥
b)) =0 and &,y <b then I Oy on [Ey, b]

* Faculty of Technology, Ive Lole Ridara 126, 41000. Zagreh. Y ",
*¢ Secondary School, 1600 Bils Herculane, Rc:ma,,,'uo' agreb, Yugoslavia

®98 Polytechnical Institute, 1900 Timisoara, Romania
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1. First we shall give generalization of 7Theorem 1 from [1].
puporEM 1. Let f, g & Wola, b] and suppose that :

g(h) < f(), g¥(a) > f®(a) (k=0,"..., n —2) (3)

and

[x() ooy Xy—-1, b]f? [Xou ey Xy, b]g f07’ (?ll a S xO S ot s Xn—1 S b (4)

il % Xp 1.
with %o * G0B) < fO0) (k=1, ..., m—1). If gm()=7m@) for some

<mgn—1, then g = f.
b y)lrooj. Let in Theorem B be n—n—1, h—[x,0]H, H=f—¢g, § =
a (i=0,...,2—2). Then h®(@) >0 for k=0, ...,n — 2 become f®(B) =

®) for k=1, ..., 1 — 1 because
(b — a)}fa, ..., a)([x bIH) = [a, ..., a bIH(b — a)* =

[
> ¢

k {imes &k times
k-1 .
= Hp) — Y Ha)b — a)j! =20, for k=1, ...,n— 1.
j=0

Now, assume that H(h) = 0 for some 1 < m < # — 1. This is equivalent
to km-n(h) == 0, then by Theorem B, k € II,_,, ie, H € II,,_;, and thus

m—1
0= (b—aya, ..., a,b]H = H() — ), HMa)(b — a)fj!.
m tiwes =0

Since by (3) H()) > 0 and HU(a) < 0 for each j in the sum, we get
Hia) = 0 (7==0,...,m — 1) and hence H = 0.
cororLARrY L1, Let f, g € C*[a, b] and suppose that (3) and

S (x) =2 g(x) for all x = [a, b]

hold. Then the conclusion of Theorem 1 is also valid.

Proof. We shall use the following theorem of representation due to D.
V.Ionescu (see [2] p. 54):

* .
(Xgs -y Xy X4, ooy %, - o X oo, ) =) o(s) f)(s) ds
n, times n, times ny, times %o
where x, <%, < ... <y % +m + ...+ m=n+1 and S € C*[x,, x,].
By this fact, the condition (4) is equivalent to

b

{ o(s) (79(s) — gos)y s > 0

%

and since ¢ is positive on (x,, %) (see [2] p. 74), then (4') implies (4) and
Corollary is proven. - .
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COROLLARY 12 If m addu‘wn io lhe condmons of le |
mcreasmg Sfunction for any 1 <k<n=1,lhen g(k)( ) < f""(b) ’”. 7, g(k
i) cOROLLARY 1:3. If g 1§ ®k-convex: for k=0,

all i [ :

» 1 oon (L X
f1es (- °0 0] 4 d[s'b]l‘
) E \; N g(O) 1W and 1/n[x,, s Znoy, O]g <M, :_iu;
for all —l< %5 < ... € Xpy 0 where I* = M|IM,, then (a‘.
equality if g jis.gwen by (2).. o (1) 1s valzd iy |

COROLLARY 1.4 If g'is k convex for k=0, ( i
,\ g(O) \~ M .and l/n' a(") ) < M, (for all x e[y, 0]) s"”sfta
< DRI e

then (1) is valid zmlh the same cond1t1ons for c(/uah/y as in
Proof. This is a_simple consequetice of Corollary 1.3.
Remark 1.1 the‘function g is also (7 4 1)-convex, then
creasing and the second condition in (6) is equivalent to g(")( )n! <
is equivalent with Theorem A.
2. The following theorem is. valid.
THEOREM 2. Let f, g € Wh[a, b] and suppose lhat- - f

st g & Myl ~ )= Mo, gW(@) =0 (k= 0, icsw—2) ;g
and Kl'l' . Nll K \\ FPEN S .( i E U (l)

|1/n|[xo, s Fumy V) S M for all @ < % << e <, o

“C orollal.’){ 1;3..

{n) l non de

|
i
i
\ M “hat ,

Then the followmg.mequa\luy kolds ( e e

tve s aone |l 1g(b) ( )M,,(b ) L (;z) J/If)n—j)/n M, i
Proof. Let:in Theorem 1-be f(x) = M,(x — a)* then (3) and (4) become
(b)) < -(b ~ a)", g®(a) > 0 (10
. . e b, - xn_x, blg < M, - ()
[SE S ETE) I § PEVINERE § CRSIP OIS S .
and g®(b) < f0) ( iy L2 ..., %~ 1) 'become T
lk' *) RYMAD — a)r—+ (12 |
Jklg (b) (k)M“’ ayn-*,
Put in Theorem l g(x) = _M il — a) f—*g, then +(3) .and (4) become
R S L I G YIS ;g(b)‘; ”(b — a)n gM(a) < . (li)
Lt b]g/'--M" SR
and in this case we have.:}
- \ “\".‘,‘ut\' R .\ s L ',' .
1k ‘g‘*’() ( \M b = ape -

TR G eE e it
T It s obv1ous that (10) aud 13 ' .llv:.-alld;(l'})’“‘““’
@®), and (12) and (15) with (9). ( ) are eqmvalent to ( ), (L1)
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Vi te: !
4 17,0070 4 €ty

CcOROLLARY 2.1. Let f, g € W, [a, b] and suppose that, f7); omd bul
'):" ) n)J )1
ML YR gl < M, for all & < %, S ~})"<"x'"“‘< by, (19)
FEEEIRS L E B i LY P "-.'-‘, -

are valﬂi Thcn 9) is valzd too T v Y
COROLLARY 2.2. Let g e C”[a b] and supposc thal

i i '!,'.’ 0O = i’E{""l'.i\ '\
“lelbii < 1161, /n“(b—a) gMaf =0 " - L) By

Cinsaal o goinoliol od?
an i i - (k=0; . i \_2)- LY 3 R L
Then the following incquality holds' v DA e A """\"‘\' ;';"\ i
g | < 1g {1,/ =) ')'(b - 'éz‘)w Jor'all 0"<5 €0 ag)
Proof. Tt is. well l\uown’th'lt TR ST ,,\, N

[[Xgs Xpp - ooy Xne1s D) gl < g™, /n' see f01 example [2] p 76)

-
.

N
, ppiaey T8 ey
i LA ’\.l

NVANE ’7) | <n !/ 1 —J)!J-) 1/(” I llg‘”’Hw (b - ﬂ)"“’
what implies (18).
3. We start to the following definition :

DEFINITION 1. mapping f: [a, I)]—-»R is called #-FZ-comvei'én S{a, B

il there arc l)oints: a < &5 S phen '<,,;,, £ b, such that vy
R IR 3 It N e 'i:;

[E_A.---:Zn]j Ofora"k_Ol ; —".If—‘~\) (‘I\( )

'1)- I ot

It is clear the fact that if fis k-convex: (b = O, ’1,’. L) oni e ititérval
[a, b] then f is n-I'Z-convex on the every subinterval, [a;.x],of .[a; b]:

The following characterization theorem is . valld‘ e o

THREOREM 3. Let f € C[a, b] Then the followmg slalcmcnls are equwalent

(i) f 1s k-convex (k= 0, 1, ,n) om[a, by o waoiion o udd

(it) f 1s n-convex on [a, b] “and (n — 1)-FZ- -convex on every submteﬂ)al”“

la, x] of [a, b]. 3 B R A S TR T Y

Proof. “(i) = (ii)”’. Tt's obvious. SR e e LER ]

“(i1) = (i)". I f is m-convex on [a, b] a'nd'(n"'—- :FZ-forivex on every
subinterval [, x], then by Theorun of Farwing— Zwick’ (see’ I‘heorem B)’ we”
obtain. f®(x) > 0 for.all £ =0, ..., (n = 1), i.e, f is k-convex (k =0,1.i, n)
on {a, b] and the theorem is prO\en Y TP PP L ST

Now, we give another definition. o L
DE}’INITION 2. A mapping [ e C”[a b] 1s“' called’ ﬁ.—.’I‘ aylor™* convex on
[a, 8] if f(x) >0 on [a,d] and: R A
f(%) = f(@) + (x — @)/11f0@) + . (% = a)i=1f{n — 1)1 fo-D(a) (20)

o forrall % € [a, 'b]"'('n:?«ﬁ.al)';';ii:.;;;;,m:'»;! 20 4 qi)

Remark 2. 1t is easy to see that.if f & C*[a, b] is n-convex on [a, b

then f is #n-Taylor convex on [a b] .. Hoi -
; Conerpe Gl v gvrallon et ank
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Indeed, since:
f(x) - U(a) + (x - (l)/l !f(l)(a) + ... 4+ (x _ a)n—]/(
— JOEN N x — a), & < [q, 7],

and f™(E,) > 0 for every & € [4, ], the Remark is proven,
The following lemma is also valid.

LEania. Let f & Ca, b). If f is k-Taylor convex (k =0, .,
[a, b], then f is (1 — 1)-FZ-convex on cvery subinicrval [a, %] o .[’a b? 1) oy

Proof. We start to the following equality

”— 1)!f(’l~])(a)] _

m—1

la, @, ..., & x)f(¥ —a)” = f(x) — ¥ fOa)(x - ayijj1

i=0
for all 1 <m <n—1and x € [q,b]
Since f is k-Taylor convex (k =0, ..., 7 — 1) we have for | g m < gy,

m~1

fx) > /e (x — a)ifj! for all x < [q, b]

=0
and putting £ =a, ..., Eu_z = «, &y = ¥ it resuils
(Bt -ovs Enmi]f20for all k=0,1, ..., n -1,
ie., fis (» — 1)-FZ-convex on every subintervai fa, v} of Tu, bl
THEOREM 4. Let f & Cola, b). Then the foll-viciug asscrtions are equivalent:
(i) f s k-convex (R =0,1, ..., n) it la, bi;
(ii) f is n-comvex and k-Tavior convex (i = O, 1, ... = 1) on |a b}

The proof follows by Theorem 3 ard by the alove lemma. We omit the
details.

COROLLARY. Let f, g € C*[a, b]. If

1. f®™ > g on [a, b];

2. f—g s k-Taylor consex (k=0,1, ..
on [a, b] for all k=0,1, ..., n

Remark 3. Let f < Ct [a, b]. Then the following sentences are cquivalent

(i) f is ‘nonnegative, nondecreasing and convex pn [a, b];

(ii) f is convex on [a, b] and for all x € [a, b] there are points

a <& <& <& <a such that:

[Eo, &1 E2)f, £y, E,1S, F(ED) 2 O
(iii) f is nonnegative convex on [a, b] and for all x € [a, b]
f(z) = f(a).
The proof follows by Theorem 3 and 4 for # = 2.

3 U
n — 1) oir La, b, then fO2 g

ty
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A GENERALIZATION, -OF, BEZIER SURFACES 41

Indeed, from (1) and (2) one deduges. i T i g seiit

B(O, O) = Poo, B(O, 1) = POII: (l’ O) = Pmo, B(I' l) - Pmn (3)
and taking account by [1] and [3] we lobtaim e ( ’_f

B®#9 (0, v) Af,’, é i == 1)p- (?]b "3 ”)Pu /

v 0§22 0

i mj2

P ”
Boa(1, v) ﬁagg(“ 1)( ) ,,H.(v)P,,,_,,,/
m q v
0,9) — A7 —
Mq@,m fy;ﬁ;QIQIL]WWW-’

N
T

BO9(w, 1) = 43T 3 (~ 1 buste) Poaiin ¢
e g (4)

Bon(0, 0) = A% 35 35 (=1) phescs(B)fa]f,

t=m0j=0

L S
B(M)(O, 1) = Aﬁ.AﬂED(E-(—,;l)#?ffci (é “q_) Prisr ot
tm0j =0 1 ]
AT | b -
Bra(l, 0) = 4541335 ‘—1”'-’11’) Ypuliy
r t=0,=0
LG - ,7;\)

. ; '\ 1 N — ER—-
P q Ve Cl
Bray1, 1) - A,,,A,?EE( 1),+,( )( ) Ponini _—
S - o; =0:s ) o 1'~.] 1 ;,11'“ o avus! donie

where AZY L XD cmr,m'ml S8 yaizl
k nl
__— S, . NP
"= _k)-l;x;;_,_.;;*;?,wi L (n gnee,
N :4

In this paper we give a generalization of Beaer surface (l). chaugmg the

functions b,, with functions wps, (see [5])y 1 en vy e mi- = SREVE
where
v s T8 0y )i

(P7)pa — s et 0 < k<,

& |

bt

. T S T T Y
T YT TR TR AP )
(1 — ) +*+(k r)t (1= %) if b

kol

wil) = 1 (P57)
A (15 Berai(l it (rlec T T S plmir R < By

v W \e—r RW: U A
(5)

, ’; — ‘._/ ¢ [ AT I
ik 7 b = (e

7 being & non-negative’ mteger such’ that o & .
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Taking in view [3], we have succesively

Ezwmrl(u wup]( )
i=0j5=0
zw Eb,. o3 (0) [Pyrto(Pos 5= Py)] =
1=0 f
77

n—-s m—r

= an—sj E bm—n [QU + ‘M rvs — Q:j)] —
7=0

m—rn—s

= E Z:bm—r,i(u)bn—s,j(v){Pii + v(IJi.5+f - PU) T
=0 j=0
+ [ Pryij + W Pryis+i — Ppiij) — Py — v(Pi; — P'i)]} =
—EO Eobm-—r i u)b —SJ(v)[Pl} + u( i, 5 T Pij) +
J=

+ ¥(Pissj — Py) + wv(Pryissj — Pi,s+;’ — P i +P)).
Therefore, we have obtaind the following vectorial equation

m—y -3

S(‘“ 7) 2 ;bm—-n n—-s] )[Pu + u( r+i, T Pli) -
6
+ 0(Pistj — Pyj) + w0(Priisej — Pisej — Prrig+ )], ©

which turns to equation (1) for (r, s) € {0, 1} x {0, 1}.
Using [3], formulas (7) and (8), we deduce

)

S(P-O)(O, v) = Aﬁ._rzwn,s,j(v) AJ'

j=0

U’O)(l 1)) _Aﬁl yEwns; B]

J=0
SO, 0) = A7 sz,,.,,(u
1=0
SO, 1) = AY_, ; ~
) gwfur.(‘u )

J=0

q
SN0, 0) = A5, A 3> (—1)e~ (9J A= AL a1 (—1)?"'({'7 G
. ! >

S6a(0, 1) = ,m_,,;g_,é) (_1):‘(;1,) Auoj=db_ A1, 2 (=1)—¢ ()

=0
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> THEOREMES DE POI\TT FIXE DANS LES ENSEMBLES '
CO\IVEXES

FLORICA VOICU‘ noee o'

U SUTEIR RN A e DYy
B .

Marmstm ftf” le 70 mai 1989 .
e AL TN R dring e el by :\ Slelipesae i g HERFU S SO TS
i~ nFZU\lAT. ~ Teoremsé de punet fix"pe mumml eonvexe. ': : Fie ¥ unspatiu- "\. te
liniar complet reticulat §i K < € o submulf{ime nevidi si convexi. In aceastd:
lucrare se stabilesc unele rezultate pentru aplicatii Kannan definite pe K cu va-

lori in K. Terminologia si notafiile, smt cele din {2].

NIRRT Tt G wiol

1. Introduetion. Soient ¥ un espace linéaire complétement réticulé et
K C %, K non-vide ct convexe. Dans cetté note on donnent certains résultats
pour les applications Kannan définés sur K a valeurs dans K .La termmologle
‘et les notations sont celles de [2]. En partlcuher, on de51gne par N T’ensemblé
des nombres naturels. . - ; -

2. Soit ¥ un espace lindaire completement rétlcule satisfaisant la suivant
condition : sty wisin 60
(C*) Pour toute suite généralisée (0)—borné, décroissante {A,};.A de sous

— ensembles non-vides de %, convexes, et (o*) fermes on a ﬂA,;é O,

Exemple. Tout espace ¥ de type (KB) possed.e la. propnete (C*) (paf
exemple: V((0, 1)); (%), (L?) pouir 1 € p <.) -

DEFINITION Soient % un espace linéaire complétement réticulé et K C %,
K non-vide et convexe. Une application T : K— K s’appelle application Kannan.

sur K s'il existe a <= ]0 -—[ tel que L i e x N

SIS , -l IR

IT(x) ~. T() | < (lx—T(x)l+ly—-T(y)l) Mxy<=K (1)

rriorisME 1. Sott X un espace: linéaire. com]bletement réticulé qui posséde
la propriété (C*) el soit K un sous-ensemble non-vide de % (o) bome (0®)
. fermé el convexe. Sott T rune apphcatwns Kannan sur K.. St

sup |T(y) — | # sup. Ix—-yl e (2
ysF [
pour tout sous-ensemble F C K (o*) fermé et convexe, qui a au moms dcux
éléments et T(F) CF alors T_a un pomt ftxe umque dans K - e
. Démonsiration. Soit | - '-7 s e PHR P’z BICEET (S ETA TS L I
o = {FIFCK, K convexe (o*) fermé T(F) CF}

La famllle fx est non-vide et posséde un elemeut mlmmal G Sl G, {x"‘}
alors T'(x*) = x*.

* Institut de Génle Civil, 73232 Bucarest, Romanie



F. VOICU
46

Supposons que G # {x*}. Alors quelque soient x,y <G on a:

IT(x) — T(»)| € a(lx — T(®) |+ Iy — T(y) ) < 2« sup IT(y) — 3| <

ye X
< sup |T(y) — |
y=G
d’olt on a: ’
TG) C Gy, ={z € K[|z — T(x)] < sué) lv — T, (V) x e G)
s yE

On observe que lcnsemble G, est (o*)—Tfermé ct que l'ensemble ¢ G

est T—invariant, c'est-d-dire, T(G N Gy) CG N Gy. D'autre part, G o
minimal et par conséquent il résulte que: .

G CG,.
Alors pour tout x € G on a:
sup |T(x).— y] < sup [T(») — »| 9
yeG y€G

" Considérons ’ensemble
‘ Gy = {z € Glsup [z.— y| < sup |T(v) — v}
yeG reG
On observe que
. G1 7—5 q)

Soient, #, v € G, et A € [0, 1]. Alors:
e+ (1 — v =y = |2 — 2y + (1 — 2o — (1 —)y| <
She—yl+ (1 —=Npp—y] (V)y<=C

d’ols il résulte que
sup |2+ (1 —Nv —y| < Asup |u —y|+ (1 — A)sup |[v —y]| <
-ny yeG yG&G

< Asup ly — T3+ (1 —2sup [v — T =

< y€G6
= sup ly — T(y)|
sup Wt + (1 — 2o — y| <sup |y — T()] g
De (4) on a 7ee
M4 (1 —Nv eG

c’est-a-dire G, est un ensemble convexe. '
Nous supposons maintenant que z = G,, ou 51 est (o*)—fermeture de Gy

Soit {z,}sex une suite d’elements de G, telle que z,,_o_;z.

Soit {z,}ren une sous-suite quelconque de la suite {2p}nen. Alors il existe une

sous-suite {z;, } telle que nine
n

o
2; —_— Z
Jk”
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On a
e, — | < SUp Iz, =yl < suply = T()| (Ny <6 (5)
yE

Considérant la limite, pour #—-co, dans la relation (5) on obtient
sup [z —y| < sup |y — T(y)]
ye6 yeG

Donc z € G,, c'est-a-dire ; est un ensemble (0*)—fermé. Pour tout z € G,
de Vinegalité (3) on obtient

sup |T(x) — y| < sup |T(y) — | (3)
yEG yeG
d’ou il résulte que
T(z) € G, pour tout z G, c'est-a-dire T(G,) CG
Des relations (3), (3') et la définition de G, il résulte

sup |# — v} < sup ly — T(y)| sup [ — v (6)
1#,vEG, <G
De (6) il résulte que G est un sous-ensemble propre de G, convexe et (o*)—
fermé, en contradiction avec la condition que G est minimal. Montrons 'unicité
du point fixe pour 1. Soient x* = T'(x*) et y* = T'(y*). Alors:

% — % | = |T(x*) — T(y*)] < a(lx* — T(x*)| + |y* — TOH) ) =

Il résulte que x* = y*,

Le théoréme est démontré. :
THI,OREME 2. Soient ¥ un espace linéaire complélement réticulé, K C %

un  sous-cnsemble non-vide, convexe, (0*)— fermé, (o)—borné et T:K —+K

unc application Kannan. Soil o < ]0, -;—[ tel que:

.
—sup |y — T(y)| <sup |x — | @
& yeorF . zyelF

pour toule sous-ensemble F (K, convexe, (o*)— fermé, T(I) CF et qui pos-
séde an moins deux clements.
S’il esiste un sous-ensemble K* de K, convexe, T(K*) C K¥*, (o*)— fermé, mi-
nimal, alors T a un point fixe unique dans K.
Démonstration. Si l'ensemble K* = {x*} alors le point x* est un point
fixe pour T.
Supposous que l'ensemble K* possede au moins deux éléments. Pour tous %,
o SK* et A= [0,1] on a

2+ (1 — Nz, & K*
et pour tout y € K* on a

ITG) — T(x) | € «(IT(5) — 3| + |T(%) — %) <
< 2«:»;113 ly — T | < sygg_ly - Tl
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i8

Par(e que ]ensemble ey Gt ;,- I HPIEY Lo
) ~{ze K]z — (%) sup Iy T(y) |, x, = K*y
.x)n,:'» o (8 iofisicr st S R SN LD g
est (o*)—fermé et T (K*')‘_C C il resxt,l’ltg que e 1’
T(K* () C) est convexe: et T(E* N C) C K*N ¢
Pe fa mifimaiitée d& K* il résulte K*'C C» Donc, J/ j}"[!”(i
R AR I ] I8 N
sup Iy - T(xo) sup ly - T(y)l ' (8')‘
(%) yeK* - . :
SOit 9 ‘!_!al‘! it 15‘»).1'
K=z s K*fsup:lz — oL < ZSUP ly — T() l}
: . : ARE RS SRR y‘x B
Pour v « K* on a Srigede U0 sl nobraiva. R P BT
® I — ¥1 < 1o ' T() [+ 1T(x) =51 < 2sup v = T()| g
Dela relation (9) 11\resu1te,,xo Kt R Rt T
POUIJ]E -Knon A (!IH THHEES .‘-;i!:: T TR A B T

IT() = 51"€ | ()— T(x) [+ 1T(%) — ¥1 < e A
(== {! (;\ - sup ly - T(y) |+ sup ly — Tly)] =2 sup ly — T(¥)| (10)

De la relation (10) il résulte que l’ensemble K’ est T—-mvan:mt Pour x
x—PE((’ y\EK* etAE[O 1lona. -

v

AP 2055 Sy Alx =y ] 4 (1= W) |2 — 3] < 2suxp ly = TO)1
T VR . R yo K* .

Donc ST e ' S '

5 sup |Ax + (1 — )\) —y| 2sup |y — T(¥)| (1)

(\, yaKe H L e yu Ko

1], résulte que BIGIA a

':"“\““;")\x'.—l-"(l —Nx, € K’
etidone Pensemble K est . ‘convexe, A

Supposons que z € X’ ou K’ est (o"') fermeture de K'. Alors il exis‘;é_‘ un¢
suite {2,},ax C K’ telle'que ¢ , - RN

A

a4

LR (L VTR B TR YOTE) PR TR S ﬂ;z\ B L P N FL ARt LR
et " P Doy —12')
sup IZJ —yl 2sup ly — T(v)l (
ya Ko Y yuKe .
.
Considérant la limite pour #—co, de (12) on obtient: sped el
i _ (13)
tut o supilri—y] < 2su v —= T(¥)1:
e e P 633

MECAR ‘4, 1;'—\“

De (13) il résulte que 7' |,
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Mais, par hypothése, on a

sup la —b| < 2sup |v — T(y)| < 2asup |a —b| <sup |a— b
abeKk’ ye K* " - abaKe ape K*
Donc K’ est un sous-ensemble propre de K*, convexe, T-invariant, (0*)—

fermé, en contradiction avec la minimalitée de K*. L’unicité du point fixe
’

résulte immediatment de (1). )

Ie théoréme est démontré. o .
3. THROREME 3. Sotent ® un espace linéaire 6 — réticulé et K C % con-

vexe ef (o) — compacte. Soit T:K-—~K une application non-expansive, c'est-
a-dire .
IT(x) =T < |x—y|(V) x,y € K (14)
Dans celtes conditions 1l résulle que T a un point fixe unique.
Démonstration. Solent x,ve K et A,=1——,neN

Definissons les applications T,:IK— K par ,lta formule
Tu(x) = MT(x) + (1 = M)y (15)
Les applications T, sont des contractions, parce que
|Ta(t6) — Taltt) | = T (1) + (1 = M)y — X T(wy) — (1 — NJy| =
= | T(o) = Tlag) | € (1= ) Iy — ]

ITu() = Tls) | < (12 1 — s (Dugwe< K 16)

Il résulte, donc, qu'il existe un point fixe unique xj,

¥y = T,(x;) pour tout » € N,

”
Mais le sous-ensemble K étant (0)—compacte, il résulte que la suite {%;},an
posséde une sous-suite {#] },an telle que

2, % x* e K (17)
D’autre part avec (14) on a
xf, = T,(x,) = 3, T(x,) + (1 — %)y (18)

Mais I'application T étant non-expansive, est (0)—continue et domc de (17)
on a

T(x}:') S T(x*) (19)
Considérant la limite, pour #— 0, de (18) on obtient
2* = T(x%) , (20)

L'unicité du point fixe résulte immediatment de (14). Le théoréme est dé-
monstré.

4 — Mathematica 4/1989
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REZUMAT. — Studhul eurgerll fluldelor incompresiblle fn refele spatiale de
proflie. Studiul curgerii (repartitiei de viteze §i_presiuni) pe palelele unor retele
spaginle de profile (cazul rotoarelor de turbind Francis §i al pompelor diagonale)
este destul de dificil de efectuat. il se poate face prin metoda diferentelor
finite, prin metoda elementului finit sau prin transformiri conforme. Profilele

" realizate in aceste retele spatiale au bordul de fugi ascutit, ceea ce face ca metoda
elementului finit §i a diferentelor finite si fie destul de dificil de aplicat. In con-
tinuare, in lucrare se va prezenta a treia metodid. Se va utiliza intii o trans-
formare conformi a regelei spatiale intr-o retea liniard de profile. Folosind o a
doua transformare conforma, reteaua de profile se transformd intr-un contur
rectangular, extradosul profilelor fiind cuprins in latura superioard a conturului
iar intradosul lor pe cea inferioard. Acest procedeu prezinti avantajul posibili-
tatii de a studia in oricite puncte dorim repartifia de viteze §i presiuni in veci-
nitatea bordului de fugi.

1. Introduction, The flow without losses of incompressible fluid into axial
cascade blades may be study with: ' '

a) Tinites differences-method used for small Reynold’s number (laminar
flow) and for rounded trailing edge. .

b) Using the finite element aproximation, when the surface between blades
is discrctized by conforming linear triangular elements.

c) The conformable representation method.

Further in this report will be presented the third method.

First we use a conformable representation of the three-dimensional cas-
cade blades (surface S,) with variable breadth of layer into a system fields,
containing any number of two-dimensional cascade blades. Then we use a se-
cond conformable transformation of the linear, two-dimensional cascade blades
into a rectangular fields (&, 7).

» No restrictions are placed on the shape of the boundaries, which may
even be time-dependent. Such representation is best accomplished when the
boundary is such that it is coincident with some coordinate line (£ and 7).
On this case interpolation may be done. '

The avoiding of interpolation is particularly important for boundaries
with strong curvature or slope discontinuities. '

In many differential systems the boundary conditions are the dominant
influence on the character of the solution.

To simplify the ecuations and the stream lines, the limit conditions must
be constant in time. e

* Polytechnic Institute, Bucharest, R
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Then we may say: on S, surface the ab§olute motion is a potential one
so that the flow equations on (x, y) fields is potential too. g
Ve Vy
ay ax 0 8

Substituting (7) into (8), there results a partial differential equation of
the stream function
32."‘ a"\" _ 1 oh a¢ _
o o T oy a0 9
The components are: .
— on the 1—1’ line, the outside value of the stream line becomes:

] . ’
— == - I 4 = I . .2
[&v}n' hViy n C,,.‘ *o (10)
B by Ve=h-C, -1 (10°)
ey fo

-

— on the 2—2' line, the outside value of the stream line becomes':

IQ = =y Vay=hy - C, - 141y (11)
1ex o
f;’) =h, Vy = ho(Vix — TJt) (11)
Véy ] o
.~ on the houndary CT|JC~
Gy r (2 dy
= =w - ry|=) - h= (12)
és {c+y Cc~ @ ’0’7‘,) ds

— on the congruents lines 24 ()13 and 24 U 1’3’ in the points
with the same v-ordinates, since the difference is the same, the stream line
value i1s constant, as it follows:

Glosyry = Pluvis + ¢ - By + C, * 1170 (13)

3. The conformable transformation of the plan area into a rectangular one,
The boundary 11°3’C-4'2'24C+'311" interior on the closed boundary D on the
(x, ¥) fields is transformed into a rectangular region D~ on the plane (&, 1),
as shown in Fig. 2.

The general transformation from the physical plane (%, ¥
formed plane (%, n) is given by &= &(x, %), 7 =% ¥)- .

Similarly, the inverse transformation is given by x = x(E ) ¥y =Y (l‘" ).
. The intrados profiles C~ — on the physical plane transforms 'mt(:l o“éei
side of the rectangular transformed plane (n = Man) and the e:\tra_os ).
1s transformed to the upper side of the rectangular transformed plane (1 =7max)-

The order is shown in Fig. 3.

The & (x, v) and 7(x, y) functions of the ¢
harmonics on D fields,

) to the trans-

onformable transformation are
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) ain a set of partial differential equations of U-function in-points 4. 4
“’5‘ ?111): natural coordinate system which we may solve. points {2, )

The points (%, j) are inner the rectangular fields. All calculations are made
) the centre of their differences.
o

1
i
(‘2—' = (Ui, — Wi-14)

i “

cu 1

——‘ =7 (i, 741 — %ij—)
Yom'ij

. 1=2, M1

¢t ; Qi U s ’
( ) = iy — 2+ Ui N (18)
cE iy j=2,N-—1

o {
i — = M;jry — 21!,"}' + U 51 .
vent big

P20 | .
( = ) = — (Mg, je1 = Harrjm1 — Wiy b+ Biey, i)

esenliy 4 . ' .

The (18) equation for P—': is available, and for j =1 when ¢ # 1, M. For

v
2

Qs
=

[

j=1and i=1or =M, is approximated using second-order, central

Ay
o

differences for derivatives

i_) = 71; (——11.3'1 + 4“2,1 - 3“1,[)
Li = ‘ ’

én % (tag -2 — Htigg_1s + Bttary) (19)
The variation for :—'; for j = 1 is:

lf_) - % (—ttis + 4tt5 — 311y (20)
The (18) equation for (—': is available and for j= N and i # 1, M. For

. (23
J =N and 7 =1, M we obtain:

&—") == -l— (—”-‘J,N + 4‘”2'1\[ - 3”‘],,\')
hawy 2
3—-“ = -1- (ll.M_z'N - 4uM-—l,N + 3“‘“.‘\') (21)
2T 2 :
3_u — _]_ (u,- N1 — 4"'.',:N-—"1 + 3%,’3;\!)
énlin 27 .
Then, using the (19) equations into (15) it results:
) : ' 22
Xg = a,(%) + xg — X3 — xq) + ay(%, + %) + a (% + x.l) ( )

\
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_ on the line 4—2
x(1,75)=0 } .
: . 7= N,+1, N,—1
(L, j) = —d(N —7)/(N — N,) 2 1 (28)
_ on the line 4’ =2’
T L=t ]
. > : ]= 1) N —] 29
(1, 7) = d(l =)V, = 1) ' (29)
— on the extrados C*(3—4)
l-(r, I\Y) = x"'(j[ —_ 1 + 1) 1‘= 1 1“,[ (30
(i, N) = 3+ — i 4 1) ' )
— on the intrados C~(3'—4)
AL 1) = 270 s 4 1)‘ i=1,M 31)
L, ) =y"(M —i+ L) ’

The solving of the (23) equations system finish with the slip boundary.

5. Conelusions,

The method affords to study the mouvement into a Francis hvdraulic
turbine. The treatment of fields with complex boundaries and any number
of bodies is not inherently more difficult than problems with simply geometry.
The method affords a natural means of treating problems with moving boun-
daries, since the computational fields remains stredy in any case and no in-
terpolation is required.

Finaly, the complete coupling of the partial differential equations for the
coordinate system with those of the physical problem of interest, so that the
coordinate system as such, is effectively eliminated.
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CEOMAGNETIC FIELD
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REZUMAT. — Noi rezultate privind misearea unui satelit .in cimpul geomngnetie,
Pornind de la expresia potentialului geomagmetic, se studiazii influenfa separati
a celui de-al doilea termen al pirtii nedipolare a cimpului magnetic terestry
asupra migciirii satelitilor artificiali. .Sc sta])ilqsc formul(f znmliticc‘ aproximative
atit pentru variatiile elementelor Ol’blta]f‘. cit si l)exltrll dlf_crenm dintre perioada
nodalit si perioada keplerianii corespunzitoare. Liste avut in vedere numai cazul
orbitelor de excentricitate micd,

1. Introduction. The perturbations caused in the motion of an artificial
satellite by the interaction between the mgin gcomflgnetic ficld and the clee-
trical charge of the satellite have been studied by different authors with some
simplifying assumption like : the coincidence between the geomagnetic axis and
the terrestrial rotation axis, the symmetry of the geomagnetic ficld with respect
to this axis, the coincidence between the gcomagnetic ficld and a dipole one,
etc. We have studied previously [2]—[4] such perturbations by estimating
analytically the difference between the nodal period of a satellite and the
corresponding keplerian period, difference due to the gecomagnetic field influ-
ence. Keeping the first two above mentioned assumptions, we have taken into
account either the dipolic part of the geomagnetic ficld, or this one togcther
with the first term of the nondipolic part.

Kunowing that the second term of the nondipolic part of the geomagnetic
field is of the same order of magnitude as the first term of the nondipolic
part, it seemed us interesting to investigate the scparate influence of this
term upon the satellite motion. We shall consider only the satellites moving in
quasi-circular orbits.

Starting from the known expression of the geomagnteic potential (sce e.g.
[1]), and using Schnal’s [5] formulae for determining the components of
the disturbing acceleration, we shall estimate analytically the difference ATq
between the nodal period and the corresponding keplerian one, caused only by
the second term of the nondipolic par of the main gecomagnetic field.

2. Motion equations, We start from the Newton-Euler system written 1
the matrix form:

_-dpldu [ 0 0 2 0 7 1

a8/au 0 0 0 B/(Dp)

di/du = 73 0 0 0 Alp S (1)
ag|du 0 Blr  Alr+ (4 +q)/p  CBk/(Dp) T

dkfdu O  —4fr Bjr+ (B+k)p —CBg/(Dp)

L dtfdu ] Aefplr 0 0 o JLw.

® Cenfre for Astronomy amd Space Sciences, Bucharest, Romania
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_ g = k = esin o} are th i i

e Y= {p, Q,'z, g = €Cos , e the orbital elements

| notations,  is the gravltatlonal constant multiplicd by the Earth’s l?n:gse
geocentric radius vector of the_ satellite, S, T, W are the classical
nsversal and binormal, respectively) components of the disturbing

whe
usua
y is the
radial: tra

acceleratiou while Z has the expression:

Z = (x — u]p PClaQJat) ;
o also used the abbreviating notations:

(2)
we hav
A =cosu, B=sinu, C =cosi, D =sinj,

(3)

in which u is the argument of latitude.

Using the formulae given by Sehnal [5], we have determined the
components S, T, W of the disturbing acceleration due only to the considered
term in the geomagnetic potential expansion. These ones, also written in a
matrix form, have the expressions:

S 3CD,[r -0 0 1
T | = K,I, 0 —3CBD,/p  3CAD,/p q (4)
12 4DBD,fr 3DABD,[p —3DAD,/p || k
where we have denoted:
I{l = (R/r)ﬁ/ﬁ/?., F3 = (Q/"”)gam (5)

D, =1 —5D2B? D,=D, +2,
fmmqlac in which R is the terrestrial radius, Q and m are respectively the
clectrical charge and the mass of the satellite, while g, is a constant featuring
the second term of the nondipolic part in the geomagnetic potential expansion.
Now we consider the orbit equation written in polar coordinates: 7 = pf
[(I + ¢ cos ©), where v is the true anomaly. This equation can also be written:
v = p/(1 + Ag + BFk), and, since only quasi-circular orbits are considered, we
have the approximate relation : )

m = p*(1 — ndgq — nBk), (6)
where 7, k* (for » > 2) and the product gk have been neglected.

With (4)—(6), the Newton-Euler system (1) becomes : .
dpldy] ) —6CBD,p 6cADp [ 1]
ZQ/du 4B2D, 34 BD, 383D, — 3BD,

d’/d“ — ZK,F, | 4DABD, 3DABD,  3DABD,—3DAD|| |
dz/du 3CBD, 6CABD, 2cB:D, + 6D, || 7
. [du 3CAD, —2CBD,—12C4*D, —6CABD,
Ldtfdu | L2(p/R)SF;  —4A(p|R)¥F, —4B(p/R)SF; JLK
Where we have introduced the simplyfying notations: .
K, =\Julp(R52)/t*, Dy=35D,+8,  Dg=5D +4 (8)



3. Variations of the orbital elements. The variation of an orbital element
y €Y (due to an arbitrary disturbing factor) between the initial (u,) ang
current (u) position is given by the integral :

u
Ay =\ (dy|du)du, yeY, )
. Ue
where the integrands are provided by the Newton-Euler equations.
Considering the sccond term of the nondipolic part of the geomagnetic
potential as being the disturbing factor, the integrands in (9) are given by 7).
Performing the iutegrals obtained in this manner by the successive approxi-
mations method (limiting us to the first order approximation), with Z =z Iju
we have determined the variations of the orbital elements. These variations
written in a matrix form, are:

Ap 1

AQ

Ai | =KiFslanll g |, i=15 n=13, (10)
Agq

Ak o

where K, = p~72u~2R8[2, while the clements of the matrix [a;,] are given by:
a, =0,
@1, = 2Co(5D3(A3 — A3) + 3(1 — 5D{H(A — Ao))po,
ayy = —2Co(5D3(B* — B} — 3(B — By))po,
a, = 5DYAB? — A,By) + 3(5D3/2 — 2)(4B — AyB, — (4 — uy)),
@y = —15D%(B* — Bf) + 13(B° — By),
Ay, = 15D3(A5 — A3) + (13 — 45D%)(4° — Af) + 12(3D2% — 3)(Ad — Ao,
@y, = —5Dy(B* — Bj) + 6Do(B* — Bj),
—15D3(A8 — A3) + D,y(25D3 — 13)(A4% — 43), (11)
az, = —15D3(B% — B) + Do(5DF + 13)(B® — BY) — 3Dy(B — By),
@y = 5C,D}(A® — A7) + 3Co(5D5 1) (4 —4,),
Ge = —15C,DY(BY — BY)/2 + 3C,(B* — BY),

gy = 25C,DEAB? — A B3)[2 + 9C,(15D2/4 — 1)(AB — A Bo) —
—15C4(9D [4 — 1)(t — u,),

as, = 5CoDY(B® — Bf) — 3Co(B — B,),

a5, = 5CeDAABY — A,BY)[2 — 3C,(35D2f4 — 1)(AB — AoBo) +
+ 15Co(7D%/4 — 1)(u — uy),

453 = 15C,D3(B* — B)j2 — 3C,(B? — BY).

In these expressious, the supplementary index ,,0" fixes the values of the res”
pective quantities at the initial epoch (£,) or position (o)

)
|



SATELLITE MOTION IN GEOMAGNETIC FIELD 6i

4. Difference hetween the two periods. As a consequence of the action of
. arbitrary distribution .factor, the nodal perlod. of a satellite will differ from
'?he corresponding keplerian period by a quantity AT, which can be written
as the sum (sec e.g. [3]):

4
ATa=3 1 (12)
i=1

where :

2

pad

Iy = aphe ™" O+ Agy +BR) Py agdu, j =T,

0

(13)

v

I, -\ (2(rC(dQ[dt)[(np))[00)o du,

ok/\g'

in which ¢ is a small parameter featuring the disturbing factor (in our case
we take ¢ = F;), while «, B, y are, according to y € Y: )

y=p=a=32 B=12 y=1;
y=k=>o0= -2, B = 3/2, y=B.
Starting from (10)—(11) and taking permanently into account the appro-

ximation (6), we have performed the integrals (13). The results, written in a
matrix form, are:

1,7 0 —5D2A3 + 3(5D2 — 1)4, 5D:Bj — 3B, 1°

I | _ K |1 1804 5D2A34 3(5D2 — 1)4, 0 ol 1
I 1 — 5D2/4 5(7D%2 — 2) —5D2B3 + 3B,

I, 2 —5D22 0 0 ko }

where we have used the notation :
K, = 3nF,Rou~%3C,. (16)

 Finally, performing the sum (12) by using (15), we obtain the following
€quivalent expressions for the difference between the perturbed nodal period
and the keplerian one

AT = K,(4 — 15D2/2 + (5(64, + 7/2)D§ — 2£3Ao + 5))40), (17)
ATq= K((15C — 7)/2 + (3(84, + 5/2) — 5(64, + 7/2)C2)qo)- (18)

In Observe the fact that for C, = 0 (namely i, = 90°) the factor K, vanishes.
affeozher words, the nodal period of a satellite moving in a polar orbit is not
cted by the second term of the nondipolic part of the geomagnetic potential.



Also observe that for circular orbits (¢ = 0 = g, = 0), the expressian of the

difference AT, becomes:
AT, = K (4 — 15D}j2) = K (15C% — 7)/2, (19)

where p, in the expression of K, represents the radius of the circular orbit
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REZUMAT. — 0 refea sistoliet pentru Integrarea numericd. In lucrare se pro-
pune o retea sistolici capabild sd implementeze o clasd largi de metode de inte-
grare. Lste studiatid influenta ordinei '('le calcu‘l al integralelor asupra timpului de
raspuns, atunci cind evaluarea functiilor de integrat se face in interiorul retelei.

1. Introduetion. This paper presents systolic ([6]— [7]) implementations of
a large classs of numerical integration methods having the form

I= ckZ::l w; f(x3), (1)

where ¢ is a factor, w,, ..., w, are the weights and x,, ..., %, are the nodes,
all these elements depending on the type of the method. The class O of these
methods includes Newton-Cotes integration (trapezoidal rule, Simpson’s rule,
etc.), Gaussian integration (Gauss-Lobatto, Gauss-Legendre, Gauss-Laguerre,
Gauss-Hermite, Gauss-Chebyshew, etc.) ([8]), the methods of undetermined
cocfficients, ctc. We suppose that f is a real function given by an arithmetic
expression or by tabulated data. More precisely, we present a systolic network
able to compute with a constant period

by
1(8) = { ful#) d,
o
so that I(k) is obtained by applying a prescribed rule 7, € U, k=1, ..., K.

The case of the trapezoidal and Simpson formulas is studied in [1], while
some variants of the Romberg method are sumarized in [2].

Il} Section 2, we describe the systolic network performing the above task
Z’:: gl\:'e correctness proof of its working. Scction 3 shows how the response
theec:f the network dep-ends on the order of computing the integra1§ ‘vs{h.en
to trea’:lmtatlon of .functlons is done inside of the network. The possibilities

Some specific situations are discussed in the last section.

fOrmz'a ’l(‘ll}e,s}'smlie network. Further, the clock tick (CT) is the time to per-
by £ the tl."lsmn or both a multiplication and an addition. We shall designate
input ( tme which is a count of the number of CTs. If L is the label of an

output) then L(¢) is the value circulating through this during the ¢ — th

* Polytehns e X
viehnical 1 of lagé, Computer Cenire, 6600 Iagi, Romania

(4










0. BRUDARU
66
emerges from DM, during % — N - 1 “C .',1:, thus it enters DM, at b
j.e. exactly when d, — input recctves 1. Because the responge time of '
is T(f) +1, it results th'at Xyt - T(fi) = N —3) = x(k, 1) ang . A(f)
Xk(th — T(f;,) —N—4+ 1,) = x(k, ’l) and ck(tk —_ T(fk) — N _ 4 .erefol,&
i=1,...,N(k) an
all inputs receive the above va
=I(k),k=1,...,K. ) '
denote by S(p) the moment in which the first v )
thrm}lge}'i ?nspu'ce p. We ob(tpa)in S(G) =t,, S(W,) =1¢, — ]Eylrj'_t 1.‘ _allie ;s _Pumpeq
N, S() =ty — N,S(d) = fg — N — 1, 5(X,) = S(C}) = ¢, - :Tl,
= K. Cleatly, S(d,) <S(W), i=1,...,N, 54, <(Sf.}\3
++o» X} The value of 4, is givl'eu b}'( t’iil}e'

dck(tk—T(f!g)'-N—‘l-l—'i):O,,,j=1+N(k) )=
lues at the right time then it is clear t};a-t. J(]I:; I

- - - y sy

S(G). Let us consider P = {d,, X,
condition
min S(p) = 0. o

p=P
|

Consequently, we can state

THEOREM 2. If G(ty — 1) = g(k), Lu(l — N — 1) =0, W,((,—N+i—9=
= w(k, 1), Xalh — T(fs) — N — 4 4 14) = x(k, 1), Colls — T(fi) — 1\; - 4}:|- i)l?
for i=1,...,N(k), and Witk — N +1—2)=0, Co(th — T(fi) — N — 4 +,‘j
=0fori=N{E)+1,..,Nr=1,..., K then Iy (8) = 1(R), k=1, ....K
where 8, =ty + k, k=1, ..., K and t, is given by (3). Y

The period of SN is 1 CT, while the response time of SN is RT(SN)=
=1, 4+ 1. The entire processing takes ¢, + K CTs.

3. The influence of the processing order. Further, we analyse two cases
when the control of the left side of SN is more simple allowing to the control
signal to circulate along a line in order to activatc the cells A(f), k==1.... K.
’kll‘hese situations are given by the order to compute the integrals and we show

ow ;11;; ;(Ie{sg);nge Elfm% (off)SN %?? b(; better precised and eventually reduced.
. M 9. B < yh=1,.., K — 1 then
() S(X) > S(Xp), B =1, ...'f?{ —-1; o
(11) sz 2 Twmax + 2 then RT(SN) =N + 2;
(i) if K < Tuax + 2 then RT(SN) = Tax— K+N-+4, where T pax=maxg T(/h)

Proof. (i) From Theorem 2, it resul T(f) —

, ts S(Xis1) — S(X) =14 TU

T IT(fe+1) <0, because T(f,) — T(fag1) < _(1f+];)= 1, (. .,t), K—1 ‘
(i) I‘:%n (3) and (i), it results minyepS(p) = min (S(d,), S(Xx)) = min o~
ST -1 é°.+ K — Tpgy — N — 8) because I(fx) = Tmar Now, A2
i) ST 2implies S < S(X), thust, = N + 1 and RT(SN) =¥+
N -3 ._<0 Tuax + 2 implies S(d,) > S (Xk) and therefore £, + K — Twax

Let us re e11<nd] RT(SN) = Tuee — K + N 4 4.

remark that (i) fr . . .
move along a line from zngk:)mtg ie(ofi ;lnk i ll}l{pl_l_esl that t;l.e control st
relo lset % sippose that 1<k <k < ... <k <K m= b = B
N ) ooy — 1, s = —- , . ‘,’

, ks + 1, so that T(fi ) = T(fa,4;0 1 = 1, .- M

gnal can
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A

T(fr,) < T(fe, 1) 7= 1, ...,s—1.

and
oRrEM 4 If T(f ) = T(fhy+j)’ j=1..om—1 and T(f"r+1) > T(f*r)"
THREORES 7 ’
— 1, then ..
rgl,“i’iS(Xk.H): 7"::1:---’5—1 and S(Xkr+i)=S(Xkr)+-7"7'__—1’“.
(1) S( kﬂ,/___ 1»’ yt =1, . S,

e o 2 then RT(SN) =N + 2; .
(") 1.f is i ; o+ 2 then RT(SN)=Tuax—ket+N+1, with Tmx = max, T(fx)-
(111) 1f sf. (i)“‘-‘-\xre have S(X;,-,_'_l) —_ S(.'Yk,) = k,.H - k, + T(fk’) — T(fk'-i'l) = .

Pf’;,(fk) _T(fi,,) <0, 7=1 ...,s — 1. On the other hand, S(X +i) =
;‘(;{‘; ) L1, because T(fo,+i) = T(fi +j-1), and therefore
r+i-

SXia) =S(Xa) +4 j =1 om—Lr= 1.0
) Because S(X 45) > S(Xk), §= 1, ...,n, — 1, it results that

minpe pS(p) = min (5(d), S(Xx,), .-, S(X&)) and from (i) we obtain
minye pS(p) = min (S(d,), S(X&)). The rest of the proof is similar to that
of Theorem 3. '

A consequence of Theorem 4 is that the control signal moves from X, .,
to Xi, but circulates reversely from X 451 to X +is j=1, ..., n,— 1,

r=1,...,5s—1.
THEOREM 5. If T(f,) = T(fanr). k=1, ..., K — 1 then

() S(X) <S(Xigr), k=1,..., K—1;
(i) RT(SN) = Twax + N + 3.

B Proof. (i) S(Xap1) — S(X) =1+ T(f)) — T(faxs) 2 Lk=1,..., K —1]
(11)Thow, we obtain minge pS(p) = min (S(d,), S(X;)) =min ({, — N — 1, ¢, —
- ,‘Fﬁ ~N— 2), because 1'(f;) = Twax, thus ty = Tomex + N + 2.

h esocontrol signal moves now from A(f;) to A(fivi), k=1, ..., K — 1.
method tﬂg} l:}:lmal‘lfs. If I(k), k. =1, ..., K, are to be computed using a single
Ny e weights and the factor could be charged by a reset command

+ 1 reyj . . . .
N ping couiglsl‘;irssak‘?éé{m& these values during the entire computation. Thus

R =

If but « '

?(" (759 b b , ’ ! = -

rem ;hwe Ob:cain RkT(S]\;) ‘i Zk‘(;’é) _:;_]/:Iil;, R,k 1, ..., K, then from Theo
exists aec oj;;?ar;tcomputation takes TT(K) = RT(SN) + K — 1 CTs. If there
s K tends to ingiigtth%t T(f)) < ¢ k=1, ..., itresults that im TT(K)/K=1,
Per integra) ¥, 1.e. for larger values of K the computation needs 1 CT

(i

. Serve that i i
times given by %lzgf response time given by Theorem 5 dominates the response
) 'he case of tabuglgsd3—4, thus we obtain the appropriate processing order.
ime of ed data can be treated by considering that the response

A(f) is =
2810, k=1, ..., K. By applying Theorem 4 we obtain RT(SN)
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— N 4 2. Another way is to send the fi — "311’105 to Y-inputs. Copse
the Djl-'l s can be saved and RT(SN) = N -+ 1. The case of tabula‘tclesgqgsltltls-”
an appropriate one for implementing quadrqture fo_rmulgls containing tpe v la 1
of the derivatives of the processed functions ([5]); it suffices to re o ; Ues
derivative values as function values. gard the
The network SN can implement some cubature formulas, too.
The case when w(k, 1) = w(k, N(k) —1 + 1), i = 1', ...» N(k), ang N
= 2m (e.g. Newton-Cotes formulas) leads to a variant of SN obtaiyeq b=
replacing the even numbered w-ways by a single 1-bit wide control wqy 314)1
by adding some 1CT-delay processors (denoted by a circle) as it is shown :
Figure 3 (b). The fj-values must be given in the order fi(x(k, 7)), f,( x(k, N(k) ll
—3i41), i=1,...,m The w(k 2¢ — 1) — value is introduced through
Wai-1, i =1, ..., m, one value every 2CTs. The case when N(k) = 2 +1 c§1
be treated in a similar manner. !
Let us remark that SN can process formulas for which the number of
terms exceed N by splitting the summ into parts and by adding these parts
outside or inside of SN (in this last case an adder is to e placed at the right
end of the basic pipe). Also, a copy of the array is to be included for each
part. The case when a function is given by different arithmectic expressions o
prescribed -intervals, could be treated in a similar manner.
The network can support any value of K by adding new A and DM cells
at the top.
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SPTINE FUNCTIONS IN
NG OF VARIANCE BY SPL
REDUCE MONTE CARLO INTEGRATION
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pein  funefli spline tn iIntegrarea Monte
stimatorului folos#t in evaluarea Monte Carlo a unei integrale
slemele importante in integrarea numerici a functiilor
rare se studiazd acest aspect din integrarea
le de reducere a dispersiei, metoda separdrii
partii esentiale si metoda alegerii escmiale. Ip cele doui metcy.le se folosesc funciii
partii esentiale si metoda  alegerii es_en}le}le. in cclg .dpua metode se folosesc
funciii spline care conservi unele proprietiiti ale functiei integrate. De asemenea,
se prezinti doui utiliziri combinate qle clelor doud lllf:tode mai sus nuinite. 'In
final sint date uncle rezuitale numerice in comparatie cu integrarea numericd

Monte Carlo clasica.

REZUMANT. — Reduceren  dispersiel
Curlo. Reducerea ¢
(efinite este una din pro! d
pe cale probabilistlcﬁ. in accastd luc
Monte Carlo. Se consideri douit metoc

0. Introduction. A definite integral can be estimated by probabilistic con-
siderations, so-called Monte Carlo integration methods, and these methods are
preferably when multiple integral is cousidered. Moreover, as usual the mathe-
matical software of computers possesses fast generators of random numbers,
which are necessary in te Monte Carlo methods.

~ In Monte Carlo integration the definite integral is looked as expectation

Oll"‘-l certain random variable, and this is an unknown parameter. To estimate

:\.;:?dll)a\zzzxs(t;;:‘ 11.%-. Elhgd@ﬁl.litc intcgral, a sampling from the random variable

for 1 ])amn:‘i?rc (‘1:5 pcrlormc(!, and then_one takes an unbiased estimation

lume sampling :';d 'cl’}(fdll) this method is not fast-converging ratio to vo-

crease the efficiency ﬁmll‘;lult)' flepends on the variance of estimator. To in-
st to reduce as- much as possible this variance.

.

Two i .
mcthodo():‘négzﬁilllt,m-ethOdS for reducing of the variance are presented in [8]:
polynomials for r zlarl_«’:ltes, »and methpd of importance sampling. The Bernstein
above mentiopg emulam%‘of the variance were considered in [10], using the
IS considered, e 1e 10ds, when the definite integral on the unit hypercube
the domaip i '¢ have considered in [2] the same thing in th h
Ol integration is the #n-dimensional simplex 8 © case when

In thig
. l)aper w ‘oetd e . .
and combinations o ¢ cosider the reducing of variance by the two methods

f these 1o ; .
spline operator. rris Ocse’ using the spline functions namely the Schoenberg’
! bidimeno a};erator Was introduced in [11] and then it was engeS
llllidimensionz?se m [6]. At the end some numerical resu1t§ are

case, when the two methods are applied to reduce

¢ \'ariallc ’A
are rep e. Two combined i
orte ed schemes a 5 :

d to crude Monte Carlg s hr(c)edconsldered too. All these techniques

j CI“I'A poca, I d { < f ; £
ty o apo acully o, Romania
) y of Mallumattcs and PII)SlCS 3400 Cly, NGPOCG an
', 67 ()
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1. Sehoenhery’s spline _operator. Let D, be the s-dimensiona
cube, ie. Ds= 0, 1, and the integer vectors m = (m ) 4, al upjt hyp(
’ ¢ ' ’ 2 .., ‘-
= (hy, By - ey 1)y where iy 2 L ky 22 p= 1,5 We define o o) ks
partition of D denoted by A which is obtained by one-dimensjonq) “Ctangyy,

) Parti;

o (» N long.
AP: t(.") =, ,, = l"l’ == 0< lhl’*'l < ... << /;’I;‘-rmp_l <1- S:

(P —

e = lzki’_".mﬂ. 1, /) = ]’ S.

= t;.';)-l- my =

If one considers the multi-index sct

d ={j = (jl} ---Jja) ij = 1, ”11»'1“2/'3;;— 1’ j’ - 1—;-;}

then
s
A= pxl A[, = {l] = (l;:), veey l}(;') | _ie J}
The points of A are mamed the knols ol partition 3. One consi
multi-index set considers too the
N A TEAS s Thy s W 3 )
Using the knots of partition A one defines the nodes
— (£0 . . .
. b = (gi,,)k‘, cee, E,,(:')ks), i= (1, ..., 1) 1,
with
B __ (4P { . e -
E:p,kﬂ = (t.pq-l + ... F 1.';:).;.1;1)_1)/(/?,, — 1), i= -k — 1, p=1s

Also ot g , . , ) ) .
functions’ by th? knots of partition A onc duiines tie (s-dimcisicnal ) B-spline

My(x) = MO, (x,) ... ML (v),

withi= (i, ...,éi) eI, x=(x, ..., x) €D, and

M, (x,) = [P () - _ —
» P( p) [t‘p’ AR tip-l-kp, kp(t— xp)if' l]' 1'{7__-—_ 1’ 1};['-;-/\!,— 1, f)-—': 1,5,

th -di . , ) .
r-fh(g?vcigéﬁ‘eé’-sf}"““” B-spline functions. We dencte by [y, -+ & (o k()] the
Hlerence relative to the knots z,, ..., :‘,~:1 and the function ht)-

We consi .
v nsider too the normalized B-splinc functions defined by:

\- . i
" Nig(x) = N (%) ... N (),
(111 e vy 'ls) [ 1, X = (xl, e, xs) = ])sn alld
(M) ™
NP, (x,) = ity Tl
iorhy (%) —— RIEUNENE
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Sfunction. Taking into account these

dimensional) noymalized B-spline

one
f:lzl)zsgdexations we have that

s P P tgp ) : .
] -2 Miu(x), i= (i1, « -

p=1 h
The (s-dinwnsional ) Schocnberg's oper
{ined on D, is given by

Salf)(x) = E. Ni,(x)f(Eik), X € Ds.

,i,)el, X< D,

Nix(x) = » .
ator relative to a real function f de-

4

all some important properties of this operator:

Y 1 in the p-th nedeter-

(i) Salf) is 2 polynomial spline of degrec k,

minate. i tor
.o - : M . - 0 .
(ii) Sa(f) is a positive linear opera _

(iii) Salc) = ¢o and Sa(c;) = ¢, p = 1,'s, where ¢o(x) =1 and ep(X) = Zp,
with X = (%, ..., %) € D.. _ )

(iv) If m, =1 then Sy(f) is a polynomial of degree k, — 1 in the p-th
nedeterminate, and so if m, = 1 for the all p = 1,5, then Sa(f) is a poly-
nomial in the cach nedeterminate, moreover it 1s knowu-that in this late_ case
Sa(f) is s-dimensional Bernstein polynomial corresponding to the function f.

. . A
(v) Sa(f) converges uniformly to the function f as 141 +...+ '—k—‘—l - 0,
1
where |Ayf denotes the norm of the partition A,. )
. s b - . Ir
(vi) Taking into account that \ My (x)dx = 1, and using the relation bet-
»
(e . M e . . s . . . .
ween the s-dimensional B-spline functions aifl oue-dimensional B-spline func-
tions we can to cousider that Al (X) is robabilit i i
s-dimensional random vect '{.lk \) l]b o P[lo Yty dCDSlty function of some
caensonal g ‘ector with independent random components (the
of the random vector arc taken in D,). Also we have tha.tp ( values

T = SSA(f)(x)dx = Ealf(gi,k>,

D, iel
Wlere
(e
4G = H—m i = (4 .
P=1 kp ) = (iy, ..., i) 1,

and 7> 0 when f~ 0.

2. Crude Mony C
. - L& ﬂ'l »
defined oy the don1ainl i’)s.m,i‘lhod. Let f be an absolute

he aPproximating valye of ¢ integrable function

he integral

I'= Sf(x) dx

v
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. ' o ] tation of this integra]
can be obtained by probabilistic interpre g 1 gral as the ex
tation of the random variable f(X), where X = (X,, ..., X j5 ap unifgilcx;

distributed random vector over the unit hypercube D,

One performs a sample with volume N whic.h is uniform distributeq Over
D, Let X® = (X%, ..., .Xik)),_ k=1, N, be this sampling of randoy vee
tors. Then the sampling function -

N

] 4
an == 3 f(X®)
N k=1
is an unbiased estimation functipn fgr the parameter ‘I ' i.e. for the considercq
definite integral. The variance of ay is 62/N, where o7 is the variance of JX).
Thus, ay converges with probability one to [ as N — o0,

Taking into account these probabilistic considerations one has that

N
: 1 (k) (%)
Sf(x)d.\ ~ /P, L, 1),
N k=1
DS
where (xﬁ”, Vel xﬁ”), k=1, N, are independent uniformly random number

vectors over D,.
3. Method of control variates, This method consists in rewrite the integral

I in the form
1= {[/x) — g(0)]dx + { e(x)dx,

o

l)s LR

where g(x) is chosen such as to be ¢heoretically integrated over ), and to mimic
the behaviour of the function f. Such that, the estimation of / is reduced to
estimate of the integral

I = /6x) = g Jax.

D,

Because S,(f) has these required properties, we take g = S,(f), and 0
.I = Il + T.

To evaluate the integral I, one considers the cstimation function

N
1 .
By = — 27 o(X®),

N ¥ -
where o=/ — S,(f), and X® = (X .| A®) r—{ N, are independest
? nd identically uniform distributed random vectors over D,. This estimating
olénctlc.)n 1% an un.blaseod estimating function for the parameter I,. The vaﬂanci(-3

B is a}/N, with o% the variance of e(X), where X = (\y, ..., ;) is @ W
form distributed random vector over D
5
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Therefore we have that )
( £ftx) = SaN &)1 1x = B
bs
with . | ) (k)
~ 1 c(K)) = — (x(k)) —_ SA(f)(X )]’
B;v:—-l-v-;e(). ) S & [f
pere X = (& o M), k=1N, are upiform random number Ve ctors
Pw X = , , ——

Cover D It results that

Sf(x)dx ~ By + T,

D

a which is presented in the section one.

where T is calculated by formul .
vectors over the unit hypercube D a

To generate the uniform number
lot of methods are known [12].

4. Method of importance sampling.
density function g, that mimics the properties o
the integral I in the form

'his method consists to consider a new
f the function f and to rewrite

I= gh(x) g(x) dx,

»

where = fg. ’ :
S U)\\i:: Ic;;lxs}ger ]g= Si(f) with So(f) = SA(f)/T. Taking into account that
a(f) s ositive lincar operator we have that S ~ 0 whe er
?u\ clv an appropriate constant is added to f. If ﬁl("Ql(:l‘ on ’chlen f>t' O Alt?lna-

uction f is supposed. positivity of the

'l‘ By . y 1 H
©0 cvaluate the integral I one cousiders the estimation function
N N

= .l_ 10.'¢ 1 , ~
™= = k=lh(,\(h)) == Z_;f(,\(k))/sA(f)(x<k))’

where X®¥ — (y® . (R —
(N LX), E= TN, are inde

‘i‘l s .-t‘]nrr‘ f ’ WIth he I) b 1 y y A s

N ( 1 ’ \s) S (f) 14
A d 3§
‘N

pendent and identically dis-

>
]'—l
)=

o N

N 2 Mx) = s~ _J6T)
with x® _ (,® N i=is TR

L= k —_— Al )
over P, (% . ), 4 rand e
' 1dom numbe ~

Cr vectors S .
a(f) distribute
ed
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Let A2y, .- o0 Z841) be an algorithm which generates the uni‘dilﬁeu
B-spline distribution given by probability density

Myt 20 o or 2i)) = [0 oo Fora s RE— 0t = [0, 10,

Siona]

An open problem is to construct a simple algorithm A2y o, 26s) which
the ]%’-splline distribution. If a such algorithm is given, then the generati(g)iuirfattﬁz
S.(f) distribution can be obtained. Namely, one considers an urn which con-
tains balls of M = (k, + 1, — 1) ... (ks + m,— 1) colours denoted 1, ii
= (ty, «+ s i,) € L. Let B, be thcj. event of drawmg out a ball labcled by i a:d
one considers that the probability of this event is 1

P(B;) = axf(E:,k)/g. a; f(&ix)-

If a ball of the colour i is drawing then one generates the independent random
numbers x,, p = 1,s, by the respectively algorithm 4 (lf‘;): e, ;‘4:’+ k) b= i
(i3, ..., 1) =i. These random numbers are the values of the components of
the random vector X = (Y, ..., Xy) which is S,(f) distributed over D,.

Indeed, let F be the distribution function of the random vector X = (X,
v, X)and p corresponding density function. Using the total probability for-
mula we have that

F(x) =F(%y, ..., %) = PN, <%, ..., N, < x)=

=S PB)P(X, < %y, ..., Ne < %|B) = Z: P(By) }':1' P(N, < %) B).

e]

But P(X, < x,|B)) is the distribution function which has accordingly probabi-

lity density M{?, | for corresponding p = 1, s. Such that, we have

pop
— (l‘f(E,l k) Al
X) =%, o0, %) =2, 7T M, (x,) =
P.( ) p(% ) |%1 jglajf(z"’k };[l p,ki,(«\/)

2 6w T1 N, () = Sl

1
T fe1

therefore p = S,(f).
On the basis of these results we give the following algorithm to generatt
a random vector which is S,(f) distributed over the unit hypercube D,:

Step 7. A correspondence one-to-one one defines 7:{l, Z oo My

I={(Gy, .., i) 5,=1,m,+ %k, — 1, p =1,s}, where M = TT (mp+Fp— )
pe=1

St@p 2. Calculate dy = P(B,(k)), k= 1, M,
Step 3. Generate uniform % over (0,1).
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rate
I q:)» then for p= 1, s, genera
15)-

iﬁxéw : o

orithm (t‘ip, s tﬁ;)+kp), with r(1) = (ig, -0 s

) is Salf) distributed.

s q-control varis Lod., The two methods to reduce

t i .1 the first on¢ applies the method of
jates 1S applied- In

1+...+ Qi—1.91+
P

Step

% by alg

0 variance
im ortance

sampling an : oc¢ -0
pis case one writes t n the form 1 =1, 3

he integral I1
1, = [4) — Sa(0)] SN

~ ”S

and

I, = { Sa00(3) SN %

D

where o -—=f/5~_\(f)

The integral I; can

(S50 (x) Sale)(x) dx = 5 3 (e w(Ei) A0

be calculated using the formula

where
18 = | Nyalx) Nyu(x)dx = L (
A4 Le(X) Ny k(x)ax A .
] K i k(x)dx };1) (S N ,p,kﬁ(x)Njfl’)’,,;P(x)dx>.
[}]

e l()n'.; o " D (8] < . . 1n€ .

1\7
LI
v=r 2 w(X®),

where 4% =}
s e Sap, and XU = (X, X, =1 N
e L LX), k= .
calf). Of course, the puted random vectors with probalﬁnz-i’ are independent
Dy a suita ion f must to be positively, othe Y density function
s rwise it is increm
en-

ter I. and ; ble constant .
o and .The e : .
it has the variance 2Stlmatmg function is unbi
6%,/N, where o2 iased for the parame-

X a rand
om vector § i is
\ ; ; the i
Thercfore, we hai;(({ )tS;sttrlbuted over D, sV variance of u(X) with

.G\"‘s,
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