Exponential growth of solutions with \(L_p\)-norm of a nonlinear viscoelastic wave equation with strong damping and source and delay terms
DOI:
https://doi.org/10.24193/subbmath.2023.2.12Keywords:
strong damping, viscoelasticity, nonlinear source, exponential growth, delay.Abstract
In this work, we are concerned with a problem for a viscoelastic wave equation with strong damping, nonlinear source and delay terms. We show the exponential growth of solutions with \(L_p\)-norm.References
J. Ball. Remarks on Blow-Up and Nonexistence Theorems for Nonlinear Evolutions Equation. Quarterly Journal of Mathematics, 28, (1977)473-486.
S. Berrimi, S. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear Analysis, 64 ( 2006), 2314-2331.
I. Bialynicki-Birula,J. Mycielsk. Wave equations with logarithmic nonlinearities. Bull Acad Polon Sci Sr SciMath Astron Phys. 1975;23:461-466.
M. M. Cavalcanti, D. Cavalcanti, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 24 (2001), 1043-1053.
M. M. Cavalcanti, D. Cavalcanti, P. J. S. Filho, J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Difierential and integral equations, 14 (2001), 85-116.
T. Cazenave, A. Haraux. Equations d'volution avec non-linearite logarithmique. Ann Fac Sci Toulouse Math (5). 1980;2(1):21-51.
T. Cazenave, A.Haraux. Equation de Schrodinger avec non-linearite logarithmique. C R Acad Sci Paris Ser A-B. (1979);288:A253-A256.
X. Han. Global existence of weak solution for a logarithmic wave equation arising from Q-ball dynamics. Bull Korean Math Soc. (2013);50:275-283.
A. Haraux, E. Zuazua. Decay Estimates for Some Semilinear Damped Hyperbolic Problems. Archive for Rational Mechanics and Analysis, 100, (1988)191-206.
V. Georgiev, G. Todorova. Existence of Solutions of the Wave Equation with Nonlinear Damping and Source Terms. Journal of Difierential Equations, 109, (1994)295-308.
P. Gorka, Convergence of logarithmic quantum mechanics to the linear one. Lett Math Phys. (2007);81:253-264.
P. Gorka. Logarithmic quantum mechanics: existence of the ground state. Found Phys Lett. (2006);19:591-601.
M. Kafini, S.A. Messaoudi. A Blow-Up Result in a Cauchy Viscoelastic Problem. Applied Mathematics Letters, 21, (2008)549-553.
M. Kafini, S.A. Messaoudi. Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Applicable Analysis, (2018) DOI: 10.1080/00036811.2018.1504029.
M. Kafini, S.A. Messaoudi. A Blow-Up Result in a Cauchy Viscoelastic Problem. Applied Mathematics Letters, 21, 549-553(2008). http://dx.doi.org/10.1016/j.aml.2007.07.004
H.A. Levine. Instability and Nonexistence of Global Solutions of Nonlinear Wave Equation of the Form Putt = Au + F(u). Transactions of the American Mathematical Society, 192, (1974) 1-21.
G. Liang, Y. Zhaoqin, L. Guonguang, Blow Up and Global Existence for a Nonlinear Viscoelastic Wave Equation with Strong Damping and Nonlinear Damping and Source terms, Applied Mathematics, 6, (2015)806-816.
S.A. Messaoudi. Blow Up and Global Existence in a Nonlinear Viscoelastic Wave Equation. Mathematische Nachrichten, 260, (2003)58-66.
http://dx.doi.org/10.1002/mana.200310104.
S.A. Messaoudi. Blow Up in a Nonlinearly Damped Wave Equation. Mathematische Nachrichten, 231, (2001)105-111.
S.A. Messaoudi. Blow Up of Positive-Initial-Energy Solutions of a Nonlinear Viscoelastic Hyperbolic Equation. Journal of Mathematical Analysis and Applications, 320, (2006)902-915.
S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Diff. Int. Equs., 21 (9-10), 935-958 (2008).
H.T. Song, and D.S. Xue, Blow up in a Nonlinear Viscoelastic Wave
Equation with Strong Damping. Nonlinear Analysis, 109, 245-251 (2014).
http://dx.doi.org/10.1016/j.na.2014.06.012.
W. Shun-Tang, T. Long-Yi , On global existence and blow-up of solutions or an integro-difierential equation with strong damping, Taiwanese J. Math., 10 (2006), 979-1014.
H.T. Song, and C.K. Zhong, Blow-Up of Solutions of a Nonlinear Viscoelastic Wave Equation. Nonlinear Analysis: Real World Applications, 11, 3877-3883(2010). http://dx.doi.org/10.1016/j.nonrwa.2010.02.015.
K. Zennir, Exponential growth of solutions with Lp-norm of a nonlinear viscoelastic hyperbolic equation, J. Nonlinear Sci. Appl. 6 (2013), 252-262.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.