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Radius of starlikeness through subordination

Asha Sebastian and Vaithiyanathan Ravichandran

Abstract. A normalized function f on the open unit disc is starlike (or convex)
univalent if the associated function zf ′(z)/f(z) (or 1+zf ′′(z)/f ′(z)) is a function
with positive real part. The radius of starlikeness or convexity is usually obtained
by using the estimates for functions with positive real part. Using subordination,
we examine the radius of various starlikeness, in particular, radii of Janowski
starlikeness and starlikeness of order β, for the function f when the function f
is either convex or (zf ′(z) + αz2f ′′(z))/f(z) lies in the right-half plane. Radii
of starlikeness associated with lemniscate of Bernoulli and exponential functions
are also considered.
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1. Introduction

Let A be the class of all functions

f(z) = z +

∞∑
n=2

anz
n

analytic on the open unit disc D := {z ∈ C : |z| < 1} and let S be its subclass
consisting of univalent functions. The Bieberbach conjecture (and now de Branges
theorem [4]) states that the coefficients of f ∈ S satisfy the inequality |an| ≤ n for
n ≥ 2 and it led to the study of several geometrically defined classes such as the class
of starlike functions, denoted by S∗ and the class of convex functions, denoted by K.
These classes and other subclasses can be unified by subordination and convolution.
The concept of subordination was introduced by Lindelöf [9]. A function f analytic in
D is subordinate to an analytic function g in D, written f ≺ g, if there exists a Schwarz
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function w : D → D such that f(z) = g(w(z)) for all z ∈ D. When g is univalent in
D, the subordination f ≺ g holds if and only if f(0) = g(0) and f(D) ⊆ g(D). The
convolution or Hadamard product of two functions

f(z) =

∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n

in A is defined by

(f ∗ g)(z) :=

∞∑
n=0

anbnz
n.

Motivated by earlier works on unifying various subclasses of starlike and convex func-
tions, Shanmugam [26] introduced and studied convolutions properties (using results
of [25]) of the class

S∗g (ϕ) := {f ∈ A : z(f ∗ g)′(z)/(f ∗ g)(z) ≺ ϕ(z)}

where ϕ is a convex function and g is a fixed function in the class A. When g(z) is
z/(1− z) and z/(1− z)2, the subclass S∗g (ϕ) becomes the classes

S∗(ϕ) := {f ∈ A : zf ′(z)/f(z) ≺ ϕ(z)}

and

K(ϕ) := {f ∈ A : 1 + zf ′′(z)/f ′(z) ≺ ϕ(z)}
respectively. Ma and Minda [11] studied the distortion, growth theorems for these
classes where ϕ is a starlike function. We are interested in few special choices of ϕ.
When ϕ(z) = (1 + (1−2α)z)(1− z)−1, 0 ≤ α < 1, the classes S∗(ϕ) and K(ϕ) are the
classes of starlike and convex functions of order α introduced by Robertson [24]. The
classes S∗(0) = S and K(0) = K are respectively the well-known classes of starlike
and convex functions. For example, when −1 ≤ B < A ≤ 1, the class

S∗[A,B] := S∗
(
(1 +Az)/(1 +Bz)

)
is the class of Janowski starlike functions and the class

K[A,B] := K
(
(1 +Az)/(1 +Bz)

)
is the class of Janowski convex functions considered by several authors [5, 21, 22]. We
are also interested in the class S∗L = S∗(

√
1 + z) studied by Sokó l and Stankiewicz

[28] and S∗e = S∗(ez) studied by Mendiratta et al. [12]. These classes were studied in
[2, 1, 3, 18, 6, 14].

Let α > 1, 0 ≤ β < 1 and β ≥ 1/2− 1/(2α). Let ϕp : D→ C be defined by

ϕp(z) := (1− α)
1 + (1− 2β)z

(1− z)
+ α

(
1 + (1− 2β)z

(1− z)

)2

+ α
2(1− β)z

(1− z)2
. (1.1)

The image of the unit disk D under the function ϕp(z) = u + i v is the exterior of
parabola given by

v2 = − (1− α(1− 2β))2(2− 2β)

α(3− 2β)
(u− (αβ (β − 1/2) + β − α/2))
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with its vertex at (αβ (β − 1/2) + β − α/2, 0). Note that it includes the right half
plane. If β = 1/2−1/(2α), the region ϕp(D) becomes the entire complex plane with a
slit along the negative real axis from −

(
(2α2 − α+ 1)/4α

)
to −∞. Also the condition

β ≥ 1/2 − 1/(2α) restricts the range of β to (0, 1/2). We are mainly concerned with
the class S∗α,β of all functions f ∈ A, with f(z)/z 6= 0, satisfying

zf ′(z) + αz2f ′′(z)

f(z)
≺ ϕp(z) (1.2)

where the function ϕp is defined in (1.1). Singh and Gupta [27, Corollary 4.1] have
shown that S∗α,β ⊆ S∗β . This extends the results of Li and Owa [8], Padmanabhan [17]

and Ravichandran et al. [23]. These functions were also studied in [7, 10, 15, 16, 19, 20].
For two families G and F of A, the G-radius of F , denoted by RG(F) is the

largest number R such that r−1f(rz) ∈ G for 0 < r ≤ R, and for all f ∈ F . Whenever
G is characterised by a geometric property P , the number R is also referred to as the
radius of property P for the class F . If the class F is clear from the context, then
we just write RG(F) as RG . Using the theory of differential subordination developed
by Miller and Mocanu [13], we determine radius constants for functions in the classes
S∗α,β and K to belong to various subclass of starlike functions, in particular, to the
class of Janowski starlike functions and the starlike functions of order β as well as
to the classes of starlike functions associated with lemniscate of Bernoulli and the
exponential functions. The results are shown to be sharp by explicitly showing the
extremal function. The class S∗α,β for suitable α, β is a subclass of starlike functions
of order β and the class of convex functions K is a subclass of functions starlike of
order 1/2. These observations lead us to discuss radius constants of functions in the
class S∗(β) in Lemma 1.2. It is then applied to find radius constants for functions in
the classes S∗α,β and K.

Various radii constants for the class S∗α,β are given in the following:

Theorem 1.1. The following sharp radius results hold for the class S∗α,β:
(i) For −1 ≤ B < A ≤ 1, the S∗[A,B] radius

RS∗[A,B] = min{1, (A−B)/ (|A+B − 2βB|+ 2(1− β))}.
(ii) For 0 ≤ γ < 1, γ > β, the S∗(γ) radius RS∗(γ) = (1− γ)/(1 + γ − 2β).

(iii) The SL radius RSL = (
√

2− 1)/
(√

2 + 1− 2β
)
.

(iv) The S∗e radius RS∗
e

= (e− 1)/ (e+ 1− 2β).

The idea of the proof is to use inclusion results for the class S∗α,β with the class

of starlike functions of order β. Singh and Gupta [27, Corollary 4.1] have shown that
S∗α,β ⊆ S∗(β). In order to use this inclusion, we first find the various radii for the
class of starlike functions of order β in the following:

Lemma 1.2. The following sharp radius results hold for the class S∗(β):

(i) For −1 ≤ B < A ≤ 1, the S∗[A,B] radius

RS∗[A,B] = min{1, (A−B)/ (|A+B − 2βB|+ 2(1− β))}.
(ii) For 0 ≤ γ < 1, γ > β, the S∗(γ) radius RS∗(γ) = (1− γ)/(1 + γ − 2β).
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(iii) The SL radius RSL = (
√

2− 1)/
(√

2 + 1− 2β
)
.

(iv) The S∗e radius RS∗
e

= (e− 1)/ (e+ 1− 2β).

Theorem 1.1 follows from this lemma except for the sharpness. To find the
extremal function f̃ for the class S∗α,β , write f̃ as

f̃(z) = z +

∞∑
n=2

anz
n

and determine the coefficients an from

zf̃ ′(z)

f̃(z)

(
1 + α

zf̃ ′′(z)

f ′1(z)

)
= ϕp(z) (1.3)

where ϕp is given by (1.1). Writing

C = 2(2α− β)− 4αβ, D = 2(α+ β) + 2αβ(2β − 3)− 1,

the equation (1.3) readily gives

a2 =
C + 2

1 + 2α
= 2(1− β)

an =

(
C + 2(n− 1) + 2α(n− 1)(n− 2)

)
(1 + nα)(n− 1)

an−1

+

(
D − (n− 2)− α(n− 2)(n− 3)

)
(1 + nα)(n− 1)

an−2.

Calculating the coefficients an from the above recurrence relation, we see that the
extremal function f̃ is the generalised Koebe’s function given by

f̃(z) =
z

(1− z)2−2β
. (1.4)

Interestingly, it is the extremal of the class S∗(β) and hence the sharpness of our
theorem follows trivially.

It is also well-known that a convex function is starlike of order 1/2 and so the
class K of convex function is contained in the class S∗(1/2) of starlike functions of
order 1/2. This inclusion and Lemma 1.2 together readily yields the following radii
results for the class of convex functions:

Corollary 1.3. The following sharp radius results hold for the class K:
(i) For −1 ≤ B < A ≤ 1, the S∗[A,B] radius

RS∗[A,B] = min{1, (A−B)/ (1 + |A|)}.
(ii) For 0 ≤ γ < 1, γ > 1/2, the S∗(γ) radius RS∗(γ) = (1− γ)/γ.

(iii) The SL radius RSL = 1− 1/
√

2 ≈ 0.2929.
(iv) The S∗e radius RS∗

e
= 1− 1/e ≈ 0.6321.

The method of convolution can also be applied to find radius problems of various
classes. Corollary 1.3 (ii) requires the largest number ρ such that the function lρ :
D→ C is a starlike of order γ ≥ 1/2, where fρ(z) = f(z)∗ lρ(z). Here l(z) = z/(1− z)
is the convolution identity and the functions fρ, lρ : D → C are defined respectively
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by fρ(z) = f(ρz)/ρ and lρ(z) = z/(1 − ρz). This is equivalent to find the number ρ
such that Re(ρz/(1−ρz)) > γ−1. It follows by simple computation that ρ = (1−γ)/γ,
since the real part of the function (ρz/(1− ρz)) attains minimum at z = −1.

2. Proof of Lemma 1.2

Let the function f ∈ S∗(β). Then, it follows that

zf ′(z)

f(z)
≺ 1 + (1− 2β)z

(1− z)
.

Define the function fρ : D −→ C by fρ(z) := f(ρz)/ρ. For this function, we immedi-
ately get

zf ′ρ(z)

fρ(z)
≺ 1 + (1− 2β)ρz

(1− ρz)
. (2.1)

(i) Let −1 ≤ A < B ≤ 1 and the functions p, q : D −→ C be defined by,

p(z) =
1 + (1− 2β)z

(1− z)
and q(z) =

1 +Az

1 +Bz
. (2.2)

From (2.2), it follows that p−1(w) = (w − 1)/(w + 1− 2β) and hence

p−1 ◦ q(z) =
q(z)− 1

q(z) + 1− 2β
=

(A−B)z

(A+B − 2βB)z + 2(1− β)
. (2.3)

The values taken by p−1 ◦ q(z) in (2.3) leads us in finding ρ through two different
cases.
Case 1. If (A−B)/(|A+B − 2βB|+ 2(1− β)) ≥ 1, then, by (2.3), we have

|p−1 ◦ q(z)| ≥ A−B
|A+B − 2βB|+ 2(1− β)

≥ 1 (z ∈ ∂D).

This shows that z ≺ p−1(q(z)) and hence p(z) ≺ q(z). This shows that ρ = 1.
Case 2. If (A−B)/(|A+B − 2βB|+ 2(1− β)) ≤ 1, then it follows from (2.2) that

RS∗[A,B] = min
|z|=1

∣∣p−1 ◦ q(z)∣∣
= min
|z|=1

∣∣∣∣ (A−B)z

(A+B − 2βB)z + 2− 2β

∣∣∣∣
=

A−B
|A+B − 2βB|+ 2(1− β)

. (2.4)

Thus, for 0 < ρ ≤ RS∗[A,B], we have p(ρz) ≺ q(z). By (2.1), it follows that
zf ′ρ(z)/fρ(z) ≺ p(ρz) ≺ q(z) or fρ ∈ S∗[A,B]. Thus, the S∗[A,B] radius of the
class S∗(β) is at least RS∗[A,B].

To show the sharpness, consider the function f̃ : D→ C defined by

f̃(z) =
z

(1− z)2−2β
. (2.5)
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At the point z = RS∗[A,B], the function f̃ satisfies∣∣∣∣∣ (zf̃ ′(z)/f̃(z)− 1

A−B(zf̃ ′(z)/f̃(z)

∣∣∣∣∣ = 1

and hence the result is sharp.
(ii) Let 0 ≤ γ < 1. We consider two cases depending on the values γ, namely,

γ ≤ β and γ ≥ β. Since S∗(γ) = S∗[1− 2γ,−1], substituting A = 1− 2γ and B = −1
in (2.4), we obtain ρ = 1 when γ ≤ β and the required ρ = RS∗(γ) when γ ≥ β.

(iii) For 0 < a <
√

2, by [2, Lemma 2.2], we have

{w ∈ C : |w − a| <
√

2− a} ⊆ {w ∈ C :
∣∣w2 − 1

∣∣ < 1}. (2.6)

Let the functions p, q : D→ C be defined by

p(z) :=
1 + 2(1− β)z

1− z
and q(z) :=

√
1 + z. (2.7)

It is evident from (2.7) that

p−1(q(z)) =

√
1 + z − 1√

1 + z + 1− 2β
=

(
1 +

2(1− β)√
1 + z − 1

)−1
. (2.8)

By (2.6), we have
∣∣√1 + z − 1

∣∣ ≥ √2− 1 and so

1 +
2(1− β)∣∣√1 + z − 1

∣∣ ≤ 1 +
2(1− β)√

2− 1
. (2.9)

Substituting (2.9) in (2.8), it follows that

ρ = min
|z|=1

∣∣p−1 ◦ q(z)∣∣ = min
|z|=1

∣∣∣∣∣
(

1 +
2(1− β)√
1 + z − 1

)−1∣∣∣∣∣ . (2.10)

This is equivalent to

ρ =

(
max
|z|=1

∣∣∣∣1 +
2(1− β)√
1 + z − 1

∣∣∣∣)−1 =

(
1 +

2(1− β)√
2− 1

)−1
. (2.11)

Therefore, we have
1 + 2(1− β)ρz

1− ρz
≺
√

1 + z.

By (2.1), this proves that the function fρ ∈ SL.

At the point z = RSL , the function f̃ defined in (2.5) satisfies∣∣∣∣∣∣
(
zf̃ ′(z)

f̃(z)

)2

− 1

∣∣∣∣∣∣ =

∣∣∣∣∣
(

1 +
2(1− β)z

1− z

)2

− 1

∣∣∣∣∣ = 1.

(iv) Let the functions p and q be defined as

p(z) :=
1 + (1− 2β)z

1− z
and q(z) := ez, z ∈ D. (2.12)
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It is apparent from (2.12) that

p−1(q(z)) =
ez − 1

ez + 1− 2β
=

(
1 +

2(1− β)

ez − 1

)−1
. (2.13)

Let λ = 2(1− β), 0 ≤ β ≤ 1. On the boundary of the unit disc D, we have∣∣∣∣1 +
λ

ez − 1

∣∣∣∣2 =

∣∣∣∣1 +
λ

ecos θ cos(sin θ)− 1 + i ecos θ sin(sin θ)

∣∣∣∣2
=
e2 cos θ + 2(λ− 1)ecos θ cos(sin θ) + (λ− 1)2

e2 cos θ − 2ecos θ cos(sin θ) + 1
.

(2.14)

Substituting cos θ = x in (2.14), we get∣∣∣∣1 +
λ

ez − 1

∣∣∣∣2 =
e2x + 2(λ− 1)ex cos(

√
1− x2) + (λ− 1)2

e2x − 2ex cos(
√

1− x2) + 1

=
g(x, λ)

g(x, 0)

(2.15)

where

g(x, λ) := e2x − 2ex cos(
√

1− x2) + 1. (2.16)

Let −1 ≤ x ≤ 1, 0 ≤ λ ≤ 2 and the function S be defined by

S(x) := g(x, λ)g(1, 0)− g(x, 0)g(1, λ).

Using (2.16) in S(x), it can be seen that

S(x) = 2x(e2 + λ− 1)ex cos(
√

1− x2)− (2e+ λ− 2)e2x

− e(2(λ− 1)− e(λ− 2)).
(2.17)

Define the function s by

s(x) := 2x(e2 + λ− 1)ex cos(
√

1− x2)− (2e+ λ− 2)e2x.

The function s′(x) is an increasing function. Therefore it has at most one zero, say η.
Also s′′(x) > 0, this shows that η is a local minima. Thus, the maximum of s occurs
at x = ±1. At x = −1,

s(−1) = −2(e− e−2)− λe−1(e−1 + 2) ≤ 0.

These observations together with (2.17) lead us to the fact that S(x) ≤ 0, or equiva-
lently, the function h defined by h(x) := g(x, λ)/g(x, 0) satisfies h(x) ≤ h(1). There-
fore, the maximum of h(x) occurs at x = 1, and, by (2.15),∣∣∣∣1 +

2(1− β)

ez − 1

∣∣∣∣ ≤ ∣∣∣∣1 +
2(1− β)

e− 1

∣∣∣∣ . (2.18)

From the definition of ρ, it follows from (2.13) that

ρ = min
|z|=1

∣∣p−1 ◦ q(z)∣∣ = min
|z|=1

∣∣∣∣∣
(

1 +
2(1− β)

ez − 1

)−1∣∣∣∣∣ .
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From (2.18), it is clear that

ρ =

(
max
|z|=1

∣∣∣∣1 +
2(1− β)

ez − 1

∣∣∣∣)−1 =

(
1 +

2(1− β)

e− 1

)−1
. (2.19)

This proves that

1 + (1− 2β)ρz

1− ρz
≺ ez

and so the function fρ ∈ S∗e .

At the point z = RS∗
e
, the function f̃ defined in (2.5) satisfies∣∣∣∣∣log

zf̃ ′(z)

f̃(z)

∣∣∣∣∣ =

∣∣∣∣log

(
1 +

2(1− β)z

1− z

)∣∣∣∣ = 1.

This completes the proof of the lemma.

Let −1 ≤ B < A ≤ 1 and −1 ≤ D < C ≤ 1. In 1997, Gangadharan and
Ravichandran [5] discussed the S∗[A,B] radius of the class S∗[C,D] and shown that

RS∗[A,B](S∗[C,D]) = min {1, (A−B)/(C −D + |AD −BC|)} .

Lemma 1.2(i) is indeed a particular case when C = 1 − 2δ and D = −1. The radius
determined in Corollary [5, pp.305] is exactly the same as Lemma 1.2(ii). Theorem [2,
pp.6562] determined the SL radius of S∗[A,B] when B ≤ 0. When A = 1−2δ,B = −1,
their result gives

RSL = min

{
1, (
√

2− 1)/(1− δ +

√
(1− δ)2 + (

√
2− 1)(

√
2 + 1− 2δ) )

}
and it is same as the radius in Lemma 1.2(iii). Mendiratta et al. [12] discussed sub-
ordination theorems and radii constants for the functions in the class S∗(ez). They
determined the S∗e radius of f ∈ S∗[A,B]. By substituting A = 1 − 2δ,B = −1 in
Theorem [12, pp.381], the radius obtained is our Lemma 1.2(iv).
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