A strong converse inequality for the iterated Boolean sums of the Bernstein operator
DOI:
https://doi.org/10.24193/subbmath.2022.3.10Keywords:
Bernstein polynomials, Boolean sums, strong converse inequality, modulus of smoothness, K-functionalAbstract
We establish a two-term strong converse estimate of the rate of approximation by the iterated Boolean sums of the Bernstein operator. The characterization is stated in terms of appropriate moduli of smoothness or K-functionals.References
bibitem{Ch-Zh}
Cheng, L., Zhou, X., emph{Strong inequalities for the iterated Boolean sums of Bernstein operators}, Stud. Univ. Babec s-Bolyai Math., textbf{64}(2019), no.~3, 299-304.
bibitem{De-Lo:CA}
DeVore, R. A., Lorentz, G. G., emph{Constructive Approximation}, Springer-Verlag, Berlin, 1993.
bibitem{Di-Ca}
Ding, C., Cao, F., emph{$K$-functionals and multivariate Bernstein polynomials}, J. Approx. Theory, textbf{155}(2008), 125-135.
bibitem{Di-Iv}
Ditzian, Z., Ivanov, K. G., emph{Strong converse inequalities}, J. Anal. Math., textbf{61}(1993), 61-111.
bibitem{Di-To:Mod}
Ditzian, Z., Totik, V., emph{Moduli of Smoothness}, Springer-Verlag, New York, 1987.
bibitem{Dr:BernIt2}
Draganov, B. R., emph{On Simultaneous Approximation by Iterated Boolean Sums of Bernstein Operators}, Results Math., textbf{66}(2014), 21-41.
bibitem{Dr:BernIt3}
Draganov, B. R., emph{Strong estimates of the weighted simultaneous approximation by the Bernstein and Kantorovich operators and their iterated Boolean sums}, J. Approx. Theory, textbf{200}(2015), 92-135.
bibitem{Dr-Ga}
Draganov, B. R., Gadjev, I., emph{Direct and converse Voronovskaya estimates for the Bernstein operator}, Results Math., textbf{73}:11(2018).
bibitem{Go-Zh}
Gonska, H., Zhou, X.-l., emph{Approximation theorems for the iterated Boolean sums of Bernstein operators}, J. Comput. Appl. Math., textbf{53}(1994), 21-31.
bibitem{Kn-Zh}
Knoop, H.-B., Zhou, X.-l., emph{The lower estimate for linear positive operators (II)}, Results Math., textbf{25}(1994), 315-330.
bibitem{Ko-Le-Sh}
Kopotun, K., Leviatan, D., Shevchuk, I. A., emph{New moduli of smoothness: weighted DT moduli revisited and applied}, Constr. Approx., textbf{42}(2015), 129-159.
bibitem{To:BP}
Totik, V., emph{Approximation by Bernstein polynomials}, Amer. J. Math., textbf{116}(1994), 995-1018.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.