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A dynamic electroviscoelastic problem
with thermal effects

Sihem Smata and Nemira Lebri

Abstract. We consider a mathematical model which describes the dynamic pro-
cess of contact between a piezoelectric body and an electrically conductive foun-
dation. We model the material’s behavior with a nonlinear electro-viscoelastic
constitutive law with thermal effects. Contact is described with the Signorini
condition, a version of Coulomb’s law of dry friction. A variational formulation of
the model is derived, and the existence of a unique weak solution is proved. The
proofs are based on the classical result of nonlinear first order evolution inequali-
ties, the equations with monotone operators, and the fixed point arguments.
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1. Introduction

Piezoelectricity is the ability of certain crystals, like the quartz, to produce a
voltage when they are subjected to mechanical stress. On a nanoscopic scale, the
piezoelectric phenomenon arises from a nonuniform charge distribution within a crys-
tal unit cells, and the piezoelectricity is then perceived as the electrical polarization
due to mechanical input. Different models have been developed to describe the inter-
action between the electric and mechanical fields (see, e.g.[12, 13, 15]). Therefore there
is a need to extend the results on models for contact with deformable bodies which
include coupling between mechanical and electrical properties. General models for
elastic materials with piezoelectric effects can be found in [13, 17] and more recently
in [2], viscoelastic piezoelectric materials in [2, 17] or elasto-viscoplastic piezoelectric
materials have been studied in [9].

In this paper, we consider a general model for the dynamic process of fric-
tional contact between a deformable body and a rigid obstacle. The material obeys
an electro-viscoelastic constitutive law with piezoelectric and thermal effects. More-
over, the contact and friction are modelled by Signorini’s conditions and a non local
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Coulomb’s friction law. We derive a variational formulation of the model, which is
set as a system coupling a variational second order evolution inequality. We establish
the existence of a unique weak solution of the model. The idea is to reduce the sec-
ond order evolution inequality of the system to first order evolution inequality. Then
adopting fixed point methods frequently we prove an existence and uniqueness of dis-
placement and temperature fields, using monotonicity and convexity properties. The
importance of this paper is to make the coupling of an electro-viscoelastic problem
with thermal effects. The paper is structured as follows. In Section 2 we describe the
mechanical problem and provide comments on the contact boundary conditions. In
Section 3 we list the assumptions on the data and derive the variational formulation.
In Sections 4, we present our main existence and uniqueness results, which state the
unique weak solvability of the Signorini’s contact electro-visco -elastic problem with
non local Coulomb’s friction lawn conditions.

2. Problem statement

We consider a body made of a piezoelectric material which occupies the do-
main Ω ⊂ Rd (d ≤ 3) with a Lipschitz boundary Γ. The body is modelled with an
electro-visco-elastic constitutive law, allowing piezoelectric effects. Let [0.T ] be the
time interval where T > 0, let Γ be split into three measurable parts Γ1, Γ2 and Γ3

such that meas Γ1 > 0. We assume that the body is fixed on Γ1 and surface tractions
of density h act on Γ2. On Γ3, the body may come into contact with a rigid obstacle.
In other hand, Γ be split into two measurable sets Γa and Γb such that meas Γb > 0
and Γ3 ⊂ Γb . We assume that the electrical potential q0 act on Γa and a surface
electric charge of density q2 act on Γb, we assume that the problem is quasistatic. The
piezoelectric effect is the apportion of electric charges on surfaces of particular crys-
tals after deformation. We denote by Sd the space of second order symmetric tensors
on the space Rd and use · and |.| for the inner product and the Euclidean norm on
the space Rd (respectively; Sd). Also ν represents the unit outward normal on Γ, the
classical formulation of the electro-visco-elastic contact friction problem is described
by:
Problem P. Find a displacement field u : Ω × [0.T ] → Rd, a stress field σ : Ω ×
[0.T ]→ Sd, an electric potential field ϕ : Ω× [0.T ]→ R, an electric displacement field
D : Ω× [0.T ]→ Rd and a temperature field θ : Ω× [0, T ]→ R+ such that:

σ = Aε
( .
u
)

+ Gε (u)− ξ∗E (ϕ)− θMe in Ω× [0.T ] , (2.1)

D = βE (ϕ) + ξε (u) in Ω× [0.T ] , (2.2)

ρ
..
u = Div σ + f0 in Ω× [0.T ] , (2.3)

div D = q0 in Ω× [0.T ] , (2.4)
.

.

θ − div (k∇θ) = −M∇ .
u+ qe in Ω× [0.T ] , (2.5)

−kij
∂θ

∂υ
υj = ke (θ − θR) on Γ3 × [0.T ] , (2.6)

θ = 0 on Γ1 ∪ Γ2 × (0, T ), (2.7)

u = 0 on Γ1 × [0.T ] , (2.8)



A dynamic electroviscoelastic problem with thermal effects 771

σν = h on Γ2 × [0.T ] , (2.9)

uν ≤ 0 , σν ≤ 0 , uν σν = 0 on Γ3 × [0.T ] , (2.10) |στ | ≤ µp |R σν |
|στ | < µp |R σν | =⇒

.
uτ = 0

|στ | = µp |R σν | =⇒ ∃ λ ≥ 0 such that στ = −λ .uτ
on Γ3 × [0.T ] , (2.11)

ϕ = 0 on Γa × [0.T ] , (2.12)

Dν = q2 on Γb × [0.T ] , (2.13)

u (0) = u0 ,
.
u (0) = v0 and θ (0) = θ0 in Ω× [0.T ] , (2.14)

where (2.1), (2.2) are the thermo-electro -visco-elastic constitutive law of the mate-
rial, we denote ε (u) (respectively; E (ϕ) = −∇ϕ, A,G, ξ, ξ∗, β ) the linearized strain
tensor (respectively; electric field, the viscosity nonlinear tensor, the elasticity ten-
sor, the third order piezoelectric tensor and its transpose, the electric permittivity
tensor), θ represent the temperature, Me := (mij) represents the thermal expansion
tansor, (2.3) represents the equation of motion where ρ represents the mass density,
(2.4) represents the equilibrium equation, Equation (2.5) describes the evolution of
the temperature field, where k := (kij) represents the thermal conductivity tensor, qe
the density of volume heat sources. The associated temperature boundary condition is

given by (2.6) , where θr is the temperature of the foundation, and ke is the exchange
coefficient between the body and obstacle. Equation (2.7) means that the temperature
vanishes on Γ1 ∪ Γ2 × (0, T ). We mention that Divσ, divD are the divergence oper-
ators, (2.8) and (2.9) are the displacement and traction boundary conditions, (2.10),
(2.11) the Signorini’s contact with a non local Coulomb’s friction law conditions. u

ν and uτ (respectively; σν and στ ) denote the normal displacement and the tangen-
tial displacement (respectively; the normal stress and the tangential stress). R will
represent a normal regularization operator that is a linear and continuous operator
R :H−

1
2 (Γ) → L2 (Γ). We shall need it to regularize the normal trace of the stress

which is too rough on Γ. p is a non-negative function, the so-called friction bound,
µ ≥ 0 is the coefficient of friction. The friction law was used in some studies with
p(r) = r+ where r+ = max {0, r}. Recently, from thermodynamic considerations, a
new version of Coulomb’s law is proposed, it consists to take:

p(r) = r(1− αr)+, (2.15)

where α is a small positive coefficient related to the hardness and the wear of the
contact surface. (2.12), (2.13) represent the electric boundary conditions. Finally, in
(2.14) u0 is the given initial displacement, v0 is the given initial velocity and θ0 is the
initial temperature.
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3. Variational formulation and preliminaries

For a weak formulation of the problem, first we introduce some notation. The
indices i, j, k, l range from 1 to d and summation over repeated indices is implied.
An index that follows a comma represents the partial derivative with respect to the
corresponding component of the spatial variable, e. g: ui.j = ∂ui

∂xj
. We also use the

following notations:

H = L2(Ω)d = {u = (ui)/ui ∈ L2(Ω)}, H = {σ = (σij)/σij = σji ∈ L2(Ω)},
H1 = {u = (ui)/ε(u) ∈ H}, H1 = {σ ∈ H/Divσ ∈ H},

The operators of deformation ε and divergence Div are defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij,j).

The spaces H,H, H1, and H1 are real Hilbert spaces endowed with the canonical inner
products.
We denote by | . |H (respectively; | . |H, | . |H1 , and | . |H1) the associated norm on
the space H ( respectively; H, H1, and H1).
We use standard notation for the Lp and the Sobolev spaces associated with Ω and
Γ and, for a function ψ ∈ H1 (Ω) we still write ψ to denote it trace on Γ. We recall
that the summation convention applies to a repeated index.
For the electric displacement field we use two Hilbert spaces:

W = L2 (Ω)
d
, W1 =

{
D ∈ W,divD ∈ L2 (Ω)

}
endowed with the inner products:

(D,E)W =
∫

Ω
DiEidx, (D,E)W1

= (D,E)W + (divD,divE)L2(Ω) .

And the associated norm |.|W(respectively; |.|W1
). The electric potential field is to be

found in:

W =
{
ψ ∈ H1 (Ω) , ψ = 0 on Γa

}
.

Since meas (Γa) > 0, the following Friedrichs-Poincaré’s inequality holds, thus:

|∇ψ|W ≥ cF |ψ|H1(Ω) ∀ψ ∈W, (3.1)

where cF > 0 is a constant which depends only on Ω and Γa. On W , we use the inner
product given by:

(ϕ,ψ)W = (∇ϕ,∇ψ)W ,

and let |.|W be the associated norm. It follows from (3.1) that |.|H1(Ω) and |.|W are

equivalent norms on W and therefore (W, |.|W ) is a real Hilbert space.
Moreover, by the Sobolev trace Theorem, there exists a constant c̃0, depending only
on Ω, Γa and Γ3 such that:

|ψ|L2(Γ3) ≤ c̃0 |ψ|W ∀ψ ∈W. (3.2)

We recall that when D ∈ W1 is a sufficiently regular function, the Green’s type
formula holds:

(D,∇ψ)W + (divD,ψ)L2(Ω) =

∫
Γ

Dν.ψda. (3.3)
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When σ is a regular function, the following Green’s type formula holds:

(σ, ε (v))H + (Divσ, v)H =

∫
Γ

σν.vda ∀v ∈ H1. (3.4)

Next, we define the space:

V = {u ∈ H1/ u = 0 on Γ1}.
Since meas (Γ1) > 0, the following Korn’s inequality holds:

|ε (u)|H ≥ cK |v|H1
∀v ∈ V, (3.5)

where cK > 0 is a constant which depends only on Ω and Γ1. On the space V we use
the inner product:

(u, v)V = (ε(u), ε(v))H,

let |.|V be the associated norm. It follows by (3.5) that the norms |.|H1
and |.|V are

equivalent norms on V and therefore, (V, |.|V ) is a real Hilbert space. Moreover, by
the Sobolev trace Theorem, there exists a constant c0 depending only on the domain
Ω, Γ1and Γ3 such that:

|v|L2(Γ3)d ≤ c0 |v|V ∀v ∈ V. (3.6)

In what follows, we assume the following assumptions on the problem P .

(a) : A : Ω× Sd → Sd,
(b) : ∃ MA > 0 such that : |A (x, ε1)−A (x, ε2)| ≤MA |ε1 − ε2|

∀ ε1 , ε2 ∈ Sd, a. e. x ∈ Ω,

(c) : ∃ mA > 0 such that : |A (x, ε1)−A (x, ε2) , ε1 − ε2| ≥ mA |ε1 − ε2|2

∀ ε1 , ε2 ∈ Sd, a. e. x ∈ Ω,
(d) : the mapping x→ A (x, ε) is lebesgue measurable in Ω for all ε ∈ Sd,
(e) : the mapping x→ A (x, 0) ∈ H,

(3.7)
(a) : G : Ω× Sd → Sd,
(b) : ∃ MG > 0 such that : |G (x, ξ1)− G (x, ξ2)| ≤MG |ξ1 − ξ2|

∀ ξ1 , ξ2 ∈ Sd, a. e. x ∈ Ω,
(d) : the mapping x→ G (x, ξ) is lebesgue measurable in Ω for all ξ ∈ Sd,
(e) : the mapping x→ G (x, 0) ∈ H,

(3.8) (a) : ξ = (eijk) : Ω× Sd → Rd,
(b) : ξ (x, τ) = (eijk (x) τjk) ∀τ = (τij) ∈ Sd, a. e. x ∈ Ω,
(c) : eijk = eikj ∈ L∞ (Ω) ,

(3.9)


(a) : β = (βij) : Ω× Rd → Rd,
(b) : β (x,E) = (bij (x)Ej) ∀E = (Ei) ∈ Rd, a.e.x ∈ Ω,
(c) : bij = bji ∈ L∞ (Ω) ,

(d) : ∃ mβ > 0 such that : bij (x)EiEj ≥ mβ |E|2

∀E = (Ei) ∈ Rd, x ∈ Ω.

(3.10)

From the assumptions (3.9) and (3.10),we deduce that the piezoelectric operator
ξ(respectively; the electric permittivity operator β ) is linear, has measurable bounded
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component denoted eijk ( respectively; bij ) and moreover, β is symmetric and positive
definite.
Recall also that the transposed operator ξ∗ is given by ξ∗ = (e∗ijk) where e∗ijk = ekij
and the following equality holds:

ξσ.v = σ.ξ∗v ∀σ ∈ Sd, v ∈ Rd.

The friction function satisfies:
p : Γ3 × R→ R+ verifies:
(a) : ∃ M > 0 such that : |p (x, r1)− p (x, r2)| ≤M |r1 − r2|
For every r1, r2 ∈ R, a. e. x ∈ Γ3,
(b) : the mapping : x→ p (x, r) is measurable on Γ3, for every r ∈ R,
(c) : p (x, 0) = 0 , a. e. x ∈ Γ3.

(3.11)

We note that (3.11) is satisfied in the case in which p given by (2.12).
We also assume that the body forces and surface tractions have the regularity:

f0 ∈ L2 (0.T ;H) , h ∈ L2
(

0.T ;L2 (Γ2)
d
)
, (3.12)

The thermal tensors and the heat source density satisfy

M = (mij) ,mij = mji ∈ L∞ (Ω) , qe ∈ L2(0, T ;L2(Ω)), (3.13)

and for some ck > 0, for all (ζi) ∈ Rd :

k = (ki,j) , kij = kji ∈ L∞ (Ω) , kijζiζj ≥ ckζiζj (3.14)

as well as the densities of electric charges satisfy:

q0 ∈ L2
(
0.T ;L2 (Ω)

)
, q2 ∈ L2

(
0.T ;L2 (Γb)

)
. (3.15)

We define the function f : [0.T ]→ V and q : [0.T ]→W by:

(f (t) , v)V =
∫

Ω
f0 (t) vdx+

∫
Γ2
h (t) vda ∀v ∈ V, t ∈ [0.T ] , (3.16)

(q (t) , ψ)W = −
∫

Ω
q0 (t)ψdx+

∫
Γb
q2 (t)ψda ∀ψ ∈W, t ∈ [0.T ] . (3.17)

for all u, v ∈ V, ψ ∈ W and t ∈ [0.T ], and note that conditions (3.14) and (3.15)
imply that

f ∈ L2(0.T ;V ′), q ∈ L2(0.T ;W ), (3.18)

while the friction coefficient µ, the mass density ρ satisfies

µ ∈ L∞(Γ3), µ(x) ≥ 0, a. e. on Γ3,
ρ ∈ L∞(Ω) there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗, a.e.x ∈ Ω.

(3.19)

u0 ∈ V, v0 ∈ H, θ0 ∈ E, θR ∈W 1,2(0, T ;L2(Γ3)), ke ∈ L∞(Ω,R+) , (3.20)

The function r : V → L2(Ω) satisfies that there exists a constant Lr > 0 such that

|r(v1)− r(v2)|L2(Ω) ≤ Lr|v1 − v2|V ,∀v1, v2 ∈ V (3.21)

We denote by the frictionfunctional j : H ×V → R

j (σ, v) =

∫
Γ3

µp |R σν | |vτ | da. (3.22)
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We denote by U the convex subset of admissible displacements fields given by

U = {v ∈ H1/v = 0 on Γ1, vν ≤ 0 on Γ3}, (3.23)

By a standard procedure based on Green’s formula, we obtain the following formula-
tion of the mechanical problem (2.1)− (2.14).
Problem PV. Find a displacement field u : Ω× [0.T ]→ Rd,an electric potentiel field
ϕ : Ω× [0.T ] → R , an electric displacement field D : Ω× [0.T ] → Rd such that and
a temprature field θ : Ω× [0, T ]→ R+ such that:

(
..
u,w − .

u)V ′×V + (σ(t), ε(w − .
u(t)))H + j(σ,w)− j(σ, .u(t))

≥ (f(t), w − .
u(t)) ∀u,w ∈ V (3.24)

(D(t),Oψ)L2(Ω)d + (q (t) , ψ)W = 0 ∀ψ ∈W (3.25)

(
.

θ (t) +Kθ (t) = Re
.
u (t) +Q (t) t ∈ (0, T ), ∀ψ ∈W (3.26)

u (0) = u0 ,
.
u (0) = v0 and θ(0) = θ0 (3.27)

where Q : [0, T ]→ E′, K : E → E′, R : V → E′ are given by

(Q(t), µ)W =

∫
Γ3

ke(uν)θRµda+

∫
Ω

qµdx, (3.28)

(Kτ, µ)E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂µ

∂xi
dx+

∫
Γ3

keτµda, (Reµ, v)
E′×E

= −
∫

Ω

(M∇v) dx, (3.29)

for all v ∈ V, µ, τ ∈ E.

4. Existence and uniqueness result

Our main result which states the unique solvability of Problem are the following.

Theorem 4.1. Let the assumptions (3.7)−(3.20) hold. Then, Problem PV has a unique
solution {u, ϕ,D, θ} which satisfies

u ∈ C1 (0.T ;H) ∩W 1.2 (0.T ;V ) ∩W 2.2 (0.T ;V ′) (4.1)

ϕ ∈W 1.2 (0.T ;W ) (4.2)

σ ∈ L2(0.T ;H), Divσ ∈ L2(0.T ;V ′) (4.3)

D ∈W 1.2(0.T ;W1) (4.4)

θ ∈W 1,2(0, T ;E′) ∩ L2(0, T ;E) ∩ C(0, T ;L2 (Ω)) (4.5)

We conclude that under the assumptions (3.7)−(3.21), the mechanical problem (2.1)−
(2.14) has a unique weak solution with the regularity (4.1) − (4.5).The proof of this
theorem will be carried out in several steps. It is based on arguments of first order
evolution nonlinear inequalities (see Refs. [5,7-9]), evolution equations (see Ref. [2]),
and fixed point arguments.
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Let G ∈ L2(0.T ;H) and η ∈ L2(0.T ;V ′) are given, we deduce a variational
formulation of Problem PV .
Problem PVGη: Find a displacement field uGη : [0.T ]→ V such that

uGη (t) ∈ U (
..
uGη, w −

.
uGη)V ′×V + (Aε( .uGη(t)), ε(w − .

uGη(t))H+(
η, w − .

uGη(t)
)
V ′×V + j(G,w)− j(G, .uGη(t)) ≥ (f(t), w − .

uGη(t))

∀w ∈ V
(4.6)

.
uGη (0) = v (0) = v0 (4.7)

We define fη(t) ∈ V for a.e.t ∈ [0.T ] by

(fη(t), w)V ′×V = (f(t)− η(t), w)V ′×V ,∀w ∈ V. (4.8)

From (3.18), we deduce that:

fη ∈ L2(0.T ;V ′) (4.9)

Let now uGη : [0.T ]→ V be the function defined by

uGη (t) =

t∫
0

vGη (s) ds+ u0, ∀t ∈ [0.T ] (4.10)

We define the operator A : V ′ → V by

(Av,w)V ′×V = (Aε(v), ε(w))H,∀v, w ∈ V. (4.11)

Lemma 4.2. For all G ∈ L2(0.T ;H) and η ∈ L2(0.T ;V ′), PVGη has a unique solution
with the regularity:

vGη ∈ C(0.T ;H) ∩ L2(0.T ;V ) and
.
vGη ∈ L2(0.T ;V ′). (4.12)

Proof. The proof from nonlinear first order evolution inequalities, given in Refs ([8]).
�

In the second step, we use the displacement field uGη to consider the following
variational problem.

Problem PV 1Gη : Find an electric potential field ϕ
Gη

: Ω× [0.T ]→W such that:

(β∇ϕGη(t),Oψ)L2(Ω)d − (ξε(uGη(t)),Oψ)L2(Ω)d = (q (t) , ψ)W

∀ψ ∈W, t ∈ [0.T ] (4.13)

We have the following result forPV 1Gη:

Lemma 4.3. There exists a unique solution ϕGη ∈ W 1.2 (0.T ;W ) satisfies (4.13),
moreover if ϕ1and ϕ2 are two solutions to (4.13). Then, there exists a constants c > 0
sach that:

|ϕ1 (t)− ϕ2 (t)|W ≤ c |u1 (t)− u2 (t)|V ∀t ∈ [0.T ] . (4.14)

Proof. See [16]. �
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In the third step, we use the displacement field uη obtained in Lemma 4.2 to consider
the following variational problem.
Problem PV 1θη: Find θη : [0, T ]→ E′ satisfying a.e. t ∈ (0, T )

.

θη (t) +Kθη (t) = Re
.
uη (t) +Q (t) t ∈ (0, T ), in E′, (4.15)

θη (0) = θ0. (4.16)

Lemma 4.4. Problem PV 1θη has a unique solution, for all η ∈ W,

θη ∈W 1,2(0;T ;E
′
) ∩ L2(0;T ;E) ∩ C(0;T ;L2(Ω)), C > 0, ∀η ∈ L2(I;V ′)

satisfying

|θη1 − θη2 |2L2(Ω) ≤ C
∫ T

0

|υ1(s)− υ2(s)|2V ds ∀ t ∈ (0, T ). (4.17)

Proof. The existence and uniqueness result verifying (4.15) follows from classical re-
sult on first order evolution equation, applied to the Gelfand evolution triple

E ⊂ F ≡ F
′
⊂ E

′

We verify that the operator K is linear, continuous, strongly monotone, and from
the expression of the operator R, vη ∈ W 1,2(0, T ;V ) ⇒ Rvη ∈ W 1,2(0, T ;F ), as
Q ∈W 1,2(0, T ;E) then Rvη +Q ∈W 1,2(0, T ;E). We deduce (4.17) see [1]. �

We consider the operator

Λ : L2(0.T ;H× V ′)→ L2(0.T ;H× V ′) be defined as
Λ (G, η) = (Λ1 (G) ,Λ2 (η)) ,∀G ∈ L2 (0.T ;H) ,∀η ∈ L2 (0.T ;V ′) ,

|Λ (G2, η2)− Λ (G1, η2)|2 = |(Λ1 (G2) ,Λ2 (η2))− (Λ1 (G1) ,Λ2 (η1))|2 ,
|Λ1 (G2)− Λ1 (G1) ,Λ2 (η2)− Λ2 (η1)|2 = |Λ1 (G2)− Λ1 (G1)|2

+ |Λ2 (η2)− Λ2 (η1)|2 .

(4.18)

We show that Λ has a unique fixed point.

Lemma 4.5.

Λ (G∗, η∗) = (G∗, η∗) . (4.19)

Proof. Let (Gi, ηi) are functions in L2(0.T ;H × V ′) and denote by (ui, ϕi, θi ) the
functions obtained in Lemma 4.2, Lemma 4.3 and Lemma 4.4,
for(G, η) = (Gi, ηi) i = 1.2. Let t ∈ [0.T ]. From (2.1) it results

|G2 −G1|2H ≤ c
(
|v2 (t)− v1 (t)|2V + |ϕ2 (t)− ϕ1 (t)|2W

+ |u2 (t)− u1 (t)|2V + |θη1 − θη2 |2L2(Ω)

)
(4.20)

Therefore (4.14) and (4.17) yields

|G2 −G1|2H ≤ c

(
|v2 (t)− v1 (t)|2V + |u2 (t)− u1 (t)|2V +

∫ T

0

|υ1(s)− υ2(s)|2V ds

)
.

(4.21)
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Using (4.6),we find

(
.
v2 (t)− .

v1 (t) , v2 (t)− v1 (t)) + (Aε (v2 (t))−Aε (v1 (t)) , v2 (t)− v1 (t))+
(η2 (t)− η1 (t) , v2 (t)− v1 (t)) + j(G2, v2 (t))− j(G2, v1 (t))
−j(G1, v2 (t)) + j(G1, v1 (t)) ≤ 0

(4.22)
And, we have

j(G2, v2 (t))− j(G2, v1 (t))− j(G1, v2 (t)) + j(G1, v1 (t))

≤
∫

Γ3

µp |R G2ν | |v2τ | da−
∫

Γ3

µp |R G2ν | |v1τ | da

−
∫

Γ3

µp |RG1ν | |v2τ | da+

∫
Γ3

µp |R G1ν | |v1τ | da. (4.23)

Moreover, from (3.11), (3.19) and using the properties of R , we find

j(G2, v2 (t))− j(G2, v1 (t))− j(G1, v2 (t)) + j(G1, v1 (t)) ≤ c |G2 −G1|H |v2 − v1|V
(4.24)

So, (4.22) will be

(
.
v2 (t)− .

v1 (t) , v2 (t)− v1 (t))V ′×V + (Aε (v2 (t))−Aε (v1 (t)) , v2 (t)− v1 (t))

+ (η2 (t)− η1 (t) , v2 (t)− v1 (t)) ≤ c |G2 −G1|H |v2 − v1|V (4.25)

We integrate this equality with respect to time.
We use the initial conditions v1(0) = v2(0) = v0, the relation (3.7) and Cauchy-
Schwarz’s inequality. for all t ∈ [0, T ]. Then, using the inequality

2ab ≤ a2

mA
+mAb

2,

we obtain

1

2
|v2 (t)− v1 (t)|2V +

mA
2

∫ t

0

|v2 (s)− v1 (s)|2V ds

≤ 1

2mA

∫ t

0

|η2 (s)− η1 (s)|2V ′ +
mA
2

∫ t

0

|v2 (s)− v1 (s)|2V ds

+ c

(∫ t

0

|G2 (s)−G1 (s)|2H +

∫ t

0

|v2 (s)− v1 (s)|2V ds.
)

(4.26)

We apply Gronwall’s inequality to obtain

|v2 (t)− v1 (t)|2V ≤ c
(∫ t

0

|G2 (s)−G1 (s)|2H ds+

∫ t

0

|η2 (s)− η1 (s)|2V ′
)
. (4.27)

In other hand

|η2 (t)− η1 (t)|2V ′ ≤ c
(
|ϕ2 (t)− ϕ1 (t)|2W + |u2 (t)− u1 (t)|2V + |θη1 − θη2 |2L2(Ω)

)
(4.28)

Therefore (4.14) and (4.17) yields

|η2 (t)− η1 (t)|2V ′ ≤ c

(∫ T

0

|υ1(s)− υ2(s)|2V ds

)
(4.29)
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Using (4.6), we find

(
.
v2 (t)− .

v1 (t) , v2 (t)− v1 (t)) + (Aε (v2 (t))−Aε (v1 (t)) , v2 (t)− v1 (t))

+ (η2 (t)− η1 (t) , v2 (t)− v1 (t)) + j(G2, v2 (t))− j(G2, v1 (t))

− j(G1, v2 (t)) + j(G1, v1 (t)) ≤ 0 (4.30)

We integrate this equality with respect to time.
We use the initial conditions v1(0) = v2(0) = v0, the relations (3.7), (4.24) and
Cauchy-Schwarz’s inequality, for all t ∈ [0, T ]. Then, using the inequality

ab ≤ c
(
a2 + b2

)
,

we obtain∫ t

0

|v2 (s)− v1 (s)|2V ds ≤ c
(∫ t

0

|η2 − η1|2V ′ ds+

∫ t

0

|G2 −G1|2H ds
)

(4.31)

Applying the inequality (4.10) in (4.31). So (4.21) will be

|G2 (t)−G1 (t)|2H ≤ c
(∫ t

0

|η2 (s)− η1 (s)|2V ′ ds+

∫ t

0

|G2 (s)−G1 (s)|2H ds
)
.

(4.32)
From (4.10), (4.29) and (4.31) we find

|η2 − η1|2V ′ ≤ c
(∫ t

0

|η2 − η1|2V ′ ds+

∫ t

0

|G2 −G1|2H ds
)
. (4.33)

Using (4.16),to see that

|Λ (G2, η2)− Λ (G1, η1)|2 ≤ c
∫ t

0

|(G2, η2)− (G1, η1)|2H×V ′ ds. (4.34)

And denoting by p the powers of operator Λ, (4.32) imply by recurrence that

|Λp (G2, η2)− Λp (G1, η1)|2L2(0.T ;H×V ′)

≤ (ct)
p

p!
|(G2, η2)− (G1, η1)|2L2(0.T ;H×V ′) . (4.35)

This inequality shows that for a sufficiently large p the operator Λp is a contraction
on the Banach space L2(0.T ;H × V ′) and therefor, there exists a unique element:
(G∗, η∗) ∈ L2(0.T ;H× V ′)such that

Λ (G∗, η∗) = (G∗, η∗) . (4.36)

From (4.18), we find

(G∗, η∗) = ( σG∗η∗ , ξ
∗∇ϕG∗η∗ + Gε (uG∗η∗)− θG∗η∗Me) . (4.37)

�

Now, we have all the ingredients to provide the proof of Theorem 4.1.
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Proof of Theorem 4.1. Existence. Let (G∗, η∗) ∈ L2(0.T ;H × V ′) be the fixed point
of PVGη and let (u∗, ϕ∗, θ∗) be the solution to Problems PVGη, PV 1Gη and PV 1θη
for (G, η) = (G∗, η∗), that is, u∗ = uG∗η∗ , ϕ

∗ = ϕG∗η∗ and θ∗ = θG∗η∗ . It results
from(3.24), (3.25) and (3.26) that (u∗, ϕ∗, θ∗) is a solution of Problem PV . Property
(4.1) (4.2) and (4.5) follows from Lemmas 4.2, 4.3 and 4.4.
Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of operator defined by (4.18). �
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