Harmonic mappings and its directional convexity
DOI:
https://doi.org/10.24193/subbmath.2021.4.07Keywords:
harmonic functions, half-plane mappings, convexity in one direction, harmonic convolution, directional convexityAbstract
For any $\mu _{j}\ (\mu _{j}\in \mathbb{C},\left\vert \mu _{j}\right\vert
=1,j=1,2)$, we consider the rotations $f_{\mu _{1}}$ and $F_{\mu _{2}}$ of
right half-plane harmonic mappings $f,F\in S_{\mathcal{H}}$ which are CHD
with the prescribed dilatations $\omega _{f}(z)=\left( a-z\right) /\left(
1-az\right) $ for some $a$ $\left( -1<a<1\right) $ and $\omega _{F}(z)=$ $
e^{i\theta }z^{n}$ $\left( n\in \mathbb{N},\theta \in \mathbb{R}\right) $, $\omega _{F}(z)=$ $\left( b-z\right) /\left( 1-bz\right) $, $\omega
_{F}(z)=\left( b-ze^{i\phi }\right) /\left( 1-bze^{i\phi }\right) $ $%
(-1<b<1,\phi \in \mathbb{R})$, respectively. It is proved that the
convolution $f_{\mu _{1}}\ast F_{\mu _{2}}\in S_{\mathcal{H}}$ and is convex
in the direction of $\overline{\mu _{1}\mu _{2}}$ under certain conditions
on the parameters involved.
References
S. Beig and V. Ravichandran, textit{Convexity in one direction of convolution and convex combinations of harmonic functions},
accepted in Bulletin of Iranian Mathematical Society (BIMS) 2018.
J. Clunie and T. Sheil-Small, textit{Harmonic univalent functions}, Ann. Acad. Sci. Fenn. Ser. A I Math. textbf{9} (1984), 3--25.
M. Dorff, textit{Convolutions of planar harmonic convex mappings}, Complex Variables Theory Appl. textbf{45} (2001), no.~3,
--271.
M. Dorff, M. Nowak and M. Wol oszkiewicz, textit{Convolutions of harmonic convex mappings}, Complex Var. Elliptic Equ. textbf{57} (2012), no.~5, 489--503.
M. J. Dorff and J. S. Rolf, textit{Anamorphosis, mapping
problems, and harmonic univalent functions}, in Explorations in complex
analysis, 197--269, Classr. Res. Mater. Ser, Math. Assoc. America,
Washington, DC.
R. Kumar, M. Dorff, S. Gupta, and S. Singh, textit{%
Convolution properties of some harmonic mappings in the right half-plane}, Bull. Malays. Math. Sci. Soc. textbf{39} (2016), no.~1, 439--455.
R. Kumar, S. Gupta and S. Singh, textit{Convolution
properties of a slanted right half-plane mapping}, Mat. Vesnik textbf{65} (2013), no.~2, 213--221.
Y. Li and Z. Liu, textit{Convolutions of harmonic right
half-plane mappings}, Open Math. textbf{14} (2016), 789--800.
L. Li and S. Ponnusamy, textit{Convolutions of slanted
half-plane harmonic mappings}, Analysis (Munich) textbf{33} (2013), no.~2,
--176.
L. Li and S. Ponnusamy, textit{Solution to an open
problem on convolutions of harmonic mappings}, Complex Var. Elliptic Equ. textbf{58} (2013), no.~12, 1647--1653.
L. Li and S. Ponnusamy, Note on the convolution of harmonic mappings, Bull. Aust. Math. Soc. {bf 99} (2019), no.~3, 421--431.
H. Lewy, textit{On the non-vanishing of the Jacobian in
certain one-to-one mappings}, Bull. Amer. Math. Soc. textbf{42} (1936),
no.~10, 689--692.
Z. Liu and S. Ponnusamy, textit{Univalency of convolutions of
univalent harmonic right half-plane mappings}, Comput. Methods Funct. Theory textbf{17} (2017), no.~2, 289--302.
C. Pommerenke, textit{On starlike and close-to-convex functions}, Proc. London Math. Soc. (3) textbf{13} (1963), 290--304.
Q. I. Rahman and G. Schmeisser, textit{Analytic theory of
polynomials}, London Mathematical Society Monographs. New Series, 26, The Clarendon Press, Oxford University Press, Oxford, 2002.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.