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Extended local convergence for Newton-type
solver under weak conditions

Ioannis K. Argyros, Santhosh George and Kedarnath Senapati

Abstract. We present the local convergence of a Newton-type solver for equations
involving Banach space valued operators. The eighth order of convergence was
shown earlier in the special case of the k−dimensional Euclidean space, using
hypotheses up to the eighth derivative although these derivatives do not appear
in the method. We show convergence using only the first derivative. This way we
extend the applicability of the methods. Numerical examples are used to show
the convergence conditions. Finally, the basins of attraction of the method, on
some test problems are presented.
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1. Introduction

Let Ω ⊂ B1 be nonempty, open, and B1,B2 be Banach spaces.

B(B1,B2) = {G : B1 −→ B2 be bounded and linear},

T (x, d) = {y ∈ B1 : ‖y − x‖ < d; d > 0}
and

T̄ (x, d) = {y ∈ B1 : ‖y − x‖ ≤ d; d > 0}.
One of the greatest challenges in Computational Mathematics is to find a solution x∗
of the equation

F(x) = 0, (1.1)

where F : Ω −→ B2 is Fréchet differentiable operator. Notice that a plethora of
applications from Mathematics, Science and Engineering are reduced to a form as
(1.1) by utilizing Mathematical modeling [1-19]. The solution x∗ is sought in closed
form, but this can be achieved only in some cases. Hence, researchers develop iterative
methods, generating a sequence approximating x∗ under certain initial conditions.
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Newton’s is clearly the most popular method converging quadratically to x∗, and
given as

xn+1 = xn −F ′(xn)−1F(x) for all n = 0, 1, 2, . . . , (1.2)

with x0 ∈ Ω. Chebyshev, Halley methods have been studied extensively which are of
order three but use the expensive F ′′ at each step as well as F ′(xn)−1. That is why
researchers have introduced methods using divided differences of order one such as
Secant, Steffensen, Kurchatov, and Aitken methods [2, 3, 4, 10, 13, 14].

In particular, we are concerned with the local convergence of the Newton-type
method given as

x0 ∈ Ω, yn = xn −F ′(xn)−1F(xn)

zn = yn − [
13

4
I −Q(xn)(

7

2
I − 5

4
Q(xn))]F ′(xn)−1F(yn)

xn+1 = zn − [
7

2
I −Q(xn)(4I − 3

2
Q(xn))]F ′(xn)−1F(zn), (1.3)

where Q(xn) = F ′(xn)−1F(yn). Method (1.3) was studied in [17], but for the case
B1 = B2 = Rk (k a natural number). The convergence order was established by
conditions on high order derivative, and Taylor series, although these derivatives do
not appear in the method (1.3). Therefore, these hypotheses limit the usage of the
method (1.3).

As an academic example: Let B1 = B2 = R, Ω = [− 1
2 ,

3
2 ]. Define F on Ω by

F(x) = x3 log x2 + x5 − x4

Then, we have x∗ = 1, and

F ′(x) = 3x2 log x2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x log x2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 log x2 + 60x2 − 24x+ 22.

Obviously F ′′′(x) is not bounded on Ω. So, the convergence of method (1.3) not
guaranteed by the analysis in [15], [17], [18].

Other problems with the usage of the method (1.3) are: no information on how
to choose the initial point x0; bounds on ‖xn − x∗‖ and information on the location
of x∗. All these are addressed in this paper by only using conditions on the first
derivative, and in the more general setting of Banach space valued operators. That is
how, we expand the applicability of the method (1.3). To avoid the usage of Taylor
series and high convergence order derivatives, we rely on the computational order of
convergence (COC) or the approximate computational order of convergence (ACOC)
[2, 3, 4].

The layout of the rest of the paper includes: the local convergence analysis in
Section 2, some numerical examples in Section 3 and the basins of attraction in
Section 4.
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2. Local convergence analysis

We shall introduce some scalar functions and parameters that appear in the local
convergence analysis of the method (1.3). Let ϕ0 : [0,∞) −→ [0,∞) be an increasing
and continuous function satisfying ϕ0(0) = 0.

Suppose that the equation

ϕ0(t) = 1 (2.1)

has at least one positive solution. Denote by ρ0 the smallest such solution. Let ϕ :
[0, ρ0) −→ [0,∞) and ϕ1 : [0, ρ0) −→ [0,∞) be increasing and continuous functions
with ϕ(0) = 0. Define functions ψ1 and ψ̄1 on the interval [0, ρ0) by

ψ1(t) =

∫ 1

0
ϕ((1− θ)t)dθ
1− ϕ0(t)

and

ψ̄1(t) = ψ1(t)− 1.

We have ψ̄1(0) = −1 and ψ̄1(t) −→ ∞ as t −→ ρ−0 . The intermediate value theorem
assures that the equation ψ̄1(t) = 0 has at least one solution in (0, ρ0). Denote by r1
the smallest such solution.

Suppose that the equation

ϕ0(ψ1(t)t) = 1 (2.2)

has at least one positive solution. Denote by ρ1 the smallest such solution.
Set ρ2 = min{ρ0, ρ1}. Define the functions ψ2 and ψ̄2 on [0, ρ2) by

ψ2(t) =

{∫ 1

0
ϕ((1− θ)ψ1(t)t)dθ

1− ϕ0(ψ1(t)t)

+
(ϕ0(ψ1(t)t) + ϕ0(t))

∫ 1

0
ϕ1(θψ1(t)t)dθ

(1− ϕ0(ψ1(t)t))(1− ϕ0(t))

+
1

4

[
9(ϕ0(ψ1(t)t) + ϕ0(t))

1− ϕ0(t)

+
5ϕ1(ψ1(t)t)(ϕ0(ψ1(t)t) + ϕ0(t))

(1− ϕ0(t))2

]
×
∫ 1

0
ϕ1(θψ1(t)t)dθ

1− ϕ0(t)

}
ψ1(t),

and ψ̄2(t) = ψ2(t) − 1. We get ψ̄2(0) = −1 and ψ̄2(t) −→ ∞ as t −→ ρ−2 . Denote by
r2 the smallest solution of equation ψ̄2(t) = 0 in (0, ρ2).

Suppose that the equation

ϕ0(ψ2(t)t) = 1 (2.3)
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has at least one positive solution. Denote by ρ3 the smallest such solution.
Set ρ = min{ρ2, ρ3}. Define the functions ψ3 and ψ̄3 on the interval [0, ρ) by

ψ3(t) =

{∫ 1

0
ϕ((1− θ)ψ2(t)t)dθ

1− ϕ0(ψ2(t)t)

+
(ϕ0(ψ2(t)t) + ϕ0(t))

∫ 1

0
ϕ1(θψ2(t)t)dθ

(1− ϕ0(ψ2(t)t))(1− ϕ0(t))

+
1

2

[
5(ϕ0(ψ2(t)t) + ϕ0(t))

1− ϕ0(t)

+
3(ϕ1(ψ1(t)t)(ϕ0(ψ2(t)t) + ϕ0(t))

(1− ϕ0(t))2

]
×
∫ 1

0
ϕ1(θψ2(t)t)dθ

1− ϕ0(t)

}
ψ2(t)

and ψ̄3(t) = ψ3(t) − 1. We get ψ̄3(0) = −1 and ψ̄3(t) −→ ∞ as t −→ ρ−. Denote
by r3 the smallest solution of the equation ψ̄3(t) = 0 in (0, ρ). Define a radius of
convergence r by

r = min{ri}, i = 1, 2, 3. (2.4)

It follows that for each t ∈ [0, r)

0 ≤ ϕ0(t) < 1, (2.5)

0 ≤ ϕ0(ψ1(t)t) < 1, (2.6)

0 ≤ ϕ0(ψ2(t)t) < 1 (2.7)

and
0 ≤ ψi(t) < 1, i = 1, 2, 3. (2.8)

The local convergence analysis of the method (1.3) use the hypotheses (H):

(h1) F : Ω −→ B2 a continuously differentiable operator in the sense of Fréchet and
there exists x∗ ∈ Ω such that F(x∗) = 0, and F ′(x∗)−1 ∈ B(B2,B1).

(h2) There exists function ϕ0 : [0,∞) −→ [0,∞) continuous, and increasing with
ϕ0(0) = 0 such that for each x ∈ Ω

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ ϕ0(‖x− x∗‖)
and ρ0 given by (2.1) exists. Set Ω0 = Ω ∩ T (x∗, ρ0).

(h3) There exist functions ϕ : [0, ρ0) −→ [0,∞), ϕ1 : [0, ρ0) −→ [0,∞) continuous,
and increasing such that for each x, y ∈ Ω0

‖F ′(x∗)−1(F(y)]−F ′(x))‖ ≤ ϕ(‖y − x‖
and

‖F ′(x∗)−1F ′(x))‖ ≤ ϕ1(‖x− x∗‖.
(h4) T̄ (x∗, r) ⊆ Ω and ρ1, ρ2 exist and are given by (2.2), (2.3), respectively and r is

defined in (2.4).

(h5) There exists r∗ ≥ r such that
∫ 1

0
ϕ0(θr∗)dθ < 1.

Set Ω1 = Ω ∩ T̄ (x∗, r∗).
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Next, we present the local convergence analysis of the method (1.3) using preceding
notation and the hypotheses (H).

Theorem 2.1. Suppose that the hypotheses (H) hold, and choose x0 ∈ T (x∗, r∗)−{x∗}.
Then, the sequence {xn} starting at x0 and generated by the method (1.3) is well
defined, remains in T (x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover
the following error bounds hold

‖yn − x∗‖ ≤ ψ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (2.9)

‖zn − x∗‖ ≤ ψ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.10)

‖xn+1 − x∗‖ ≤ ψ3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.11)

where functions ψi are given previously and r is defined in (2.4). Furthermore, the
limit point x∗ is the only solution of equation F(x) = 0 in the set Ω1 given in (h5).

Proof. Estimates (2.9)-(2.11) shall be shown using mathematical induction. Let

x ∈ T (x∗, r)− {x∗}.

By (2.4), (h1) and (h2), we have in turn that

‖F ′(x∗)−1(F ′(x)−F ′(x∗))‖ ≤ ϕ0(‖x− x∗‖) < ϕ0(r) < 1. (2.12)

Estimate (2.12) and the Banach lemma on invertible operators [2, 14] assure that
F ′(x)−1 ∈ B(B2,B1) and

‖F ′(x)−1F ′(x∗)‖ ≤
1

1− ϕ0(‖x− x∗‖)
. (2.13)

It also follows that, for x = x0, iterates y0, z0, x1 are well defined by the method (1.3)
for n = 0. We get from the first substep of the method (1.3) for n = 0 and (h1) that

y0 − x∗ = x0 − x∗ −F ′(x0)−1F(x0), (2.14)

so by (2.4), (2.8) (for i = 1), (h3), (2.13) and (2.14), we obtain in turn that

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖

×‖
∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))−F ′(x0))(x0 − x∗)dθ‖

≤
∫ 1

0
ϕ((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖

1− ϕ0(‖x0 − x∗‖)
= ψ1(‖x0 − x∗‖‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.15)

which shows (2.9) for n = 0 and y0 ∈ T (x∗, r). The second substep of the method
(1.3) can be written as

z0 − x∗ = (y0 − x∗ −F ′(y0)−1F(y0)) + (F ′(y0)−1 −F ′(x0)−1)F(y0)

−1

4
[9(I −Q(x0))− 5Q(x0)(I −Q(x0))]Q(x0). (2.16)
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Then, by (2.4), (2.8) (for i = 2), (2.13) (for i = 2), (2.15) and (2.16), we get in turn
that

‖z0 − x∗‖ = ‖y0 − x∗ −F ′(y0)−1F(y0)‖
+‖F ′(y0)−1F ′(x∗)‖[‖F ′(x∗)−1(F ′(y0)−F ′(x∗))‖
+‖F ′(x∗)−1(F ′(x0)−F ′(x∗))‖]

+
1

4
[9‖I −Q(x0)‖+ 5‖Q(x0)‖‖I −Q(x0)‖]‖Q(x0)‖

≤

{∫ 1

0
ϕ((1− θ)‖y0 − x∗‖)dθ
1− ϕ0(‖y0 − x∗‖)

+
(ϕ0(‖y0 − x∗‖) + ϕ0(‖x0 − x∗‖))

∫ 1

0
ϕ1(θ‖y0 − x∗‖)dθ

(1− ϕ0(‖y0 − x∗‖)(1− ϕ0(‖x0 − x∗‖))

+
1

4

[
9(ϕ0(‖x0 − x∗‖) + ϕ0(‖y0 − x∗‖))

1− ϕ0(‖x0 − x∗‖)

+
5ϕ1(‖y0 − x∗‖)(ϕ0(‖x0 − x∗‖) + ϕ0(‖y0 − x∗‖))

(1− ϕ0(‖x0 − x∗‖))2

]
×
∫ 1

0
ϕ1(θ‖y0 − x∗‖)dθ

1− ϕ0(‖x0 − x∗‖)

}
‖y0 − x∗‖

≤ ψ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.17)

which shows (2.12) for n = 0, and z0 ∈ T (x∗, r). Using the third substep of the
method (1.3) for n = 0, we can write

x1 − x∗ = (z0 − x∗ −F ′(z0)−1F(z0)) + (F ′(z0)−1 −F ′(x0)−1)F(z0)

−
[

5

2
I −Q(x0)(4I − 3

2
Q(x0))

]
F ′(x0)−1F(z0)

= (z0 − x∗ −F ′(z0)−1F(z0))

F ′(z0)−1[(F ′(x0)−F ′(x∗)) + (F ′(x∗)−F ′(z0))]F (z0)

−1

2
[5(I −Q(x0))− 3Q(x0)(I −Q(x0))]F ′(x0)−1F(z0). (2.18)

Then, using (2.4), (2.8) (for i = 3), (2.13) (for x = z0), (2.15), (2.17) and (2.18), we
have in turn as in (2.17) that

‖x1 − x∗‖ ≤

{∫ 1

0
ϕ((1− θ)‖z0 − x∗‖)dθ
1− ϕ0(‖z0 − x∗‖)

+
(ϕ0(‖z0 − x∗‖) + ϕ0(‖x0 − x∗‖))

∫ 1

0
ϕ1(θ‖z0 − x∗‖)dθ

(1− ϕ0(‖z0 − x∗‖)(1− ϕ0(‖x0 − x∗‖))
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+
1

2

[
5(ϕ0(‖x0 − x∗‖) + ϕ0(‖y0 − x∗‖))

1− ϕ0(‖x0 − x∗‖)
3ϕ1(‖y0 − x∗‖)(ϕ0(‖x0 − x∗‖) + ϕ0(‖y0 − x∗‖))

(1− ϕ0(‖x0 − x∗‖))2

]
×
∫ 1

0
ϕ1(θ‖z0 − x∗‖)dθ

1− ϕ0(‖x0 − x∗‖)

}
‖z0 − x∗‖

≤ ψ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (2.19)

which shows (2.12) for n = 0 and x1 ∈ T (x∗, r). The induction for (2.9)-(2.12) is
finished, by simply replacing x0, y0, z0, x1 by xm, ym, zm, xm+1 in the preceding esti-
mates. Then, using the estimate

‖xm+1 − x∗‖ ≤ c‖xm − x∗‖ ≤ ‖xm − x∗‖ < r, (2.20)

where c = ψ3(‖x0 − x∗‖) ∈ [0, 1), we deduce that xm+1 ∈ T (x∗, r), and

lim
m−→∞

xm = x∗.

Finally, to show the uniqueness part, let y∗ ∈ Ω1 with F(y∗) = 0. Define

G =

∫ 1

0

F ′(x∗ + θ(y∗ − x∗))dθ.

Then, using (h2) and (h5), we get in turn that

‖F ′(p∗)−1(G−F ′(x∗))‖ ≤
∫ 1

0

ϕ0(θ‖y∗ − x∗‖)dθ ≤
∫ 1

0

ϕ0(θr∗)dθ < 1,

so G−1 exists, and from

0 = F(x∗)−F(y∗) = G(x∗ − y∗)

we derive x∗ = y∗. �

Remark 2.2. (a) In the case when ϕ0(t) = L0t, ϕ(t) = Lt and Ω0 = Ω, the radius

ρA =
2

2L0 + L

was obtained by Argyros et al. in [4] as the convergence radius for Newton’s
method under condition (2.7)-(2.9). Notice that the convergence radius for New-
ton’s method, given independently by Rheinboldt [15] and Traub [19] is given
by

ρTR =
2

3L
< ρA.

As an example, let us consider the function F (x) = ex − 1. Then α∗ = 0. Set

Ω = B(0, 1).

Then, we have that L0 = e− 1 < L = e, so

ρTR = 0.24252961 < ρA = 0.324947231.
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(b) The local results can be used for projection methods such as Arnoldi’s method,
the generalized minimum residual method (GMREM), the generalized conjugate
method (GCM) for combined Newton/finite projection methods and in connec-
tion to the mesh independence principle in order to develop the cheapest and
most efficient mesh refinement strategy [2, 3, 4, 10].

(c) The results can also be used to solve equations where the operator F ′ satisfies
the autonomous differential equation [2, 3, 4, 10]:

F ′(x) = P (F (x)),

where P : B2 −→ B2 is a known continuous operator. Since

F ′(x∗) = P (F (x∗)) = P (0),

we can apply the results without actually knowing the solution x∗. Consider as
an example F (x) = ex − 1. Then, we can choose P (x) = x+ 1 and x∗ = 0.

(d) It is worth noticing that the method (1.3) does not change when we use the
conditions of the preceding Theorem instead of the stronger conditions used in
[17]. Moreover, we can compute the computational order of convergence (COC)
which is defined as

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence (ACOC)

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice, the order of convergence, in which higher order
derivatives are not used.

3. Numerical example

We present the following example to test the convergence criteria.

Example 3.1. Let B1 = B1 = R3, Ω = U(0, 1), x∗ = (0, 0, 0)T and define F on Ω by

F(x) = F(u1, u2, u3) = (eu1 − 1,
e− 1

2
u2

2 + u2, u3)T . (3.1)

For the points u = (u1, u2, u3)T , the Fréchet derivative is given by

F ′(u) =

 eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1

 .

Using the norm of the maximum of the rows x∗ = (0, 0, 0)T and since

F ′(x∗) = diag(1, 1, 1),



Extended local convergence for Newton-type solver 765

we get by conditions (H), ϕ0(t) = (e− 1)t, ϕ(t) = e
1

e−1 t, ϕ1(t) = e
1

e−1 , and

r1 = 0.3826919122323857447,

r2 = 0.127735710261785623265,

r3 = 0.089354652353140273657 = r.

Example 3.2. Let B1 = B2 = C[0, 1],Ω = Ū(0, 1). Define function F on Ω by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ.

Then, the Fréchet-derivative is given by

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ Ω.

Then, we have that x∗ = 0, ϕ0(t) = L0t, ϕ(t) = Lt, ϕ1(t) = 2, L0 = 7.5 < L = 15.
Then, the radius of convergence are given by

r1 = 0.0666666666666666666,

r2 = 0.0112691816233373796191,

r3 = 0.005991340191821196460575 = r.

Example 3.3. Returning to the motivational example given in the introduction of this
study, we can choose ϕ0(t) = ϕ(t) = 97 and ϕ1(t) = 1 + ϕ0(t). Then, the radius of
convergence are given by

r1 = 0.0068728522336769759,

r2 = 0.0005865188569803861,

r3 = 1 = 0.000189538690198228865 = r.

4. Basins of attraction

As in [12] (also see references in [9]), we analyse the basins of attraction of the
method (1.3). Recall that the basins of attraction of an iterative method are the
collection of all initial points from which the iterative method converges to a solution
of an equation [9]. The following test problems which are systems of polynomials in
two variables are considered.

Example 4.1.

{
x3 − y = 0
y3 − x = 0

with solutions { (−1,−1), (0, 0), (1, 1)}.

Example 4.2.

{
3x2y − y3 = 0
x3 − 3xy2 − 1 = 0

with solutions { (− 1
2 ,−

√
3
2 ), (− 1

2 ,
√
3
2 ), (1, 0)}.

Example 4.3.

{
x2 + y2 − 4 = 0
3x2 + 7y2 − 16 = 0

with solutions { (
√

3, 1), (−
√

3, 1), (
√

3,−1), (−
√

3,−1)}.
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For generating basins of attraction associated with roots of system of nonlinear
equations, we consider a rectangular domain

R = {(x, y) ∈ R2 : −2 ≤ x ≤ 2,−2 ≤ y ≤ 2}

of 401× 401 equidistant grid points which contains all the roots of the system. Each
such point (x0, y0) ∈ R is assigned a color in accordance with the root at which
the corresponding iterative method starting from (x0, y0) converges. The point is
marked black if either the method converges to infinity or it does not converge, with
a tolerance of 10−8 in a maximum of 50 iterations. In this way, we distinguish the
basins of attraction by their respective colors for different methods.

The basins of attraction, for the considered examples employing Newton’s
method (1.2) and the three-step Newton-like method (1.3), have been displayed in
Fig. 1. It can be observed in Fig.1 that the basins of attraction generated by method
(1.3) are smaller in size as compared to that generated by Newton’s method. There-
fore, the black points, which are considered as the bad initial points, are more in num-
ber in case of the former method. This phenomenon is observed because, the method
(1.3) has order of convergence eight, in comparison to the quadratically convergent
Newton’s method. The figures presented in this work are performed in a 4-core 64-bit
Windows machine with Intel Core i7-3770 processor using MATLAB programming
language.
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