On (p,q)-Opial type inequalities for (p,q)-calculus

Authors

  • Necmettin Alp Duzce University
  • Mehmet Zeki Sarıkaya Duzce University

DOI:

https://doi.org/10.24193/subbmath.2021.4.04

Keywords:

Opial inequality, Hölder's inequality

Abstract

In this paper, we establish some (p,q)-Opial type inequalities and
generalization of (p,q)-Opial type inequalities.

Author Biographies

  • Necmettin Alp, Duzce University
    Department of Mathematics, Faculty of Science and Arts
  • Mehmet Zeki Sarıkaya, Duzce University
    Department of Mathematics, Faculty of Science and Arts

References

Agarwal, R.P., Difference Equations and Inequalities, Marcel Dekker Inc., New York, 1992.

Alp, N., Sarikaya, M. Z., Kunt, M. and Iscan, I., q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and

quasi-convex functions, Journal of King Saud University-Science (2018) 30, 193-203.

Alp, N. and Sarikaya, M. Z., A new denition and properties of quantum integral which calls q -integral, Konuralp Journal of Mathematics, 5(2), 146-159,

Alp, N., Bilisik, C. C. and Sarikaya, M. Z., q-Opial type inequality for quantum integral, FILOMAT in press.

Budak, H. and Sarikaya, M. Z., New inequalities of Opial Type for conformable fractional integrals, Turkish Journal of Mathematics, (2017) 41: 1164-1173.

Bukweli-Kyemba, J. D. and Hounkonnou, M. N., Quantum deformed algebras: coherent states and special functions, arXiv:1301.0116v1, 2013.

Cheung, W. S., Some new Opial-type inequalities, Mathematika, 37 (1990), 136-142.

Cheung, W.S., Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317-321.

Gauchman, H., Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2004) 281-300.

Hua, L. K., On an inequality of Opial, Scientia Sinica 14 (1965), 789-790.

Jackson, F. H., On a q-denite integrals, Quarterly J. Pure Appl. Math. 41 (1910) 193-203.

Jagannathan and R., Srinivasa Rao, K., Tow-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series,

arXiv:math/0602613v, 2006.

Kac, V. and Cheung, P., Quantum calculus, Springer (2001).

Kunt, M., Iscan, I., Alp, N. and Sarikaya, M. Z., (p; q)-Hermite-Hadamard inequalities and (p; q)-estimates for midpoint type inequalities via convex and

quasi-convex functions, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, DOI 10.1007/s13398-017-0402-

y(2017).

Latif, M. A., Kunt, M., Dragomir, S. S. and Iscan, I., Some (p; q) estimates for Hermite-Hadamard inequalities via convex and quasi-convex functions, doi:10.13140/RG.2.1.1280.2806, Available online at https://www.researchgate.net/publication/306079288, (2016).

Olech, C., Asimple proof of a certain result of Z.Opial, Ann. Polon. Math. 8(1960), 61-63.

Opial, Z., Sur enu inegalite, Ann. Polon. Math. 8(1960),29-32.

Pachpatte, B. G., A note on somenew Opial type integral inequalities, Octogan Math. Mag.7(1999), 80-84.

Pachpatte, B. G., On Opial-type integral inequalities , J. Math. Anal. Appl. 120 (1986), 547-556.

Saker, S. H., Abdou, M. D. and Kubiaczyk, I., Opial and Polya type inequalities via convexity, Fasciculi Mathematici, 60(1), 145-159, 2018.

Sarıkaya, M. Z. and Bilişik, C. C., Some Opial Type Inequalities for Conformable Fractional Integrals, AIP Conference Proceedings, 1991, 020013

(2018); doi: 10.1063/1.5047886.

Sarıkaya, M. Z. and Bilişik, C. C., On a new Hardy type inequalities involving fractional integrals via Opial type inequalities,7-9 October, 2016, Giresun,

Turkey.

Sadjang, P. N., On the fundamental theorem of (p; q)-calculus and some (p; q)-Taylor formulas, arXiv:1309.3934v1, 2013.

Sudsutad, W., Ntouyas, S. K. and Tariboon, J., Quantum integral inequalities for convex functions, J. Math. Inequal. 9 (3) (2015)781-793.

Trable, J., On a boundary value problem for system of ordinary dierential equatins of second order, Zeszyty Nauk. Univ. Jagiello. Prace Mat.

(1971),159-168.

Tunç, M. and Gov, E., (p; q)-Integral inequalities, RGMIA Res. Rep. Coll. 19(2016), Art. 97, 1-13.

Tunç, M. and Gov, E., Some integral inequalities via (p; q)-calculus on finite intervals, RGMIA Res. Rep. Coll. 19(2016), Art. 95, 1-12.

Tunç, M. and Gov, E., (p; q)-integral inequalities for convex functions, RGMIA Res. Rep. Coll. 19(2016), Art. 98, 1-12.

Wong, J. S. W., A discrete analogue of Opial's inequality , Canad. Math. Bull. 10(1967), 115-118.

Downloads

Published

2021-12-13

Issue

Section

Articles