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Positive solutions for fractional differential
equations with non-separated type nonlocal
multi-point and multi-term integral boundary
conditions
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Abstract. In this paper, we investigate a class of nonlinear fractional differential
equations that contain both the multi-term fractional integral boundary condition
and the multi-point boundary condition. By the Krasnoselskii fixed point theorem
we obtain the existence of at least one positive solution. Then, we obtain the
existence of at least three positive solutions by the Legget-Williams fixed point
theorem. Two examples are given to illustrate our main results.
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1. Introduction

Differential equations of fractional order are one of the fast growing area of
research in the field of mathematics and have recently been proved to be valuable
tools in the modeling of many phenomena in various fields of science and engineering.
Indeed, one can find numerous applications of fractional order differential equations
in viscoelasticity, electro-chemistry, control theory, movement through porous media,
electromagnetics, and signal processing of wireless communication system, etc (see [6,
7, 9, 18, 22, 23, 26, 29, 30]). Now, there are many papers dealing with the problem for
different kinds of boundary value conditions such as multi-point boundary condition
(see [1, 12, 13, 14, 21, 25, 28, 31]), integral boundary condition (see [3, 4, 5, 8, 15, 24,
32, 33]), and many other boundary conditions (see [2, 11, 16, 20, 35]).
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In this paper, we are dedicated to considering fractional differential equations
that contain both the multi-term fractional integral boundary condition and the multi-
point boundary condition:{

Dqu (t) + f (t, u (t)) = 0, 1 < q ≤ 2, 0 < t < 1,
u (0) = 0, u (1) =

∑m
i=1 αi (Ipiu) (η) +

∑m
i=1 βiu (ξi) ,

(1.1)

where Dq is the standard Riemann-Liouville fractional derivative of order q, Ipi is the
Riemann-Liouville fractional integral of order pi > 0, i = 1, 2, ...,m, 0 < ξ1 < ξ2 <
... < ξm < 1 , 0 < η < 1, f : [0, 1]× [0,∞)→ [0,∞) and αi, βi ≥ 0 with i = 1, 2, ...,m,
are real constants such that

Γ (q)

m∑
i=1

αiη
pi+q−1

Γ (pi + q)
+

m∑
i=1

βiξ
q−1
i < 1.

Zhou and Jiang [36] considered the fractional boundary value problem{
Dα

0+u (t) + f (t, u (t)) = 0, 0 < t < 1,

u′ (0)− βu (ξ) = 0, u′ (1) +
∑m−3
i=1 γiu (ηi) = 0

where α is a real number with 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 ≤ γi ≤ 1, i = 1, 2, ...,m − 3,
0 ≤ ξ < η1 < η2 < ... < ηm−3 ≤ 1, Dα

0+ is the Caputo’s derivative. The authors
used the fixed point index theory and Krein-Rutman theorem to obtain the existence
results.

Ji et al. [17] investigated the existence and multiplicity results of positive solu-
tions for the following boundary value problem:{

Dα
0+u (t) + f

(
t, u (t) , Dµ

0+u (t)
)

= 0, 0 < t < 1,

u (0) = 0, u (1) +Dβ
0+u (1) = ku (ξ) + lDβ

0+u (η) ,

where Dα
0+ is the Riemann-Liouville fractional derivative of order 1 < α ≤ 2, 0 ≤

β ≤ 1, ξ, η ∈ (0, 1), 0 ≤ µ < 1, 1 ≤ α − β, 1 ≤ α − µ, 1 − lηα−β−1, and f : [0, 1] ×
[0,+∞)× (−∞,+∞)→ [0,+∞) is continuous. They used the Leggett-Williams fixed
point theorem to obtain the existence and multiplicity results of positive solutions.

Wang et al. [34] considered the following boundary value problem
Dσu (t) + f (t, u (t)) = 0, t ∈ [0, 1] ,
u(i) (0) = 0, i = 0, 1, 2, ..., n− 2,

u (1) =
∑m−2
i=1 βi

∫ ηi
0
u (s) ds+

∑m−2
i=1 γiu (ηi) ,

where Dσ represents the standard Riemann-Liouville fractional derivative of order σ
satisfying n − 1 < σ ≤ n with n ≥ 3. The authors used Krasnoselkii’s fixed point
theorem, Schauder type fixed point theorem, Banach’s contraction mapping principle
and nonlinear alternative for single-valued maps to obtain the existence results.

Inspired by the above works, in this paper, we establish the existence and mul-
tiplicity of positive solutions of the boundary value problem (1.1). Our paper is orga-
nized as follows. After this section, some definitions and lemmas will be established in
Section 2. In Section 3, we give our main results in Theorems 3.1 and 3.2. Finally, in
Section 4, as applications, some examples are presented to illustrate our main results
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2. Preliminaries

In this section, we introduce some notations and definitions of fractional calculus,
which can be found in [18, 27, 30]. We also state two fixed-point theorems due to
Guo–Krasnosel’skii and Leggett–Williams.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for a function
f : (0,+∞)→ R is defined as

Iα0+f (t) =
1

Γ (α)

∫ t

0

(t− s)α−1
f (s) ds,

provided the right side is pointwise defined on (0,+∞) where Γ (.) is the Gamma
function.

Definition 2.2. The Riemann-Liouville fractional derivative order α > 0 of a continu-
ous function u : (0,∞)→ R is defined by

Dα
0+u (t) =

1

Γ (n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1
u (s) ds,

where n = dαe+ 1, dαe denotes the integer part of number α, provided that the right
side is pointwise defined on (0,∞).

Lemma 2.3. (i) If u ∈ Lp (0, 1) , 1 ≤ p ≤ +∞, β > α > 0, then

Iα0+I
β
0+u (t) = Iα+β

0+ u (t) .

(ii) If α > 0 and γ ∈ (−1,+∞), then

Iα0+tγ =
Γ (γ + 1)

Γ (α+ γ + 1)
tα+γ .

Lemma 2.4. Let α > 0 and for any y ∈ L1 (0, 1). Then, the general solution of the
fractional differential equation Dα

0+u (t) + y (t) = 0, 0 < t < 1 is given by

u (t) = − 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds+ c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

where c0, c1, ..., cn−1 are real constants and n = dαe+ 1.

Definition 2.5. Let E be a real Banach space. A nonempty convex closed set K ⊂ E
is said to be a cone provided that

(i) au ∈ K for all u ∈ K and all a ≥ 0, and
(ii) u,−u ∈ K implies u = 0.

Definition 2.6. The map α is defined as a nonnegative continuous concave functional
on a cone K of a real Banach space E provided that α : K → [0,+∞) is continuous
and

α (tx+ (1− t) y) ≥ tα (x) + (1− t)α (y)

for all x, y ∈ K and 0 ≤ t ≤ 1.
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Lemma 2.7. Let ∆ = 1− Γ (q)
∑m
i=1

αiη
pi+q−1

Γ(pi+q)
−
∑m
i=1 βiξ

q−1
i > 0, αi, βi ≥ 0, pi > 0,

i = 1, 2, ...m, and h ∈ C [0, 1]. The unique solution u ∈ AC [0, 1] of the boundary value
problem

Dqu (t) + h (t) = 0, t ∈ (0, 1) , q ∈ (1, 2] (2.1)

u (0) = 0, u (1) =

m∑
i=1

αi (Ipiu) (η) +

m∑
i=1

βiu (ξi) (2.2)

is given by

u (t) =

∫ 1

0

G (t, s)h (s) ds, (2.3)

where G (t, s) is the Green’s function given by

G (t, s) = g (t, s) +
tq−1

∆

m∑
i=1

αi
Γ (pi + q)

gi (η, s) +
tq−1

∆

m∑
i=1

βig (ξi, s) (2.4)

where

g (t, s) =
1

Γ (q)

{
tq−1 (1− s)q−1 − (t− s)q−1

, 0 ≤ s ≤ t ≤ 1,

tq−1 (1− s)q−1
, 0 ≤ t ≤ s ≤ 1,

(2.5)

and

gi (η, s) =

{
ηpi+q−1 (1− s)q−1 − (η − s)pi+q−1

, 0 ≤ s ≤ η < 1,

ηpi+q−1 (1− s)q−1
, 0 < η ≤ s ≤ 1,

(2.6)

Proof. By Lemma 2.4, the general solution for the above equation (2.1) is

u (t) = − 1

Γ (q)

t∫
0

(t− s)q−1
h (s) ds+ c1t

q−1 + c2t
q−2,

where c1, c2 ∈ R. The first condition of (2.2) implies that c2 = 0. Thus

u (t) = − 1

Γ (q)

t∫
0

(t− s)q−1
h (s) ds+ c1t

q−1. (2.7)

Taking the Riemann-Liouville fractional integral of order pi > 0 for (2.7) and using
Lemma 2.3, we get that

(Ipiu) (t) =

∫ t

0

(t− s)pi−1

Γ (pi)

(
c1s

q−1 −
∫ s

0

(s− r)q−1

Γ (q)
dr

)
h (s) ds

= c1

∫ t

0

(t− s)pi−1
sq−1

Γ (pi)
ds−

∫ t

0

(t− s)pi−1

Γ (pi)

∫ s

0

(s− r)q−1

Γ (q)
h (r) dsdr

= c1
tpi+q−1Γ (q)

Γ (pi + q)
− 1

Γ (pi + q)

∫ t

0

(t− s)pi+q−1
h (s) ds.
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The second condition of (2.2) yields

c1 −
1

Γ (q)

∫ 1

0

(1− s)q−1
h (s) ds = c1

m∑
i=1

αiη
pi+q−1Γ (q)

Γ (pi + q)

−
m∑
i=1

αi
Γ (pi + q)

∫ η

0

(η − s)pi+q−1
h (s) ds

+ c1

m∑
i=1

βiξ
q−1
i − 1

Γ (q)

m∑
i=1

βi

∫ ξi

0

(ξi−s)q−1
h (s) ds.

Then, we have that

c1 =
1

∆

{∫ 1

0

(1− s)q−1

Γ (q)
h (s) ds−

m∑
i=1

αi
Γ (pi + q)

∫ η

0

(η − s)pi+q−1
h (s) ds

− 1

Γ (q)

m∑
i=1

βi

∫ ξi

0

(ξi − s)q−1
h (s) ds

}
.

Hence, the solution is

u (t) = − 1

Γ (q)

∫ t

0

(t− s)q−1
h (s) ds+

tq−1

∆Γ (q)

∫ 1

0

(1− s)q−1
h (s) ds

− tq−1

∆

m∑
i=1

αi
Γ (pi + q)

∫ n

0

(η − s)pi+q−1
h (s) ds

− tq−1

∆Γ (q)

m∑
i=1

βi

∫ ξi

0

(ξi − s)q−1
h (s) ds

= − 1

Γ (q)

∫ t

0

(t− s)q−1
h (s) ds+

tq−1

Γ (q)

∫ 1

0

(1− s)q−1
h (s) ds

+
tq−1

∆

{
m∑
i=1

αiη
pi+q−1

Γ (pi + q)
+

1

Γ (q)

m∑
i=1

βiξ
q−1
i

}∫ 1

0

(1− s)q−1
h (s) ds

− tq−1

∆

m∑
i=1

αi
Γ (pi + q)

∫ n

0

(η − s)pi+q−1
h (s) ds

− tq−1

∆Γ (q)

m∑
i=1

βi

∫ ξi

0

(ξi − s)q−1
h (s) ds

=

∫ 1

0

g (t, s)h (s) ds+
tq−1

∆

m∑
i=1

αi
Γ (pi + q)

∫ 1

0

gi (η, s)h (s) ds

+
tq−1

∆

m∑
i=1

βi

∫ 1

0

g (ξi, s)h (s) ds

=

∫ 1

0

G (t, s)h (s) ds. �
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Lemma 2.8. The Green’s function G (t, s) has the following properties:
(P1) G (t, s) is continuous on [0, 1]× [0, 1].
(P2) G (t, s) ≥ 0 for all 0 ≤ s, t ≤ 1.

(P3) G (t, s) ≤ max
0≤t≤1

G (t, s) ≤ g (s, s)

(
1 +

∑m
i=1 βi
∆

)
+

m∑
i=1

αi
∆Γ (pi + q)

gi (η, s).

(P4)

∫ 1

0

max
0≤t≤1

G (t, s) ds≤
(

1 +

∑m
i=1 βi
∆

)
Γ (q)

Γ (2q)
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)
.

(P5) min
η≤t≤1

G (t, s) ≥
m∑
i=1

αiη
q−1

∆Γ (pi + q)
gi (η, s)+(q − 1)

m∑
i=1

βi

(
ξq−1
i − ξqi

)
ηq−1

∆
sg (s, s)

for s ∈ [0, 1].

Proof. It is easy to check that (P1) holds. To prove (P2), we will show that g (t, s) ≥ 0
and gi (η, s) ≥ 0, i = 1, 2, ...,m, for all 0 ≤ s, t ≤ 1. For t ≤ s, it is clear that
G (t, s) ≥ 0, we only need to prove the case s ≤ t.
Then

g (t, s) =
1

Γ (q)

[
tq−1 (1− s)q−1 − (t− s)q−1

]
=

1

Γ (q)

[
(t− ts)q−1 − (t− s)q−1

]
≥ 1

Γ (q)

[
(t− s)q−1 − (t− s)q−1

]
= 0.

For 0 ≤ s ≤ η < 1, we have

gi (η, s) = ηpi+q−1 (1− s)q−1 − (η − s)pi+q−1

= ηpi (η − ηs)q−1 − (η − s)pi+q−1

≥ ηpi (η − s)q−1 − (η − s)pi+q−1

= (η − s)q−1
(ηpi − (η − s)pi)

≥ 0.

When 0 < η ≤ s ≤ 1, gi (η, s) = ηpi+q−1 (1− s)q−1 ≥ 0. Therefore, gi (η, s) ≥ 0,
i = 1, 2, ...,m for all 0 ≤ s ≤ 1.
Now, we prove (P3). For a given s ∈ [0, 1], when 0 ≤ s ≤ t ≤ 1

Γ (q) g (t, s) = tq−1 (1− s)q−1 − (t− s)q−1

and thus

Γ (q)
∂

∂t
g (t, s) = (q − 1) tq−2 (1− s)q−1 − (q − 1) (t− s)q−2

= (q − 1) (t− ts)q−2
(1− s)− (q − 1) (t− s)q−2

≤ (q − 1) (t− s)q−2
(1− s)− (q − 1) (t− s)q−2

= −s (q − 1) (t− s)q−2
.
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Hence, g (t, s) is decreasing with respect to t. Then we have g (t, s) ≤ g (s, s) for
0 ≤ s ≤ t ≤ 1. For 0 ≤ t ≤ s ≤ 1

Γ (q)
∂

∂t
g (t, s) = (q − 1) tq−2 (1− s)q−1 ≥ 0,

which means that g (t, s) is increasing with respect to t. Thus g (t, s) ≤ g (s, s) for
0 ≤ t ≤ s ≤ 1. Therefore g (t, s) ≤ g (s, s) for 0 ≤ s, t ≤ 1.
From the above analysis, we have for 0 ≤ s ≤ 1 that

G (t, s) ≤ max
0≤t≤1

G (t, s) = max
0≤t≤1

(g (t, s)

+
tq−1

∆

m∑
i=1

αi
Γ (pi + q)

gi (η, s) +
tq−1

∆

m∑
i=1

βig (ξi, s)

)

≤ g (s, s)

(
1 +

∑m
i=1 βi
∆

)
+

m∑
i=1

αi
∆Γ (pi + q)

gi (η, s) .

To prove (P4), by direct integration, we have∫ 1

0

max
0≤t≤1

G (t, s) ds ≤
∫ 1

0

[
g (s, s)

(
1 +

∑m
i=1 βi
∆

)
+

m∑
i=1

αi
∆Γ (pi + q)

gi (η, s)

]
ds

=

(
1 +

∑m
i=1 βi
∆

)∫ 1

0

sq−1 (1− s)q−1

Γ (q)
ds

+

m∑
i=1

αi
∆Γ (pi + q)

(∫ 1

η

ηpi+q−1 (1− s)q−1

)
ds

+

m∑
i=1

αi
∆Γ (pi + q)

(∫ η

0

[
ηpi+q−1 (1− s)q−1 − (η − s)pi+q−1

]
ds

)

=

(
1 +

∑m
i=1 βi
∆

)
Γ (q)

Γ (2q)
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)
.

Now, we shall prove (P5).

Firstly, let k1 (ξi, s) = g(ξi,s)
g(s,s) for 0 < s < ξi < 1, i = 1, 2, ...,m, then we get

k1 (ξi, s) =
(ξi (1− s))q−1 − (ξi − s)q−1

sq−1 (1− s)q−1 =
(q − 1)

∫ ξi(1−s)
ξi−s xq−2dx

sq−1 (1− s)q−1 .

Since the function x 7−→ xq−2 is continuous and decreasing on [ξi − s, ξi (1− s)], we
have

k1 (ξi, s) ≥
(q − 1) (ξi (1− s))q−2

[ξi (1− s)− (ξi − s)]
sq−1 (1− s)q−1

=
(q − 1) ξq−2

i (1− s)q−2
s (1− ξi)

sq−1 (1− s)q−1

≥ (q − 1) ξq−1
1 (1− ξi) s.
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Let

k2 (ξi, s) =
g (ξi, s)

g (s, s)

for 0 < ξi ≤ s < 1, i = 1, 2, ...,m, then we get

k2 (ξi, s) =
ξq−1
i

sq−1
≥ ξq−1

i

sq−2
= ξq−1

i s2−q ≥ (q − 1) ξq−1
i (1− ξi) s.

Therefore, we have

g (ξi, s) ≥ (q − 1) sg (s, s)
(
ξq−1
i − ξqi

)
for 0 < s, ξi < 1 (2.8)

Furthermore, the inequality in (2.8) is satisfied for s ∈ {0, 1}. Hence

g (ξi, s) ≥ (q − 1) sg (s, s)
(
ξq−1
i − ξqi

)
for 0 ≤ s, ξi ≤ 1. (2.9)

Secondly, from g (t, s) ≥ 0, gi (η, s) ≥ 0, i = 1, 2, ...,m and from (2.9), we have

min
η≤t≤1

G (t, s) = min
η≤t≤1

(
g (t, s) +

tq−1

∆

m∑
i=1

αi
Γ (pi + q)

gi (η, s)

+
tq−1

∆

m∑
i=1

βig (ξi, s)

)

≥ min
η≤t≤1

g (t, s) + min
η≤t≤1

tq−1

∆

m∑
i=1

αi
Γ (pi + q)

gi (η, s)

+ min
η≤t≤1

tq−1

∆

m∑
i=1

βig (ξi, s)

≥
m∑
i=1

αiη
q−1

∆Γ (pi + q)
gi (η, s) + (q − 1)

m∑
i=1

βi

(
ξq−1
i − ξqi

)
ηq−1

∆
sg (s, s)

for 0 ≤ s ≤ 1. This completes the proof. �

Let E = C ([0, 1] ,R) be the Banach space of all continuous functions defined
on [0, 1] that are mapped into R with the norm defined as ‖u‖ = supt∈[0,1] |u (t)|. If

u ∈ E satisfies the problem (1.1) and u (t) ≥ 0 for any t ∈ [0, 1], then u is called
a nonnegative solution of the problem (1.1). If u is a nonnegative solution of the
problem (1.1) with ‖u‖ > 0, then u is called a positive solution of the problem (1.1).
Define the cone K ∈ E by

K = {u ∈ E : u (t) ≥ 0} ,

and the operator A : K → E by

Au (t) :=

∫ 1

0

G (t, s) f (s, u (s)) ds. (2.10)

In view of Lemma 2.7, the nonnegative solutions of problem (1.1) are given by the
operator equation u (t) = Au (t)
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Lemma 2.9. Suppose that f : [0, 1] × [0,∞) → [0,∞) is continuous. The operator
A : K → K is completely continuous.

Proof. Since G (t, s) ≥ 0 for s, t ∈ [0, 1], we have Au (t) ≥ 0 for all u ∈ K. Therefore,
A : K → K.
For a constant R > 0, we define Ω = {u ∈ K : ‖u‖ < R}.
Let

L = max
0≤t≤1,0≤u≤R

|f (t, u)| . (2.11)

Then, for u ∈ Ω, from Lemma 2.8, we have

|Au (t)| =
∣∣∣∣∫ 1

0

G (t, s) f (s, u (s)) ds

∣∣∣∣
≤ L

∫ 1

0

G (t, s) ds

≤ L
∫ 1

0

(
g (s, s)

(
1 +

∑m
i=1 βi
∆

)
+

m∑
i=1

αi
∆Γ (pi + q)

gi (η, s)

)
ds

≤
(

1 +

∑m
i=1 βi

)
Γ (q)

Γ (2q)
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)
.

Hence, ‖Au‖ ≤M , and so A (Ω) is uniformly bounded. Now, we shall show that A (Ω)
is equicontinuous. For u ∈ Ω, t1, t2 ∈ [0, 1], t1 < t2, we have

|Au (t2)−Au (t1)| ≤ L
∫ 1

0

|G (t2, s)−G (t1, s)| ds,

where L is defined by (2.11). Since G (t, s) is continuous on [0, 1] × [0, 1], therefore
G (t, s) is uniformly continuous on [0, 1] × [0, 1]. Hence, for any ε > 0, there exists a
positive constant

δ =
1

2

εΓ (q)

L

 1

1
q +

∑m
i=1

αiηpi+q−1

∆Γ(pi+q)

(
pi+q(1−n)
q(pi+q)

)
+ Γ(q)

Γ(2q)

∑m
i=1 βi
∆


whenever |t2 − t1| < δ, we have the following two cases.

Case 1. δ ≤ t1 < t2 < 1.

Therefore,
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|Au (t2)−Au (t1)| ≤ L
∫ 1

0

|G (t2, s)−G (t1, s)| ds

= L

[∫ t1

0

|G (t2, s)−G (t1, s)| ds+

∫ t2

t1

|G (t2, s)−G (t1, s)| ds

+

∫ 1

t2

|G (t2, s)−G (t1, s)| ds
]

≤

(
tq−1
2 − tq−1

1

)
L

Γ (q)

∫ 1

0

(1− s)q−1
ds

+

(
tq−1
2 − tq−1

1

)
L

∆

∫ 1

0

m∑
i=1

αi
Γ (pi + q)

gi (η, s) ds

+

(
tq−1
2 − tq−1

1

)
L

∆

m∑
i=1

βi

∫ 1

0

g (s, , s) ds

=

(
tq−1
2 − tq−1

1

)
L

Γ (q)

[
1

q
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− n)

q (pi + q)

)
+

Γ (q)

Γ (2q)

∑m
i=1 βi
∆

]
≤ (q − 1) δq−1L

Γ (q)

[
1

q
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− n)

q (pi + q)

)
+

Γ (q)

Γ (2q)

∑m
i=1 βi
∆

]
< ε.

Case 2. 0 ≤ t1 < 1, t2 < 2δ.

Hence

|Au (t2)−Au (t1)| ≤ L
∫ 1

0

|G (t2, s)−G (t1, s)| ds

<

(
tq−1
2 − tq−1

1

)
L

Γ (q)

[
1

q
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− n)

q (pi + q)

)
+

Γ (q)

Γ (2q)

∑m
i=1 βi
∆

]

≤ tq−1
2 L

Γ (q)

[
1

q
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− n)

q (pi + q)

)
+

Γ (q)

Γ (2q)

∑m
i=1 βi
∆

]

<
(2δ)

q−1
L

Γ (q)

[
1

q
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− n)

q (pi + q)

)
+

Γ (q)

Γ (2q)

∑m
i=1 βi
∆

]
= ε.
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Thus, A (Ω) is equicontinuous. In view of the Arzela-Ascoli theorem, we have that

A (Ω) is compact, which means A : K → K is a completely continuous operator. This
completes the proof. �

Theorem 2.10. [10] Let E be a Banach space, and let K ∈ E be a cone. Assume that
Ω1, Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let T : K ∩

(
Ω2 \ Ω1

)
→ K

be a completely continuous operator such that:
(i) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2. Then T has a

fixed point K ∩
(
Ω2 \ Ω1

)
.

Theorem 2.11. [19] Let K be a cone in the real Banach space E and c > 0 be a
constant. Assume that there exists a concave nonnegative continuous functional θ on
K with θ (u) ≤ ‖u‖ for all u ∈ Kc. Let A : Kc → Kc be a completely continuous
operator. Suppose that there exist constants 0 < a < b < d ≤ c such that the following
conditions hold:
(i) {u ∈ K (θ, b, d) : θ (u) > b} 6= ∅ and θ (Au) > b for u ∈ K (θ, b, d);
(ii) ‖Au‖ < a for ‖u‖ ≤ a;
(iii) θ (Au) > b for u ∈ K (θ, b, c) with ‖Au‖ > d.
Then A has at least three fixed points u1, u2 and u3 in Kc such that
‖u1‖ < a, b < θ (u2), a < ‖u3‖ with θ (u3) < b.

Remark 2.12. If there holds d = c, then condition (i) implies condition (iii) of Theo-
rem 2.11.

3. Main results

In this section, in order to establish some results of existence and multiplicity of
positive solutions for BVP (1.1), we will impose growth conditions on f which allow
us to apply Theorems 2.10 and 2.11.

For convenience, we denote

Λ1 =
∑m
i=1

αiη
pi+2(q−1)

∆Γ(pi+q)

(
pi+q(1−η)
q(pi+q)

)
+ (q − 1)

∑m
i=1

βi(ξq−1
i −ξqi )η

q−1

∆ × Γ(q+1)
Γ(2q+1)

Λ2 =
(

1 +
∑m
i=1 βi
∆

)
Γ(q)
Γ(2q) +

∑m
i=1

αiη
pi+q−1

∆Γ(pi+q)

(
pi+q(1−η)
q(pi+q)

)
Λ3 =

∑m
i=1

αiη
pi+2(q−1)(1−η)q

∆Γ(pi+q)q
+ (q − 1)

∑m
i=1

βi(ξq−1
i −ξqi )η

q−1(1−η)2qΓ(q+1)

∆Γ(2q+1)

Theorem 3.1. Let f : [0, 1] × [0,∞) → [0,∞) be a continuous function. Assume that
there exist constants r2 > r1 > 0, M1 ∈

(
Λ−1

1 ,∞
)

and M2 ∈
(
0,Λ−1

2

)
such that:

(H1) f (t, u) ≥M1r1, for (t, u) ∈ [0, 1]× [0, r1];
(H2) f (t, u) ≤M2r2, for (t, u) ∈ [0, 1]× [0, r2].
Then boundary value problem (1.1) has at least one positive solution u such that
r1 ≤ ‖u‖ ≤ r2.

Proof. From Lemma 2.9, the operator A : K → K is completely continuous.
We divide the rest of the proof into two steps.
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Step 1. Let Ω1 = {u ∈ E : ‖u‖ < r1}, then for any u ∈ K∩Ω1, we have 0 ≤ u (t) ≤ r1

for all t ∈ [0, 1]. From (H1), it follows for t ∈ [η, 1] that

(Au) (t) =

∫ 1

0

G (t, s) f (s, u (s)) ds

≥
∫ 1

0

min
η≤t≤1

G (t, s) f (s, u (s)) ds

≥M1r1

{
m∑
i=1

αiη
q−1

∆Γ (pi + q)

∫ 1

0

gi (η, s) ds

+ (q − 1)

m∑
i=1

βi

(
ξq−1
i − ξqi

)
ηq−1

∆

∫ 1

0

sg (s, s) ds


= M1r1

{
m∑
i=1

αiη
q−1

∆Γ (pi + q)

(∫ 1

η

ηpi+q-1 (1− s)q−1
ds

+

∫ η

0

[
ηpi+q−1 (1− s)q−1 − (η − s)pi+q−1

]
ds

)

+ (q − 1)

m∑
i=1

βi

(
ξq−1
i − ξqi

)
ηq−1

∆
× Γ (q + 1)

Γ (2q + 1)


= M1r1

{
m∑
i=1

αiη
pi+2(q−1)

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)

+ (q − 1)

m∑
i=1

βi

(
ξq−1
i − ξqi

)
ηq−1

∆
× Γ (q + 1)

Γ (2q + 1)


≥ r1 = ‖u‖ ,

which means that
‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1. (3.1)

Step 2. Let Ω2 = {u ∈ E : ‖u‖ < r2}, then for any u ∈ K∩∂Ω2, we have 0 ≤ u (t) ≤ r2

for all t ∈ [0, 1]. It follows from (H2) that for t ∈ [0, 1],

(Au) (t) =

∫ 1

0

G (t, s) f (s, u (s)) ds

≤M2r2

{(
1 +

∑m
i=1 βi
∆

)
Γ (q)

Γ (2q)
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)}
≤ r2 = ‖u‖ ,

which means that
‖Au‖ ≤ ‖u‖ for any u ∈ K ∩ ∂Ω2. (3.2)

By (i) of Theorem 2.10, we get that A has a fixed point u in K with r1 ≤ ‖u‖ ≤ r2,
which is also a positive solution of boundary value problem (1.1). �
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Theorem 3.2. Let f : [0, 1] × [0,∞) → [0,∞) be a continuous function. Suppose that
there exist constants 0 < a < b < c such that the following assumptions hold:
(H3) f (t, u) < Λ−1

2 a for (t, u) ∈ [0, 1]× [0, a];
(H4) f (t, u) > Λ−1

3 b for (t, u) ∈ [η, 1]× [b, c];
(H5) f (t, u) ≤ Λ−1

2 c for (t, u) ∈ [0, 1]× [0, c].
Then boundary value problem (1.1) has at least one nonnegative solution u1 and two
positive solutions u2, u3 in Kc with

‖u1‖ < a, b < min
η≤t≤1

u2 (t) and a < ‖u3‖ with min
η≤t≤1

u3 (t) < b.

Proof. We show that all the conditions of Theorem 2.11 are satisfied.

If u ∈ Kc, then ‖u‖ ≤ c. Condition (H5) implies f (t, u (t)) ≤ Λ−1
2 c for t ∈ [0, 1].

Consequently,

(Au) (t) =

∫ 1

0

G (t, s) f (s, u (s)) ds

≤ Λ−1
2 c

∫ 1

0

[(
1 +

∑m
i=1 βi
∆

)
g (s, s) +

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)
gi (η, s)

]
ds

= Λ−1
2 c

{(
1 +

∑m
i=1 βi
∆

)
Γ (q)

Γ (2q)
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)}
= c,

which implies ‖Au‖ ≤ c. Hence, A : Kc → Kc is completely continuous.

If u ∈ Ka, then (H3) yields

(Au) (t) < Λ−1
2

∫ 1

0

[(
1 +

∑m
i=1 βi
∆

)
g (s, s) +

m∑
i=1

αi
∆Γ (pi + q)

gi (η, s)

]
ds

= Λ−1
2 a

{(
1 +

∑m
i=1 βi
∆

)
Γ (q)

Γ (2q)
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)}
= a.

Thus ‖Au‖ < a. Therefore, condition (ii) of Theorem 2.11 holds.

Define a concave nonnegative continuous functional θ on K by

θ (u) = min
η≤t≤1

|u (t)| .

To check condition (i) of Theorem 2.11, we choose u (t) = b+c
2 for t ∈ [0, 1]. It

is easy to see that u (t) ∈ K (θ, b, c) and θ (u) = θ
(
b+c

2

)
> b, which means that

{K (θ, b, c) : θ (u) > b} 6= ∅. Hence, if u ∈ K (θ, b, c), then b ≤ u (t) ≤ c for t ∈ [η, 1].
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From assumption (H4), we have

θ (Au) = min
η≤t≤1

|(Au) (t)|

≥
∫ 1

η

min
η≤t≤1

G (t, s) f (s, u (s)) ds

> Λ−1
3 b

{
m∑
i=1

αiη
q−1

∆Γ (pi + q)

∫ 1

η

gi (η, s) ds

+ (q − 1)

m∑
i=1

βi

(
ξq−1
i − ξqi

)
ηq−1

∆

∫ 1

η

sg (s, s) ds


= Λ−1

3 b

{
m∑
i=1

αiη
pi+2(q−1) (1− η)

q

∆Γ (pi + q) q

+ (q − 1)

m∑
i=1

βi (ξqi − ξ
q
i ) ηq−1 (1− η)

2q
Γ (q + 1)

∆Γ (2q + 1)

}
= b.

Thus θ (Au) > b for all u ∈ K (θ, b, c). This shows that condition (i) of Theorem 2.11
is also satisfied.

By Theorem 2.11 and Remark 2.12, boundary value problem (1.1) has at least
one nonnegative solution u1 and two positive solutions u2, u3, which satisfy

‖u1‖ < a, b < min
η≤t≤1

|u2 (t)| a < ‖u3‖ with min
η≤t≤1

|u (t)| < b.

The proof is complete. �

4. Examples

4.1. Example

Consider the fractional differential equations with boundary value as follows:
D

3
2u (t) + f (t, u (t)) = 0, 0 < t < 1,

u (0) = 0

u (1) = 2
(
I

3
2u
) (

1
4

)
+ 1

2

(
I
π
4 u
) (

1
4

)
+ 4

5

(
I

2
3u
) (

1
4

)
+ 3

15u
(

1
3

)
+ 3

20u
(

1
4

)
+ 1

4u
(

1
5

)
,

(4.1)
where

f (t, u)

{
u(1− u2) + 4

(
1 + 3

4 t
)
, 0 ≤ t ≤ 1; 0 ≤ u ≤ 1

4
(
1 + 3

4 t
)
e1−u + sin2 (π (1− u)) , 0 ≤ t ≤ 1; 1 ≤ u ≤ 21.

Set m = 3, η = 1
4 , q = 3

2 , α1 = 2, α2 = 1
2 , α3 = 4

5 ,p1 = 3
2 , p2 = π

4 , p3 = 2
3 , β1 = 1

4 ,

β2 = 3
20 , β3 = 3

5 , ξ1 = 1
5 , ξ2 = 1

4 and ξ3 = 1
3
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Consequently, we can get

∆ = 1− Γ (q)

m∑
i=1

αiη
pi+q−1

Γ (pi + q)
−

m∑
i=1

βiξ
q−1
i ≈ 0.265299.

Then, by direct calculations, we can obtain that

Λ1 =

m∑
i=1

αiη
pi+2(q−1)

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)

+ (q − 1)

m∑
i=1

βi

(
ξq−1
i − ξqi

)
ηq−1

∆
× Γ (q + 1)

Γ (2q + 1)

≈ 0.45478

Λ2 =

(
1 +

∑m
i=1 βi
∆

)
Γ (q)

Γ (2q)
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)
≈ 2.63219.

Choose r1 = 1, r2 = 21, M1 = 3 and M2 = 0.35, f (t, u) satisfies

f (t, u) ≥ 4 ≥ 3 = M1r1, ∀ (t, u) ∈ [0, 1]× [0, 1]

and

f (t, u) ≤ 7 ≤ 7.35 = M2r2 ∀ (t, u) ∈ [0, 1]× [0, 21]

Thus, (H1) and (H2) hold. By Theorem 3.1, we have that boundary value problem
(4.1) has at least one positive solution u such that 1 < ‖u‖ < 21.

4.2. Example

Consider the following boundary value problem:
D

3
2u (t) + f (t, u (t)) = 0, 0 < t < 1,

u (0) = 0

u (1) = 1
8

(
I

1
2u
) (

1
8

)
+ 1

3

(
I

3
2u
) (

1
8

)
+ 1

4

(
I

5
2u
) (

1
8

)
+ 1

3u
(

1
2

)
+ 1

5u
(

1
8

)
+ 1

7u
(

1
6

)
,

(4.2)
where

f (t, u)


u
(

3
4 − u

)
+ 3

16

(
t2 + 2

)
, , 0 ≤ t ≤ 1, 0 ≤ u ≤ 3

4 ,
1
4

(
t2 + 2

)
cos2

(
2π
9 u
)

+ 120
(

3
4 − u

)2
, 0 ≤ t ≤ 1, 3

4 ≤ u ≤
3
2 ,

1
16

(
t2 + 1082

)
− 10 sin2

(
u− 3

2

)
π, , 0 ≤ t ≤ 1, 3

2 ≤ u ≤ ∞.

Set m = 3, η = 1
8 , q = 3

2 , α1 = 1
8 , α2 = 1

3 , α3 = 1
4 , p1 = 1

2 , p2 = 3
2 , p3 = 5

2 , β1 = 1
3 ,

β2 = 1
5 , β3 = 1

7 , ξ1 = 1
2 , ξ2 = 1

4 and ξ3 = 1
6 .

Consequently, we can get

∆ = 1− Γ (q)

m∑
i=1

αiη
pi+q−1

Γ (pi + q)
−

m∑
i=1

βiξ
q−1
i ≈ 0.589749.
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Then, by direct calculations, we can obtain that

Λ2 =

(
1 +

∑m
i=1 βi
∆

)
Γ (q)

Γ (2q)
+

m∑
i=1

αiη
pi+q−1

∆Γ (pi + q)

(
pi + q (1− η)

q (pi + q)

)
≈ 0, 97003,

Λ3 =

m∑
i=1

αiη
pi+2(q−1) (1− η)

q

∆Γ (pi + q) q
+ (q − 1)

m∑
i=1

βi

(
ξq−1
i − ξqi

)
ηq−1 (1− η)

2q
Γ (q + 1)

∆Γ (2q + 1)

≈ 0.02390086.

Choose a = 3
4 , b = 3

2 and c = 66, then f (t, u) satisfies

f (t, u) ≤ 45

64
< 0.773175 ≈ Λ−1

2 a, ∀ (t, u) ∈ [0, 1]×
[
0,

3

4

]
,

f (t, u) ≥ 67.62 > 62.73 ≈ Λ−1
3 b, ∀ (t, u) ∈

[
1

8
, 1

]
×
[

3

2
, 66

]
and

f (t, u) ≤ 67.6875 < 68.0391 ≈ Λ−1
2 c, ∀ (t, u) ∈ [0, 1]× [0, 66] .

Thus, (H3), (H4) and (H5) hold. By Theorem 3.2, we have that boundary value
problem (4.2) has at least one nonnegative solution u1 and two positive solutions u2,
u3 such that ‖u1‖ < 3

4 , 3
2 < min 1

8≤t≤1 u2 (t) and a < ‖u3‖ with min 1
8≤t≤1 u3 (t) < 3

2 .
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