Choquet boundary for some subspaces of continuous functions
DOI:
https://doi.org/10.24193/subbmath.2019.3.05Keywords:
Choquet boundary, parabolic functions, linearly separating subspaces, peak pointsAbstract
We investigate the Choquet boundary for subspaces of
parabolic functions and for linearly separating subspaces of continuous
functions. The relation of the Choquet boundary with the set of peak
points is also investigated.
References
E. Alfsen, Compact Convex Sets and Boundary Integrals, Springer 1971.
F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, Walter de Gruyter, Berlin, New York, 1994.
F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Rasa, Markov Operators, Positive Semigroups and Approximation Processes, De Gruyter Studies in Mathematics, Vol. 61, 2014.
Bauer H., Silovscher rand und Dirichletsches problem, Ann. Inst. Fourier 11, 89-136 (1961).
Bauer H., Leha G., Papadopoulou S., Determination of Korovkin closures, Math.Z.168, 263-274 (1979).
Boboc N., Bucur GH., Conuri Convexe de Functii Continue pe Spatii Compacte, Ed. Acad. RSR, Bucuressti, 1976.
Bunce U. W., Zame W. R., Boundaries for subspaces of C(K), Quart. J. Math. Oxford 25, 227-234 (1974).
Herve, M., Sur les representations integrales a l'aide des points extremaux dans un ensemble compact convexe metrisable, C. R. Acad. Sci (Paris) 253, 366-368 (1961).
Micchelli, C.A., Convergence of positive linear operators on C(X), J. Approx. Theory 13, 305-315 (1975).
Phelps, R.R., Lectures on Choquet's theorem, Math. Studies, Princeton, Van Nostrand 1966.
Rasa, I., On some results of C. A. Micchelli, Anal. Numer. Theor. Approx. 9, 125-127 (1980).
Rasa I., Sets on which concave functions are ane and Korovkin closures, Anal. Numer. Theor. Approx. 15(1986), no. 2, 163-165.
Rogalski, M., Espaces de Banach reticules et probleme de Dirichlet, Publ. Math. D'Orsay, Mathematique (425), 1968-1969.
Watanabe, H., The Choquet boundary and the integral representation, Nat. Sci. Rep. Ochanomizu Univ. 31, 23-33 (1980).
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.