On a certain class of harmonic functions and the generalized Bernardi-Libera-Livingston integral operator
DOI:
https://doi.org/10.24193/subbmath.2020.3.05Keywords:
harmonic univalent functions, extreme pointsAbstract
In this paper we examine the closure properties of the class $\mathcal{V}_\mathcal{H}(F;\gamma)$ under the generalized Bernardi-Libera-Livingston integral \\operator $\mathcal{L}_{c}(f),$ ($c>-1$) which is defined by
$ \mathcal{L}_{c}(f)=\mathcal{L}_{c}(h)+\overline{\mathcal{L}_{c}(g)}$ where
\begin{equation*}
\mathcal{L}_{c}(h)(z)=\frac{c+1}{z^{c}}\int\limits_{0}^{z}(t^{c-1}h(t) dt \;\;\;%
\mathrm{and} \;\;\; \mathcal{L}_{c}(g)(z)=\frac{c+1}{z^{c}}\int\limits_{0}^{z}(t^{c-1}g(t) dt.
\end{equation*}
The obtained results are sharp and they improve known results.
References
B.C. Carlson, S.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM, J. Math. Anal., 15 (2002), 737-745.
J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser.A.I. Math., 9 (1984) 3-25.
J.M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, Southwest. J. Pure and Apll., Math., 2 (2002), 77-82.
J.M. Jahangiri, G. Murugusundaramoorthy, K.Vijaya, Starlikeness of
Rucheweyh type harmonic univalent functions, J. Indian Acad. Math., 26 (2004), 191-200.
J.M. Jahangiri, H. Silverman, Harmonic univalent functions with varying arguments, Internat. J. Appl. Math., 8 (2002), 267-275.
H.A. Al-Kharsani, R.A. Al-Khai, Univalent harmonic functions, J.Ineqal. Pure and Appl.Maths., 8 Issue 2, Articol 59 , 8 pp.
G. Murugusundaramoorthy, A class of Ruscheweyh-type harmonic univalent functions with varying arguments, Southwest J. Pure Appl. Math., 2 (2003), 90-95.
G. Murugusundaramoorthy, G.S.Salagean , On a certain class of harmonic functions associated with a convolution structure, Mathematica, Tome 54 (77),no special 2012, pp. 131-142
G. Murugusundaramoorthy, K. Vijaya, On certain subclasses of harmonic functions associated with Wright hypergeometric functions, Advanced Studies Contemporary Mathematics, 1 (2009).
S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109 -115.
G. S. Salagean, Subclasses of univalent functions, Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., 1013, Springer, Berlin, (1983), 362-372.
H.M. Srivastava, S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions, Nagoya Math. J., 106 (1987), 1-28.
E.M.Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London. Math. Soc., 46 (1946), 389-408.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.