The study of the solution of a Fredholm-Volterra integral equation by Picard operators
DOI:
https://doi.org/10.24193/subbmath.2019.4.09Keywords:
Picard operators, Fredholm integral equation, Volterra integral equation, data dependence, integral inequalities, Ulam-Hyers stabilityAbstract
In this paper we will use the Picard operators technique, in order to establish the existence and uniqueness, data dependence and Gronwall-type results for the solutions of a Fredholm-Volterra functional-integral equation. The paper ends with a result of the Ulam-Hyers stability of this integral equation.
References
Andras, Sz., Ecuatii integrale Fredholm-Volterra, Editura Didactica si Pedagogica, Bucuresti, 2005.
Bainov, D., Simeonov, P., Integral inequalities and applications, Kluwer, Dordrecht, 1992.
Calio, F., Marcchetti, E., Muresan, V., On some Volterra-Fredholm integral equations, Int. J. Pure Appl. Math., 31(2006), no. 2, 173-184.
Coman, Gh., Rus, I., Pavel, G., Rus, I. A., Introducere in teoria ecuatiilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.
Craciun, C., On some Gronwall inequalities, Seminar on Fixed Point Theory, 1(2000), 31-34.
Craciun, C., Lungu, N., Abstract and concrete Gronwall lemmas, Fixed Point Theory, 10(2009), no. 2, 221-228.
Craciun, C., Serban, M.A., A nonlinear integral equation via Picard operators, Fixed Point Theory, 12(2011), no. 1, 57-70.
Dobritoiu, M., The solution to a Fredholm implicit integral equation in the B(0;R) sphere, Bulletins for Applied&Computer Mathematics, Budapest, BAM CV(2003), no. 2162, 27-32.
Dobritoiu, M., Existence and continuous dependence on data of the solution of an integral equation, Bulletins for Applied&Computer Mathematics, Budapest, 2005.
Dobritoiu, M., A Fredholm-Volterra integral equation with modified argument, Analele Universitatii din Oradea, Fasc. Matematica, tom XIII, 2006, 133-138.
Dobritoiu, M., On an integral equation with modified argument, Acta Universitatis Apulensis, Mathematics-Informatics, 2006, no. 11, 387-391.
Dobritoiu, M., Analysis of an integral equation with modified argument, Studia Univ. Babes-Bolyai, Mathematica, 51(2006), no. 1, 81-94.
Dobritoiu, M., Properties of the solution of an integral equation with modified argument, Carpathian Journal of Mathematics, 23(2007), no. 1-2, 70-80.
Dobritoiu, M., A Nonlinear Fredholm Integral Equation, Transylvanian Journal of Mathematics and Mechanics, 1(2009), no. 1-2, 25-32.
Dobritoiu, M., A Class of Nonlinear Integral Equations, Transylvanian Journal of Mathematics and Mechanics, 4(2012), no. 2, 117-123.
Otrocol, D., Ilea, V., Ulam stability for a delay differential equation, Cent. Eur. J. Math., 11(2013), no. 7, 1296-1303.
Ilea, V., Otrocol, D., Some properties of solutions of a functional-differential equation of second order with delay, The Scientific World Journal, Hindawi Publishing Corporation, 2014, Article ID 878395, 8 pages.
Lungu, N., On some Volterra integral inequalities, Fixed Point Theory, 8(2007), no. 1, 39-45.
Mitrinovic, D.S., Pecaric, J.E., Fink, A.M., Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, 1991.
Olaru, I.M., An integral equation via weakly Picard operators, Fixed Point Theory, 11(2010), no.1, 97-106.
Olaru, I.M., Data dependence for some integral equations, Studia Univ. Babes-
Bolyai, Mathematica, 55(2010), no.2, 159-165.
Olaru, I.M., I.M. Olaru, On some integral equations with deviating argument, Studia Univ. Babes-Bolyai Math., 50(2005), no. 4, 65-72.
Petrusel, A., Fredholm-Volterra integral equations and Maia's theorem, Seminar on Fixed Point Theory, Babes-Bolyai University of Cluj-Napoca, 1988, 79-82.
Rus, I.A., Results and problems in Ulam stability of operatorial equations and inclusions. Handbook of functional equations, Springer Optim. Appl., 96(2014), 323-352.
Rus, I.A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009), 305-320.
Rus, I.A., Fixed points, upper and lower fixed points: abstract Gronwall lemmas, Carpathian Journal of Mathematics, 20(2004), no. 1, 125-134.
Rus, I.A., Picard operators and applications, Scientiae Mathematicae Japonicae, 58(2003), no. 1, 191-219.
Rus, I.A., Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
Rus, I.A., Weakly Picard operators and applications, Seminar on Fixed Point Theory, Babes-Bolyai University of Cluj-Napoca, 2(2001), 41-58.
Rus, I.A., Principii si aplicatii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
Sincelean, A., On a class of functional-integral equations, Seminar on Fixed Point Theory, Babes-Bolyai University of Cluj-Napoca, 1(2000), 87-92.
Serban, M.A., Teoria punctului fix pentru operatori definiti pe produs cartezian, Presa Universitara Clujeana, Cluj-Napoca, 2002.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.