Operator norms of Gauss-Weierstrass operators and their left quasi interpolants
DOI:
https://doi.org/10.24193/subbmath.2019.2.08Keywords:
Approximation by positive operators, operator normAbstract
The paper deals with the Gau\ss --Weierstra\ss\ operators $W_{n}$and their left quasi interpolants $W_{n}^{\left[ r\right] }$. The quasi interpolants were defined by Paul Sablonni\`{e}re in 2014. Recently, their asymptotic behaviour was studied by Octavian Agratini, Radu P\u{a}lt\u{a}nea and the author by presenting complete asymptotic expansions. In this paper we derive
estimates for the operator norms of $W_{n}$ and $W_{n}^{\left[ r\right] }$ when acting on various function spaces.
References
bibitem{Abel-Favard quasi-interpolants-StudMath-2011} Abel,~U., newblock%
emph{Asymptotic expansions for Favard operators and their left
quasi-interpolants}, newblock Stud. Univ. Babec{s}-Bolyai Math. textbf{56}(2011), 199--206.
bibitem{Abel-Agratini-Paltanea-MJOM-2018} Abel,~U., Agratini,~O., Pu{a}ltu{a}nea,~R., newblockemph{A complete asymptotic expansion for the
quasi-interpolants of Gauss --Weierstrass operators}, newblock Mediterr.
J. Math. textbf{15}(2018), Online First.newline
https://doi.org/10.1007/s00009-018-1195-8
bibitem{abel-butzer-Favard-2011} Abel,~U., Butzer,~P.~L., newblockemph{Complete asymptotic expansion for generalized Favard operators},
Constr. Approx. textbf{35}(2012), 73--88.newline
DOI: 10.1007/s00365-011-9134-y.
bibitem{Abel-Ivan-FAAT-2009-2010} Abel,~U., Ivan,~M., emph{Simultaneous approximation by Altomare operators}, newblock Proceedings of the 6th international conference on functional analysis and approximation theory, Acquafredda di Maratea (Potenza), Italy, Sept. 24--30, 2009, Palermo: newblock Circolo Matem`{a}tico di Palermo, Rend. Circ. Mat.
Palermo, Serie II, Suppl. textbf{82}(2010), 177--193.
bibitem{Abramowitz} Abramowitz,~M., Stegun,~A., newblockemph{Handbook of Mathematical Functions}, newblock Appl. Math. Ser. 55, National Bureau of Standards, Washington D.~C., 1972.
bibitem{Altomare-Milella-2008} Altomare,~F., Milella,~S., newblockemph{Integral-type operators on continuous function spaces on the real line}, J. Approx. Theory textbf{152}(2008), 107--124.newline
http://dx.doi.org/10.1016/j.jat.2007.11.002
bibitem{Altomare-Campiti-Book-1994} Altomare~F., Campiti~M., emph{Korovkin-type Approximation Theory and its Applications}, de Gruyter Studies in Mathematics 17, W. de Gruyter, Berlin, New York, 1994.
bibitem{Butzer-Nessel} Butzer,~P.~L., Nessel,~R.~J., newblockemph{Fourier Analysis and Approximation}, newblock Birkh"{a}user Verlag, Basel, 1971.
bibitem{Gautschi-book-2004} Gautschi,~W., emph{Orthogonal Polynomials}, Oxford University Press, 2004.
bibitem{Gould-Identities-1972} Gould,~H.~W., emph{Combinatorial Identities}, newblock Morgantown Print & Bind., Morgantown, WV (1972).
bibitem{Sablonniere-JAT-2014} Sablonni`{e}re,~P., newblockemph{Weierstrass quasi-interpolants}, newblock J. Approx. Theory textbf{180}(2014), 32--48.newline
newblock http://dx.doi.org/10.1016/j.jat.2013.12.003
bibitem{Watson-1958} Watson,~G.~N., newblockemph{A note on gamma functions}, newblock Proc. Edinb. Math. Soc. textbf{2}(11) (1958/59);
Edinburgh Math. Notes textbf{42}(1959), 7--9.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.