Inclusion properties of hypergeometric type functions and related integral transforms

Lateef Ahmad Wani, Swaminathan Anbhu

Abstract


In this work,
conditions on the parameters $a, b$ and $c$ are given so that
the normalized Gaussian hypergeometric function $zF(a,b;c;z)$, where
\begin{align*}
F(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n}z^n,
\quad |z|<1,
\end{align*}
is in certain class of analytic functions. Using Taylor coefficients of functions in certain classes,
inclusion properties of the Hohlov integral transform involving $zF(a,b;c;z)$ are obtained. Similar
inclusion results of the Komatu integral operator related to the generalized polylogarithm are also obtained. Various results for the particular values of these parameters are deduced and compared with the existing literature.


Keywords


Univalent; Convex; Starlike; Close-to-convex functions, Gaussian hypergeometric functions, Incomplete beta functions, Komatu integral operator, Polylogarithm

Full Text:

PDF

References


R. M. Ali, A. O. Badghaish, V. Ravichandran and A. Swaminathan, Starlikeness of integral transforms and duality, J. Math. Anal. Appl. {bf 385} (2012), no.~2, 808--822.

R. M. Ali, S. K. Lee, K. G. Subramanian and A. Swaminathan, A third-order differential equation and starlikeness of a double integral operator, Abstr. Appl. Anal., Article in press, 10 pages, doi:10.1155/2011/901235.

R. M. Ali, M.M. Nargesi and V. Ravichandran, Convexity of integral transforms and duality, Complex Variables and Elliptic Equations: An International Journal, DOI:10.1080/17476933.2012.693483

R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions. Tamkang J. Math. 28 (1997), no. 1, 17--32.

R. Fournier and S. Ruscheweyh, On two extremal problems related to univalent functions.

Rocky Mountain J. Math. 24 (1994), no. 2, 529--538.

A. W. Goodman, Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc. 8 (1957), 598--601.

A. W. Goodman, On uniformly convex functions. Ann. Polon. Math. 56 (1991), no. 1, 87--92.

S. Kanas and A. Wisniowska, Conic regions and $k$-uniform convexity. Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997). J. Comput. Appl. Math. 105 (1999), no. 1-2, 327--336.

Y. Komatu, On a family of integral operators related to fractional calculus, Kodai Math. J. {bf 10} (1987), no.~1, 20--38.

J. L. Li, On some classes of analytic functions. Math. Japon. 40 (1994), no. 3, 523--529.

E. Rainville, Special functions. The Macmillan Co., New York 1960 xii+365 pp.

F. Ronning, Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 118 (1993), no. 1, 189--196.

H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. {bf 51}(1975), 109--116.

A. Swaminathan, Inclusion theorems of convolution operators associated with normalized hypergeometric functions. J. Comput. Appl. Math. 197 (2006), no. 1, 15--28.

A. Swaminathan, Convexity of the incomplete beta functions. Integral Transforms Spec. Funct. 18 (2007), no. 7-8, 521--528.

A. Swaminathan, Sufficient conditions for hypergeometric functions to be in a certain class of analytic functions. Comput. Math. Appl. 59 (2010), no. 4, 1578--1583.




DOI: http://dx.doi.org/10.24193/subbmath.2020.2.04

Refbacks

  • There are currently no refbacks.