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Analysis of fractional boundary value problem
with non local flux multi-point conditions
on a Caputo fractional differential equation
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Abstract. A brief analysis of boundary value problem of Caputo fractional differ-
ential equation with nonlocal flux multi-point boundary conditions has been done.
The investigation depends on the Banach fixed point theorem, Krasnoselskii-
Schaefer fixed point theorem due to Burton and Kirk, fixed point theorem due to
O’Regan. Relevant examples illustrating the main results are also constructed.
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1. Introduction

In recent years, fractional differential equations are increasingly utilized to model
many problems in biology, chemistry, engineering, physics, economic and other areas
of applications. The fractional differential equations have become a useful tool for
describing nonlinear phenomena of science and engineering models. Also, researchers
found that fractional calculus was very suitable to describe long memory and hered-
itary properties of various materials and processes. we refer the reader to the texts
[16]-[14], [8], [9]-]6], and the references cited therein.

Fractional differential equations have attracted considerable interest because of
their ability to model complex artefacts. These equations capture non local relations
in space and time with memory essentials. Due to extensive applications of FDEs in
engineering and science, research in this area has grown significantly all around the
world., for instance, see [18], [11], [15] and the references cited therein. Recently, much
interest has been created in establishing the existence of solutions for various types of
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boundary value problem of fractional order with nonlocal multi-point boundary con-
ditions. Nonlocal multi-point conditions involving Liouville-Caputo derivative, first
of its kind was explored by Agarwal et.al. [1] on nonlinear fractional order boundary
value problem. Ahmad et.al. [2]-[5], [3], [7] profound the idea of new kind of non-
local multi-point boundary value problem of fractional integro-differential equations
involving multi-point strips integral boundary conditions.

In this paper the existence and uniqueness of solutions for the below fractional
differential equations with nonlocal multi-point boundary conditions are discussed.
Consider the fractional differential equation

CD’p(z) = k(z,p(2)), 2€3=[0,1, n—1<d<n, (1.1)
supplemented with the nonlocal multi-point integral boundary conditions

p(0) =% (p), p'(0) =pp'(v), p (0)=0, p (0)=0,---,p"2(0) =0,

m—2

p() =2 [ ploldo+n Y (G, (1)

where ©©? denote the Caputo fractional derivative and k: J x R to R and ¢: C(J,R)
to R, are given continuous functions, 0 < v < ¢ < (1 < (2 < -+ < (-2 < 1,
&, 7 =1,2,---,m—2, p,A\, 1 are positive real constants. The rest of the paper
is organised as follows: The preliminaries section is devoted to some fundamental
concepts of fractional calculus with basic lemma related to the given problem. In
section 3, the existence and uniqueness of solutions are obtained based on Banach
fixed point theorem, Krasnoselskii-Schaefer fixed point theorem due to Burton and
Kirk, and fixed point theorem due to O’Regan and also the validation of the results
is done by providing examples.

2. Preliminaries
In this section, we introduce some notations and definitions of fractional calculus.

Definition 2.1. The fractional integral of order ¢ with the lower limit zero for a function
k is defined as

1 2 k(o
Jék(z) = F@)/o e (0))16(10, z2>0, 6>0,

provided the right hand-side is point-wise defined on [0, 00), where I'(+) is the gamma
function, which is defined by I'(8) = [, 2° e~ *dz.

Definition 2.2. The Riemann-Liouville fractional derivative of order § > 0, n — 1 <
0 < n, n € Nis defined as

Oh,k() = M(f) | = o ko

where the function k(z) has absolutely continuous derivative up to order (n — 1).
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Definition 2.3. The Caputo derivative of order § for a function & : [0,00) — R can be
written as

n—1 j )
CDOk(z) = DI, (k(z) = ;k(”(o)) 2>0, n—1<d§<n.
j=0 7

Remark 2.4. If k(z) € C"[0, c0), then

B 1 ? k™ (o)
C®5k(z) = T(n —0) /0 (Z—U)‘Hl*”dg

TOkM(2), 2>0,n—1<d<n.

Lemma 2.5. For § > 0, the general solution of the fractional differential equation
CDIp(z) = 0 is given by

p(z) =ap+arz+- - +an_12""",
where a; €R,i=1,2,...,n—1 (n=1[0] +1).
In view of Lemma 2.5, it follows that

35033517(2) =p(z)+ap+az+---+ U121,

for some a; €R,i=1,2,....,n—1 (n=1[0] +1).
Next, we present an auxiliary lemma which plays a key role in the sequel.

Lemma 2.6. For any ke C(3J,R), the solution of the linear fractional differential
equation

“Dop(z) = k(z), n—-1<d<n, (2.1)

supplemented with the boundary conditions (1.2) is given by

Z(z—0g)0 1.
p(z) = /O(F((S))k(o)dor

(zv1 + 2" toy) w2
1+ R s+ g & - 1))
52

e [ b

LGt ;"*%m) P /(: (/O" (@ F(‘js))‘;l;;(e)d(a) do

m—2 C7 _0_51 1 —0'6_1A
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where
)\52 m—2
wp = 1—p, w2=1—7—HZ§jCJ‘ (2.3)
j=1
/\5n m—2
v = (n—1ps" 2 vy = 1-"— —p Z &G ! (2.4)
¥ = w1V + WaU1 7é O7 (25)

Proof. 1t is evident that the general solution of the fractional differential equations in
(2.1) can be written as

(z—o0)t 2 n—1
p(z) = Wk(a)da—&—ao—i—alz—l—agz + a1z (2.6)
0

where a;, € R, (i = 0,1,2,...,(n — 1)) are arbitrary constants. Using the boundary
conditions given by (1. ) (2.6), we get ap = ¥(p). On using the notations (2.3)-
(2.5) along with (1.2) in (2.6), we get

Viv—0)i2.
101 — Qp—-1V1 = p/o (F(é)l)k(a)da (27)
a1y + Ap_1Vy = )\/0g <‘/OU (J;(i);_l];(e)d9> do
m=2 Gj . o—1
+u25j/0 (& (; k(o)do
11— )01,
_/0 OI‘((S))k(a)da. (2.8)

Solving the system (2.7) and (2.8) for ai,an_1, we get
B 1 v (I/ _ 0.)672 .
ay = 5 lUQ <p/0 mk‘(()’)dtf
S o (0. _ 9)6—1 .
+v )\/ / ———=—k(0)do |do
( : ( o 1o

m—2 Cj R §—1 R m—2
+p ; fj/o (CJF((S))k(o)do + w@)(m +p ;1 & — 1)

ISRy
_/0 7(1 F((Y)) k(J)dJ)} (2.9)
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-1 v (V*O’)672A
Ap—1 = ? lWQ (p/o mk(a)da
S o ((T _ 0)571 .
+ w )\/ / ———=—k(0)d |do
1 ( : ( AT

y Z ¢ / CJ(é))k(a)dU +9(p) (/\6 + Mmfgj - 1)

j=1

_ o)1,
_/O (1 F(5)) kmdg)}_ (2.10)

Substituting the values of ag,a1,a,-1 in (2.6), we get the solution (2.2). This com-
pletes the proof.

3. Main results

We denote by & = C(J,R) be the Banach space of all continuous functions from
J — R, equipped with the norm defined by

llpll = sup [p(2)], z € J}.
ZEY

Also by £1(3,R), we denote the Banach space of measurable functions p : J — R
which are Lebesgue integral and normed by

1
Iplles = / Ip(2)|d=.

In view of Lemma 2.6, we define an operator ¥ : & — & associated with problem
(1.1) as

e = [ W}(‘Q)kw,p(a»do—

(zv1 + 2" o)

00+ 3 €= D] vl

j=1
p(zvg — 2" Lomy) (v—0)02
— 1) kel

2 {/O
+<w++f‘lwﬂp / ) ( / ”“;g_lkw,p(e»de)da

1 (1 _ 0_)5—1
_/0 Wk(a,p(a))da] (3.1)
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Let us define T1,%5 : & — & by
6—1

o) = [ ) (z}(‘g))kw,p(a))da

209 — 2" Loy V(y—og)i2?
=) [ o)t

2v1 + 2" lw ° 7 (g —6)01!
+(1+191){)\/0 </O (F(?)k(e,p(e)m)da

m—2 < R §—1
"y | ketena

k(a,p(o))da}

1 — o)1
| S keptania) (32)
and B
Eae) = [1+ O S e 69

In the sequel, we use the notations:

_ 1 plvs — @) (v ) (AP R
=1yt 95 Ty (5+1+“;§g<ﬁ) (3-4)
and
. ('U1+’ZD1) m—2 -
w1+ﬂ(A5+uj§_1§J+1) (3.5)

Theorem 3.1. The continuous function k defined from J x R to R. Let us speculate
that

(€1) |k(zp)— k(zq)| < Sllp—ql, ¥z €3,6 > 0,p,q €R.

(&) The continuous function ¢ defined from C(J,R) — R satisfying the condition:
[p(v) —Y(w)| <ellv—w|,ew <1, ¥v,we CJ,R),e>0.

(€3) © := 6+ cw < 1. Then the boundary value problem (1.1)-(1.2) has unique
solution on J.

Proof. For p,q € & and for each z € J, from the definition of T and assumptions (&)
and (&;). We obtain

- * (2 — )31 -
(€)() ~ (T < swpd [ ELE k(o)) ~ Ko a(o)do

z€Y

[+ W@aw"f@ =) | ) - v(a)]

6—2

+‘ p(zvs — 2" Laz) ’ {/OD (v—o0) k(o plo)) — ]4;(0'7q(0))|d0'}

9 TG —1)
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zv1 42"ty (o —0)°""
e e (/ 20 kw,q(e))ue) o

Cj — U)
™ Z 3 / T\k(o,pw)) - k(0,q(0))|do

1 ( _0)671
Jr/o WM}(J,}?(J)) - k(U,Q(U)”dU} }

#(z—0o)t
g/o (Sl —alas

06+ Y- & =) [l660) - v(o)

(zv1 + 2" o)
0

+‘ p(zvg —ﬁz”*lwz) ’ [/0 (”F(af:)i)z(em - qll)da}

+‘W‘ B /Og (/OU (J;(?)“(GIIP - qll)d9> do

0)671

m=—2 (¢ — o)1 g
36 [Tl aio s [T @l ]

G
=T +1)

1+

lp — ql]

m—2
plls — @) (o1 + ) (A »
1+ 96 Ty (5+1+’“‘;@@'+1)

m—2

v+ w -~ ~
B Z) 540y g 1) [l - al < (€7 + )l gl
j=1

Hence
I(%p) = (F9)ll < Ollp—ql.-
As © < 1 by (€3), the operator ¥ : & — & is a contraction. Hence the conclusion of

the theorem follows by the Banach fixed point theorem. O
Example 3.2. Consider the fractional differential equation given by
enl Cesimplz) .
D°p(z) =sinz + ————=, 2z €Y, 3.6

subject to the boundary conditions

1 ) 1,1 !
p0) = r(e). 70 = 30'(5) o) = [ n)r+ S enlc). @)

j=1
Here 1 1 1
2<6< A=u=1 = - = - ==
< 3, p=lp=q,v=r c=3,
1 1 1
Sl_ga 62 7753 6 €_§7
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1 1 1 1
Clzia CQZZa C3Z§7 <4:5
Using the given data, we find that
. e “sinp(z 1
k(= p(2)| = sin = + By = Zp(e).

4v/2% + 16 10

Since

1

lv = wl],

[$(0) - $(w)| < 7

therefore, (€;) and (&) are respectively satisfied with & = {; and € = {5. With the
given data, we find that 7 = 5.18462, & = 2.62014, it is found that

© := 61+ e = 0.586053 < 1.

Thus, the assumptions of Theorem 3.1 hold and the problem (3.6)-(3.7) has at most
one solution on J.

Theorem 3.3. Let ) be a Banach space, and $1,92 : ) — ) be two operators such
that $1 is a contraction and $o is completely continuous. Then either

(i) the operator equation u = $H1(u) + H2(u) has a solution, or

(ii) the set § = {w € : £H1(2) + kH2(w) = w} is unbounded for x € (0,1).

Theorem 3.4. The continuous function k defined from J x R to R and condition (&)
hold. Also let us understand that:

(€4) ¥(0)=0.

(&5) there exists a function x € £1(J,Ry) such that |k(z,v)| < x(2), for almost
everywhere each z € J, and each v € R.

Then the problem (1.1)-(1.2) has at least one solution on J.

Proof. To transform the problem (1.1)-(1.2) into a fixed point problem. we consider
the map T : & — & given by (Tp)(z) = (T1p)(2) + (T2p)(2), z € J, where T; and Ty
are defined by (3.2) and (3.3) respectively.

We shall show that the operators ¥; and ¥ satisfy all the conditions of Theorem 3.3.
Step 1. The operator T; defined by (3.2) is continuous.

Let p, C By ={p € & : ||p[| < 0} with ||p, —p|| — 0.

Then the limit ||p,(z)—p(2)|| = 0 is uniformly valid on J. From the uniform continuity
of k(z,p) on the compact set J x [0, 0], it follows that |k(z, p,(2)) — k(z,p(2))]| = 0
uniformly on J. Hence ||T1p, — T1p|| — 0 as n — oo which implies that the operator
T, is continuous.

Step 2. The operator ¥; maps bounded sets into bounded sets in &.

It is indeed enough to show that for any 6§ > 0 there exists a positive constant & such
that for each

peBy={pec&:|pl <6},
we have

[Tapll < Q.
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Let p € By. Then

Z(z—g)0 1t
sl < [ G =) 0, p(0)) do

['(6)
2v9 — 2" Loy V(v —g)i2?
s [T o, o)) o]

21 + 2" lw < 7 (0 —6)01
+W[A/O (/0 ( F(?) k(9,p(9))|d9)da

IA
c\N
~
I
2
(=11
L
=
2
QL
)

(2v1 + 2" lw) A G
+*[A/O (/0 o) m(@)d@)da
m—2 ¢ (¢ — o)1 L(1— o)1

1+

IN

=0

(1 + 1) (AP =2,
Ty (5+1+”Zgﬂ‘<j+1>
j=1

Step 3. The operator ¥; maps bounded sets into equicontinuous sets in &.
Let 01,00 € J with g1 < g2 and p € By, we obtain

01 s 6—1 _ - 6—1
[ om0

[(T1p)(02) — (T1p)(01)] <

+

02 — o 5—1
A

INQ))
[ /0 (?(_50)61;2 k(o p(0))]do]

n n—1

p((02 — 01)v2 — (Qgil — 0] )w2)
9

((02 = @)1 + (05" — 0 ") {7 le—=0)"""
+ - [A/O (/0 %) |k(0,p(9))|d0>da

+
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m—2 G — o)1 11 g)-1
g [T oo + [ O ko pto)lac]
“ (02 —0) ' = (o1 =) "] 2 (g — o)
< /0 o) x z(o)do| + /gl Taz(a)da
p((02 — e1)v2 — (65 ~" — o} " Hwa)

* ]

Yy —g)i2
[/O (F(a)l)|x(a)|da}

(o2 = o )vr + (3" =& Dwi) [y [*f [T(@=0)°"
+ y [)\/O (/0 - | (9)d9> do

(%)

m—2 < Cj_a(;,l 1 1_0_671
R T B e e SR

ﬂ -0)’ 5 —of p((e2 — 01)va — (93_1 — Q?_l)TDQ)V‘S*l
T +1) [2(02 = 01)" + (02 — 2)] + 2
((92 - Ql)’Ul + (Q;l_l _ Q?_l)wl) A§5+1 m—2 s
’ 9 (5+1+M;§]Cj+1)

which is independent of p and tends to zero as g — 01 — 0. Thus, ¥ is equicontinuous.

Step 4. The operator T, defined by (3.3) is continuous and ©- contractive.

To show the continuity of T3 for z € J, let us consider a sequence p,, converging to p.
Then we have

n—1 m—2
%o — Tapl < [14 EAEETE) 05 S 6 ) ) - w0
j=1
(Ul +’(D1) m—2
<[1+ 2 0+ >0+ 1) |ellpn - ol
j=1

which, in view of &, implies that %5 is continuous. Also is s is ©- contractive, since

m—2
(U1 + 1)

@:[1+T(A6+u25j+1)]5=@5<1.

j=1
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Step 5. It remains to show that the set § is bounded for every x!. Let p € § be a
solution of the integral equation

Z k(z— o)1
I e e

(zv1 + 2" toy)

m—2
+n{1 + #()«Hu Z & — 1)}1#(1?)

=
p(zvg — 2™ /O v—o0) ))da}
) = R 0 ( / k0, p<9>>de> do
+umz 3 / ool 1k<a,p<a>)do
- /01 “F(‘?)“k(a,p(a))da}, 2€j
Then, for each z € J, we have
Ip(2)] < /O (= _r(?)“ 2(0)do + 51+ W(m + ﬂggj -1)]

)5—2

(o(22) v o)+ 2 [

+(zv1 + :;"_1731) [)\ /Og (/OU (o ;3;_195(9)%) do

» Z & [ v+ [ o]

i (2—0)5 ! p(zvg — 2" o) (v—o0)
< /0 Té)x(a)da + [

+(zv1 + Z"_lwl) [)\ /0g (/OU (o 1_1(26_1;5(9)(19> do

+p Z f;/ “;;tslw(a)do + /01 u _F(Ué);_lfv(a)da}

m—2
+
e Ot F > &+ el

or

“(z—o0)0t 209 — 2" Loy Y (v—0)02
(1-ao)lpl < [ ETE (ot + A== [ U a0y
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Jr(zm + ;”71@1) [/\ /Og (/00 (o F(?;lx(o)w) do

)5—1

m=2 i 1(1—0)‘5_1
—i—,u f/ Jimada—i—/ ———x(o)do]|.
Consequently, we have
5—1

. 1 (z—o0)
Il < V= (1_(35){/0 ) z(o)do

2v9 — 2" Loy Vv —og)i2
B Y

Llen 2@ ;le) [ /0 ’ ( /O Tl - (05);_1 x(e)d9> do
)5 1

+M7RZ§J/ Jié)m(a)da
L] _ g)o-1
+/0 %x(a)da}}

which shows that the set § is bounded, since We < 1. Hence, T has a fixed point
in J by Theorem 3.3, and consequently the problem (1.1)-(1.2) has a solution. This
completes the proof. O

Finally, we show that the existence of solutions for the boundary value problem
(1.1)-(1.2) by applying a fixed poin theorem due to O’Regan.

Lemma 3.5. Denote by X an open set in a closed, convex set U of a Banach space
$H. Assume 0 € X. Also assume that ‘Z(%) is bounded and that T : X — A is given
by T =% + To, in which % : X $) is a nonlinear contraction (i.e., there exists a
nonnegative nondecreasing function ¢ : [0,00) — [0, 00) satisfying d(y) <y fory > 0,
such that || T2(p) — T2(q)|| < I(lp —¢ll) ¥V p,q € X. Then, either
(1) ¥ has a fizred point x € X; or
(Ws) there exist a point x € 0X and k € (0,1) with x = k%(x), where X and 0%,
respectively, represent the closure and boundary of X.

In the next result, we use the terminology:

Ag ={p € &:|pll <0}, By =maxf{|k(z,p)|: (z,p) €J x [0, 0]}
Theorem 3.6. The continuous function k defined from J x R to R and conditions
(¢1),(€2),(€4) hold. Also let us understand that:

(€g) there exists a nonnegative function x € C(J,R) and a nondecreasing function
¢ :[0,00) = [0,00) such that |k(z,v)| < x(2)d (||vH) for any (z,v) € J x R;

0 1
¢, sup = > —, where 7] and & are defined in (3.4) and (3.5) re-
R 7 ] P (3:4) and (5:5)
spectively. Then the problem (1.1)-(1.2) has at least one solution on J.
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Proof. By the assumption (€7), there exists a number 6 > 0 such that
0 1

o~ N > -~

1ne(0)]||] 1-we
We shall show that the operators ¥; and %5 defined by (3.2) and (3.3) respectively,
satisfy all the conditions of Lemma 3.5.
Step 1. The operator ¥ is continuous and completely continuous. We first show that
T1(Ap) is bounded. For any p € Ag, we have

(3.8)

Z(z—og)0 !
ISl < A(H$mwmw»w

e [ o

201 + 2" oy < 7 (g —0)°1
+W{>\/O (/0 (F(?)k(@,p(@)ﬂd0>dcr

INA
3
<
é‘“?
=3
&
2
2
j<W
)

2v9 — 2" Loy Vi —og)i2
+‘B9P( 5 )[/O (F((S _)1) x(a)da}

+Q79(ZU1 zzn—lwl) [/\ /0q </OJ (U;(i))(;_lx(e)dH) do

m—2 ¢ 5—1 1 5—1
7 (G —o) (1-o0)
w3 [ By oo [yl

V6_1

]| B
T(+1)

(U1+wl) )\§5+1 m—2 s
Ty (5+1+“Z£j<j+1>
j=1

pl(ve — w@y)]
96

IN

1+

= Yy|pln.

Thus the operator T;(Uj;) is uniformly bounded. Let o1, 02 € J with o1 < g2 and
p € By. Then

[(Z1p)(02) — (T1p)(01)] < Vo

[ oo™ (oo
0
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02 (QQ _ 0)671
/gl 71_‘(5) x(o)do

n—1 n—1 V() — )2
{/O (r(5—)1) |$(U)‘d"]

Vop((02 — 01)va — (05~ — 0] ~)w2)
Vo (02 — 01)v1 + (65" = of ) [T (e=0)°"
n [A/O (/O . |x(0)|d0> do

+Uy

+

)
g o)
m—2 < R 5—1 1 — 6—1
w6 S letldo + [ ST et

l|z[|Be

=T +1)

p((02 — o1)va — (05" — o} M)’ !
9o

2(02 — 01)° + (0} — o])] +

+

02 — 01)u1 + (057 — oF Daoy) (A R
((02 — 01)v1 (192 1) 1)(5+1+NZ§J‘C}S+1>
j=1

which is independent of p and tends to zero as go— 01 — 0. Thus, T; is equicontinuous.
Hence, by the Arzela-Ascoli Theorem. ¥;(0j) is a relatively compact set. Now, let
pn C Uz with [|p, — p|| — 0. Then the [p,(2) —p(z)|| — 0 is uniformly valid on J.

From the uniform continuity of k(z,p) on the compact set J x [5, —5], it follows that

1k(2, pn(2)) = k(z,p(2))| = 0
uniformly on J. Hence ||T1p, — T1p|| — 0 as n — oo which proves the continuity of
%7. This completes the proof Step 1.
Step 2. The operator T, : U — C(J, R) is contractive. This is a consequence of (&s).
Step 3. The set T(U,) is bounded. The assumptions (€z) and (&4) imply that

[F2pl| < web),

for any p € Uj;. This, with the boundedness of the set T;(Uj) implies that the set
T(V5) is bounded.

Step 4. Finally, it will be shown that the case 205 in Lemma 3.5 does not hold. On
the contrary, we suppose that 205 holds. Then, we have that there exist x € (0,1)
and p € 90Uy such that p = kTp.

So, we have ||p|| = 6 and

? k(z— o)1
p(z) = / e (o)) do

INE)!
n—1 m—2
+n[1+W(A5+uZ}€j—l)}w(p)
kp(zvg — 2" 1w Vi(y—g)i2
+ P( 2 5 2)[A (F((S_)l) k(a,p(a))da]

k(zv1 + 2" Loy © 7 (g —0)01
it +19 )[A/O (/0 <F(?)k(9,p(e))da>da
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5—1 1— 0.)671

m—2 Gt — o 1
Tt ; fj/o (gjl—‘(é))k(@p(a))do’ _/0 (F(é)k(a,p(a))da] z €.
Using the assumptions (€4)-(&g), we get

7 < o0l

which yields

)
A
3
=
=
+
&
™

Thus, we get a contradiction :

0 1
— < —.

n9(0) ||| 1 —de
Thus, the operators ¥; and %o satisfy all the conditions of Lemma 3.5. Hence, the
operator T has at least one fixed point p € Uy, which is a solution of the problem
(1.1)-(1.2). This completes the proof. O

Example 3.7. Consider the fractional differential equation given by

Cz e 1 -1 ~
Dp(z) = ———=(=+ztan" "(2)), z €3, 3.9
Pe) = 5= () €3 (3.9)

supplemented with the boundary conditions of Example 3.2.
Observe that |k(z,p)| < x(2)é(|p|) with

—z

e
RERvEET
and 1(0) =0, e = 35 as [¢(v) — Y(w)| < F5]v — w|. With

o(lpl) =1+ |p|

1
0(0) =140, |lz]| = 3¢, 7210683, &= 0.36416,

we have that (€7) holds, since

~

f = 149771 > 1.03779 =

1o(0)[|| 1-0e

Thus, all the conditions of Theorem 3.6 is satisfied and here the problem (3.9) with
(3.7) has at least one solution on J.
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