$\Lambda^2$-statistical convergence and its application to Korovkin second theorem
DOI:
https://doi.org/10.24193/subbmath.2019.4.08Keywords:
$\Lambda^2-$weighted statistical convergence, Korovkin type theorem, Rate of convergenceAbstract
In this paper, we use the notion of strong $(N, \lambda^2)-$summability to generalize the concept of statistical convergence. We call this new method a $\lambda^2-$statistical convergence and denote by $S_{\lambda^2}$ the set of sequences which are $\lambda^2-$statistically convergent. We find its relation to statistical convergence and strong $(N, \lambda^2)-$summability. We will define a new sequence space and will show that it is Banach space. Also we will prove the second Korovkin type approximation theorem for $\lambda^2$-statistically summability and the rate of $\lambda^2$-statistically summability of a sequence of positive linear operators defined from $C_{2\pi}(\mathbb{R})$ into $C_{2\pi}(\mathbb{R}).$
References
bibitem{A} F. Altomare, Korovkin-type theorems and approximation by positive linear operators,
Survey in Approximation Theory 5 (2010) 92-164.
bibitem{BM} N.L. Braha and T. Mansour, On $Lambda^2$-strong convergence of numerical sequences and Fourier series, Acta Math. Hungar., 141 (1-2) (2013), 113-126.
bibitem{B} N.L.Braha, A new class of sequences related to the $lsb p$ spaces defined by sequences of Orlicz functions. J. Inequal. Appl. 2011, Art. ID 539745, 10 pp.
bibitem{BE} N.L. Braha and Mikail Et, The sequence space $E_{n}^{q}left( M,p,sright) $ and $N_{k}-$ lacunary statistical convergence,
Banach J. Math. Anal. 7 (2013), no. 1, 88-96.
bibitem{BSM} Naim L. Braha, H.M. Srivastava and S.A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions
via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput. 228 (2014), 162-169.
bibitem{B1} N.L. Braha, Valdete Loku, H.M. Srivastava, $Lambda^2-$Weighted statistical convergence and Korovkin and Voronovskaya type theorems, Appl. Math. Comput. 266 (2015), 675-686.
bibitem{C} J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63.
bibitem{EMN} O.H.H. Edely, S.A. Mohiuddine, A.K. Noman, Korovkin type approximation theorems
obtained through generalized statistical convergence, Applied Math. Letters 23 (2010) 1382-1387.
bibitem{F}H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
bibitem{F1} J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
bibitem{FO} J.A. Fridy and C. Orhan, Lacunary statistical convergences, Pacific J. Math. 160 (1993), no. 1, 43-51.
bibitem{LB} Loku, Valdete; Braha, N. L. Some weighted statistical convergence and Korovkin type-theorem. J. Inequal. Spec. Funct. 8 (2017), no. 3, 139-150.
bibitem{K} P.P. Korovkin, Convergence of linear positive operators in the spaces of continuous
functions (Russian). Doklady Akad. Nauk. SSSR (N.S.) 90 (1953) 961-964.
bibitem{K1} P.P. Korovkin, Linear operators and approximation theory, Hindustan Publ. Co.,
Delhi, 1960.
bibitem{MAM1} S.A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical summability $(C, 1)$ and a Korovkin type approximation theorem, J. Inequa. Appl. 2012, 2012:172.
bibitem{MA3} M. Mursaleen, A. Alotaibi, Statistical lacunary summability and a Korovkin type approximation theorem, Ann. Univ. Ferrara 57(2) (2011) 373-381.
bibitem{MKEG} M. Mursaleen, V. Karakaya, M. Erturk, F. Gursoy, Weighted statistical convergence
and its application to Korovkin type approximation theorem, Appl. Math. Comput. 218 (2012) 9132-9137.
bibitem{M} M. Mursaleen, $lambda-$ statistical convergences, Math. Slovaca 50 (2000), no. 1, 111-115.
bibitem{SMK} H.M. Srivastava, M. Mursaleen, A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Modelling 55 (2012) 2040-2051.
bibitem{S} H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq.
Math. 2 (1951) 73-74.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.