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General inequalities related Hermite-Hadamard
inequality for generalized fractional integrals
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Abstract. In this article, we first establish a new general integral identity for
differentiable functions with the help of generalized fractional integral operators
introduced by Raina [8] and Agarwal et al. [1]. As a second, by using this identity
we obtain some new fractional Hermite-Hadamard type inequalities for functions
whose absolute values of first derivatives are convex. Relevant connections of the
results presented here with those involving Riemann-Liouville fractional integrals
are also pointed out.
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1. Introduction and preliminaries

One of the most famous inequalities for convex functions is Hermite-Hadamard’s
inequality. This double inequality is stated as follows (see for example [3]).

Let f: I C R — R be a convex function on the interval I of real numbers and
a,b € I with a < b. Then

1(557) < gt [ s < 1OI0 -y

Definition 1.1. The function f : [a,b] C R — R is said to be convex if the following
inequality holds:

fOz+ (1 =Ny) <Af(z)+ (1 =) f(y)
for all z,y € [a,b] and X € [0, 1]. We say that f is concave if (—f) is convex.

Now, we will give some important definitions and mathematical preliminaries of
fractional calculus theory which are used throughout of this paper.
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Definition 1.2. [4] Let f € Li[a,b]. The Riemann-Liouville integrals J, f and Ji* f
of order a > 0 with a > 0 are defined by

x

310 = F / (=0 f(t)dt, @ >a
and ,
Jee f (1a / ft)dt, z<b

respectively where

oo

/eualdu
0

In

the case of a = 1, the fractional integral

Here is JU, f(z) = J)_f(z) = f(=).

reduces to the classical integral.

In [5], Igbal et al. proved a new identity for differentiable convex functions via
Riemann-Liouville fractional integrals.

Lemma 1.3. Let f:[a,b] — R be a differentiable function on (a,b). If f' € L'[a,],
then the following identity for Riemann-Liouville fractional integmls holds:

(50 - S e ) + 5 f ka,
where
11:/0 tf (tb+ (1 —t) a) dt, Iz:/O (—=t%) f* (ta + (1 — 1) b) dt,

1

Ig:ﬁl(ta—l)f’(tb+(1—t)a)dt, I4=/ (1—t*) f (ta+ (1 —t)b)dt.

1

2 2
By wusing the above identity, the authors obtained left-sided of Hermite-
Hadamard type inequalities for convex functions via Riemann-Liouville fractional
integrals. Some other results related to those inequalities involving Riemann-Liouville
fractional integrals can be found in the literature, for example, in [2, 7, 18, 16, 11]
and the references therein.
In [8], Raina introduced a class of functions defined formally by

o ()= 7O o, oy N~ k) ,
oa(@) =F, (x) = Z mx (p, A > 0;|z] <R) (1.2)
where the coefficients o(k), (k € N = NU {0}), is a bounded sequence of positive
real numbers and R is the set of real numbers. With the help of (1.2), Raina [8] and
Agarwal et al. [1] defined the following left-sided and right-sided fractional integral

operators respectively, as follows:
x

(T rara) () = / (— O F e — et (x> a),  (13)

a
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b
(Tox ) (2) = / (t = ) F7 \[w(t — 2)]p(t)dt (z < b) (1.4)

where A;p > 0, w € R and ¢(¢) is such that the integral on the right side exits.

It is easy to verify that (»7,90,/\,a+;w90) (z) and (j:,,\,b—;w@> (z) are bounded integral

operators on L(a,b), if

M= FJ \pq1lw(b —a)’] < oco. (1.5)
In fact, for ¢ € L(a,b), we have
177 3 a0 (@)1 < Mb — a)* el (1.6)
and
1T 5 p—swe (@)l < MO —a) e[l (L.7)
where

b v
lellp = (/ |<P(t)|pdt> :

Here, many useful fractional integral operators can be obtained by specializing the
coefficient o (k). For instance the classical Riemann-Liouville fractional integrals Jg,
and J{* of order «a follow easily by setting A = ¢, 0(0) = 1 and w = 0 in (1.3) and
(1.4). Also, to see more results and generalizations for convex and some other several
convex functions classes, as Q(I), P(I), SX (h, I) and r—convex, involving generalized
fractional integral operators, see [17, 14, 15, 10, 9, 13, 12, 19, 20] and references there
in.

In this paper, we will prove a generalization of the identity given by Igbal et al.
in [5] by using generalized fractional integral operators. Then we will give some new
Hermite-Hadamard type inequalities for fractional integral operators.

2. Main results

We start by giving a generalization of Lemma 1, [5]. We will use an abbreviation
throughout of this study,

My (a,b;w; J) = F;A+1[w(b—a)p]f (a;—b)

- ﬁ [(jpgaha"r;wf) (b) + (jpctk,b—;wf) (CL)]

that is similar to the symbol "Ly (a, b;w; J)” in [17].

Lemma 2.1. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b and
A > 0. If f' € Lla,b], then the following equality for generalized fractional integral
operators holds:

b—a
Mf (a,b,w,J) = T (Il —f—]g +13 —|—I4)
where I, I, Is and Iy given in the (2.1), (2.2), (2.3) and (2.4), respectively.
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Proof. Integrating by parts, we get

L= / PFS s 1 [w(b — a)Pt?] £/ (th + (1 — t)a)dt

= " F A lw (b—a)pt/’]w 2

b—a 0
- [P e - apn L0200,
0 _

it () [ (3 (45)

1

_ ; 1 - /2 t/\—l]:g’)\[w(b— a)/’tﬂ]f(tb+ (1 _ t)a)dt
—aJo
Analogously:
= _/0 g [w(b = a) 7] f (ta + (1 — t)b)dt
LY b—a\” +b
() [ (59 ] (50)
1 % A—1 0o pip
N b—a/o A Fg Alw(b — a)’t] f(ta + (1 — t)b)dt
and

1
I3 = /l [t .7: >\+1[ w(b— a)’t’] — f;k_‘_l[w(b — a)pH f/(thr (1— t)a)dt
f(th+ (1 =)

= t>\]-"a/\+1[ (b—a)’t*] —

1
2

1
- / P F A (b - a)f't”]w“

2

— Foapalw U"W]W

= Pl - (“;b)
als) SHJW(b_“)p] (%)

1 / = 1]—'0 [ (b—a)”t”]f (th+ (1 — t)a)dt.

b—a 1
2

(2.2)
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Analogously:

1
Ii= [ [Foalulb - 0] = 55wl - 27 £tat (-0t (2.4)

2

b
— Pl - ol (450

) e () (59

1 1
/1 t/\_l]-';)\[w(b —a)Pt’]f(ta + (1 — t)b)dt.

b—a
Adding the resulting equalities, we obtain

L+L+Ii+1, = % ;A+1[w(b—a)p]f<a;—b) (2.5)
1 1
A / t’\_lf;;,\[w(b —a)’t’|f(ta + (1 — t)b)dt
1 2
— / P TIFT [w(b — a)P ] f(tb + (1 — t)a)dt
- 0

s Tl - a7l (450

it [(Tned) O+ (Trsad) @]

According to (1.3) and (1.4), changing variables with = tb + (1 — t)a, we get

! A—1 1o PP 1 o
/0 PLFS  [w(b — a)’t ]f(tb+(1—t)a)dt:m( N0

and changing variables with z = ta + (1 — t)b, we have

A t)\fljjli/\[w(b _ a)ptp]f(ta + (1 — t)b)dt = ﬁ (j;f,\,b—;wf) (a),

Thus multiplying both sides of (2.5) by (bga), we get desired result. O

Remark 2.2. Taking A = a, 0(0) = 1 and w = 0, then the above equality reduces to
equality in Lemma 1, [5].

By using the above generalized new lemma, we obtain some new Hermite-
Hadamard type inequalities via generalized fractional integral operators.

Theorem 2.3. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If

|f'| is convex on [a,b], then the following inequality for generalized fractional integral
operators holds:

27 (o, ) < PO F Ll (b a1 (1 @) 41 O]
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(1)
where p,A >0, w € R and o1 (k) = o (k) (%—&—M)

Proof. Using Lemma 2 and the convexity of |f'|, we have

|My (a,byw; J)| <

| 4+ [L2] + [ 13| + [14]}

{‘/ A FT s [w(b — a)t?]f (tb + (1 — t)a)dt

+

/02( ) Foaialw(b — a)Pt?]f' (ta + (1 — t)b)dt

| [ P E bt - are] - Faalwl - ) £(t+ (1 - Hai

2

1
| [ Foaalob - a)) = P F (b - a)¢7] Ftat (1~ bt

2

}

sb;“{/o MEg il — )| | (1 + (1 = t)a) dt

1

+/ M FS s g [w(b — a)?t?]| | (ta + (1 — t)b)| dt
0
/ P72 [w(b — a)t2] — F oy fw(b— a)?]| [/ (tb+ (1 — t)a)| dt

+A | Foaa[w(b—a)?] = A F7 s [w (b—a)ptp}lIf’(ta+(1—t)b)|dt}

b—a ~— a(k)|w|k(b—a)pk 3 , , ,
= 2 Z T (pk+A+1) X{/o t/\+k[t‘f O+ A=t |f (a)]] dt

k=0

+ / COER |1 (@) + (1 — 0) | (b)) dt

0

[ = O+ 001 @

2

2

[ L= @l -l <b>]dt}

b—a X o (k) |wl* (b—a)*
_ Z()H(

)

2 & T(pk+A+1)
1

2

X {f’ (a)] VOZ tAPE (1 — 1) dt+/0 PR LGy

|
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1 1
+/ [1—MPF] (1 —t)dt +

2

B

[1— P tdt]

Nl

+ £ (b)| [/2 t”f”f“dH/ AR (1 —t)dt
0 0

+ /1 [1— 2Pk tdt—i—ﬁl [1— Pk (1 —¢) dt]}

-

2 2
A+pk
b—a 1 (3) -1
= 4 b—a)] | = 4+22L  — ! "(b
(%5%) Zoalu a>1<2+ )i @i+ 1 o
where we used the facts that
1 A+pk+1 A+pk+2
[oma gu - B @)
o Apk+1 MN+pk+2’
1 (l)/\+Pk+2
/ Poklg — A2
B A+ pk+2’
1 1 Apk+1 1 A-pk+2
1 () -1 1-()
1L—tMPR (1 —t)dt = < + 2 2
/é[ Ja-1 8T ATkl T atpht2
1 1 Apk+2
3 (3) -1
1—tMPkldt = S 422 ©
/; [ ] 8 T T k12
The proof is completed. d

Corollary 2.4. If we choose A = a,0 (0) = 1 and w =0 in Theorem 2.1, we have

]f (%52) - o 1 1) + I3 fra)

2 ) 2(b—a)
b—a [a+ 217> —
- 4 a+1

1) 17 @) + 17 O]

Remark 2.5. The above inequality is better than one that was given in Theorem 2 of
[5].

Remark 2.6. If we choose o = 1 in Corollary 1, we get the inequality in Theorem 2.2
in [6].

Theorem 2.7. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.
If |f'|* is convex on [a,b] for some fized q > 1, then the following inequality for
generalized fractional integral operators holds:

(b—a) 7,3 1 [Jw] (b—a)”]

My (a,biws J)| < e

x {<3|f’ @I +17 <b>|q>é (s (bﬂq);}

4 4
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¢ / t)d’ﬂk dt

(%)(A-&-pk)p-&-l % B
g9 (k)zo(k) [(WW) +¢P] .

Proof. By using Lemma 2 and properties of modulus, we have

where p, A > 0, w € R,

and

a
|Mj (a, b;w; J)| < (Ha] + | + 5] + L] - (2.6)

Then by using Holder integral inequality and convexity of |f/|?, we have

00 k k
‘Il| < U(k |U}| (b_a’)p
- )

T(pk+A+1

X (/0 (tAPR)P dt (/02 (1O + 1 —=1t)|f (a)] dt) '

_ iauf ol (b - )““((2)(”“)1’“) (3|f’()l”+|f’(b)|q)3
I'(pk+A+1) A+pk)p+1 4 ’

k=0

ilng

= o (k) [w]* (b— a)™
Bl < kZ:O T (pk+A+1) (2.8)
“ (/ () dt ' (/ [t 1/ (@) + (1 €)1 (0)]] dt) '
0 0
oWl 6o (BN @ sl )
B kz:o I'(pk+X+1) (()\2+pk)p+l ( 4 ) ’
= o () [w]* (b— a)™
Bl = kz:% T (pk+A+1) (2:9)
(/ — prrok)? ) ( [t )7 + (—t)lf’(a)lq]dt>q
o (k)| (b—a) o |q+3|f'<>| ‘
N Z F(pk:-l—)\-l-l) ¢ < >

k=0
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and

i o (k) Jwl* (b — o)™ (2.10)

I'(pk+A+1)
( J @+ a-olror] dt)

0
1 p
x (/ (1 t”/ﬂ"f)pdt>
<15

(If’( )| +43|f’ <a>|q>3

14

IN

=
-

where ¢ = fll (1= PR)P gt
If we use the inequalities (2.7), (2.8), (2.9) and (2.10) in the inequality (2.6), we
get the desired result. So, the proof is completed. O

Corollary 2.8. If we choose A = a,0(0) =1 and w =0 in Theorem 2.2, we have

1(57) - e 1) + 7 @)

o [(BFY
= 2 (aerl ) +
y {(31" (a)|q4+|f’(b)lq>‘1‘ N (f’ (a)\q23|f’ (b)|q>é}
A At
= b;a <(02;;+1> +0 (3 I )Hf @]+ ®)

where we used the fact that
S(ai+b) < al+> 0] (2.11)
i=1 i=1 i=1

for0<r <1, ay,a2,a3,...,an > 0 and by, ba, b3, ...,b, > 0. Also,

1
Q:/ (1 —t*)Pat

The following result is obtained by using the well-known power-mean integral
inequality.

Theorem 2.9. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
|f’|f’ T 4s convex on [a,b] for some fized p > 1 with ¢ = fl, then the following
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iequality for generalized fractional integral operators holds:

My (0 b )] < P o] 6 - a1 (F @)+ 17 B)) (212)

Aok 175 I\ Aokt -7
(3) qu1+ }+(§) -1 qm
A+ pk+1 2 A4 pk+1

p, A >0, weR and where

1 1
Apk+2\ ¢ A+pk+1 A+pk+2\ @
m_((é) ’ ) +<(%) S ) >

A+ pk+2 A+pk+1 X+ pk+2

and

1
Apk+2 Apk+1 Apk+2\ ¢
s — §+L A S ) I S et )
8 A+ pk +2 8 A+pk+1 A+ pk+2

Proof. By using Lemma 2 and properties of modulus, we have

b—a
| My (a,b;w; J)| < == {] + [L2] + s] + [La}

Then by using the power mean-integral inequality for p > 1, we have

o o (k) [w|* (b —a)™
Al = kZ:O T(pk+A+1) (2.13)

N 1—1 1 1
Y q = q
X (/2 t/\+pkdt> (/2 APR (1 + (1 t)a)|th>
0 0

and by using convexity of | f’ |ﬁ in (2.13), we have
( )/\+Pk+2

%A-i-k- / q / q
[P (= et de = S 1 )

1 Apk+1 1 A pk+2
+<(2) 7(2) )fl((l)q.

Apk+1 X+ pk+2

If we use last equality in inequality of (2.13), then we get the following inequality as

= o (k) [w|* (b—a)™
Ll <
ol —I; T(pk +A+1)

I\ Mok 173 1\ Mbokt2 1\ Apk+1 1y A Hpk+2
« ((2) > {(2) |f/ (b)|q+ ((2) _ (2) > |f/ (a)|q}

A+ pk+1 A+ pk +2 Adpk+1 AN+pk+2
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As similar to computation of |I1|, we can get |Is|, |I5| and |I4] as following:

= o (k) [w]* (b= )™
<
5] < ];) T (pk+\+1)

INAEPRHIN 178 (/13 Akpkt2 1\ Apk+1 13\ Apk+2 3
« (5) (5) |f/ (a)|q+ (5) _ (5) ‘f/ (b)‘q
A+pk+1 A+ pk +2 Atpk+1 X+pk+2 ’
1—1
=32t (1 @)
3 T(pk+A+1) \2 " Xfpk+1
Apk+2
3 1*(%) / q
-+ —= b
X{<8+ peransal LU

T\ Aokl 1\ Mok42 7

A pk+1 )\+pk+2

) k pk 1\Atpk+1 -3
nj< 3 oWl @-a) <1+(2) 1)

~ T(pk+A+1) 2 A pk+1

1— Apk+2
X{<z+ Aigmz )f/(“”q

T\ Aokt 1\ Mk42 7

—_

and

A4 pk+1 )\+pk+2

Then by using the fact (2.11) in the inequalities of |I1|, |I2], |I5| and |I4| and by using
necessary arrangement we get the desired result in (2.12). O

Corollary 2.10. If we choose A = a,0 (0) =1 and w = 0 in Theorem 2.3, we have
a+b I'a+1
1(57) - s 1) + 75 @)

2(b—a)~
b—a ] ()™ L@

1—1
q 1 q
s 3 <a+1> 771+<2+a+1> 2 ¢ [1f (@) + [ ()]
where ) 1
B (l)a—&-Q q (l)a+1 (l)a+2 27
ne (W) (B

a+2 % a+1 a+2 %
I T €Y R C O ) M O 1 3
2 8 a+2 8 a+1 a+2

and
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